Parkinson’s disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling

Mutations in the iPLA2-VIA/PLA2G6 gene are responsible for PARK14-linked Parkinson’s disease (PD) with α-synucleinopathy. However, it is unclear how iPLA2-VIA mutations lead to α-synuclein (α-Syn) aggregation and dopaminergic (DA) neurodegeneration. Here, we report that iPLA2-VIA–deficient Drosophil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-10, Vol.116 (41), p.20689-20699
Hauptverfasser: Mori, Akio, Hatano, Taku, Inoshita, Tsuyoshi, Shiba-Fukushima, Kahori, Koinuma, Takahiro, Meng, Hongrui, Kubo, Shin-ichiro, Spratt, Spencer, Cui, Changxu, Yamashita, Chikara, Miki, Yoshimi, Yamamoto, Kei, Hirabayashi, Tetsuya, Murakami, Makoto, Takahashi, Yoshikazu, Shindou, Hideo, Nonaka, Takashi, Hasegawa, Masato, Okuzumi, Ayami, Imai, Yuzuru, Hattori, Nobutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20699
container_issue 41
container_start_page 20689
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Mori, Akio
Hatano, Taku
Inoshita, Tsuyoshi
Shiba-Fukushima, Kahori
Koinuma, Takahiro
Meng, Hongrui
Kubo, Shin-ichiro
Spratt, Spencer
Cui, Changxu
Yamashita, Chikara
Miki, Yoshimi
Yamamoto, Kei
Hirabayashi, Tetsuya
Murakami, Makoto
Takahashi, Yoshikazu
Shindou, Hideo
Nonaka, Takashi
Hasegawa, Masato
Okuzumi, Ayami
Imai, Yuzuru
Hattori, Nobutaka
description Mutations in the iPLA2-VIA/PLA2G6 gene are responsible for PARK14-linked Parkinson’s disease (PD) with α-synucleinopathy. However, it is unclear how iPLA2-VIA mutations lead to α-synuclein (α-Syn) aggregation and dopaminergic (DA) neurodegeneration. Here, we report that iPLA2-VIA–deficient Drosophila exhibits defects in neurotransmission during early developmental stages and progressive cell loss throughout the brain, including degeneration of the DA neurons. Lipid analysis of brain tissues reveals that the acyl-chain length of phospholipids is shortened by iPLA2-VIA loss, which causes endoplasmic reticulum (ER) stress through membrane lipid disequilibrium. The introduction of wild-type human iPLA2-VIA or the mitochondria–ER contact site-resident protein C19orf12 in iPLA2-VIA–deficient flies rescues the phenotypes associated with altered lipid composition, ER stress, and DA neurodegeneration, whereas the introduction of a disease-associated missense mutant, iPLA2-VIA A80T, fails to suppress these phenotypes. The acceleration of α-Syn aggregation by iPLA2-VIA loss is suppressed by the administration of linoleic acid, correcting the brain lipid composition. Our findings suggest that membrane remodeling by iPLA2-VIA is required for the survival of DA neurons and α-Syn stability.
doi_str_mv 10.1073/pnas.1902958116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6789907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26858021</jstor_id><sourcerecordid>26858021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-375bb82e0d2bcf385fcfa943466a30a9d7251acc30e55a2d99d1ba5a019f2ba33</originalsourceid><addsrcrecordid>eNpdkU2OEzEQhS0EYkJgzQpkiQ2bnvin7W5vkKIRM4wUiVkAW6va7U4cuu1gd4-UHRsOMcfgIhyCk-AoQ_hZVUnvq6eqegg9p-Sckoovdh7SOVWEKVFTKh-gGSWKFrJU5CGaEcKqoi5ZeYaepLQlhGSMPEZnnIqyLgmZoW83ED87n4L_-fUu4dYlC8kWkFIwDkbbYnezWrLi0_VycWiuJI52PfVZStjbKQYPPe4mb0YXfMLgW_zje5H2fjK9dR6nERrXu3GPx00M03qDBzs0EbzNRkNobe_8-il61EGf7LP7OkcfL99-uHhXrN5fXV8sV4URlRgLXommqZklLWtMx2vRmQ5UyUspgRNQbcUEBWM4sUIAa5VqaQMCCFUda4DzOXpz9N1NzWBbY_0Yode76AaIex3A6X8V7zZ6HW61rGql8sPn6PW9QQxfJptGPbhkbN_ne8KUNGNKSinyGhl99R-6DVPM38oUJ7yijJUHw8WRMjGkFG13WoYSfYhYHyLWfyLOEy__vuHE_840Ay-OwDaNIZ50JuscPqP8F3HcsJk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303712247</pqid></control><display><type>article</type><title>Parkinson’s disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mori, Akio ; Hatano, Taku ; Inoshita, Tsuyoshi ; Shiba-Fukushima, Kahori ; Koinuma, Takahiro ; Meng, Hongrui ; Kubo, Shin-ichiro ; Spratt, Spencer ; Cui, Changxu ; Yamashita, Chikara ; Miki, Yoshimi ; Yamamoto, Kei ; Hirabayashi, Tetsuya ; Murakami, Makoto ; Takahashi, Yoshikazu ; Shindou, Hideo ; Nonaka, Takashi ; Hasegawa, Masato ; Okuzumi, Ayami ; Imai, Yuzuru ; Hattori, Nobutaka</creator><creatorcontrib>Mori, Akio ; Hatano, Taku ; Inoshita, Tsuyoshi ; Shiba-Fukushima, Kahori ; Koinuma, Takahiro ; Meng, Hongrui ; Kubo, Shin-ichiro ; Spratt, Spencer ; Cui, Changxu ; Yamashita, Chikara ; Miki, Yoshimi ; Yamamoto, Kei ; Hirabayashi, Tetsuya ; Murakami, Makoto ; Takahashi, Yoshikazu ; Shindou, Hideo ; Nonaka, Takashi ; Hasegawa, Masato ; Okuzumi, Ayami ; Imai, Yuzuru ; Hattori, Nobutaka</creatorcontrib><description>Mutations in the iPLA2-VIA/PLA2G6 gene are responsible for PARK14-linked Parkinson’s disease (PD) with α-synucleinopathy. However, it is unclear how iPLA2-VIA mutations lead to α-synuclein (α-Syn) aggregation and dopaminergic (DA) neurodegeneration. Here, we report that iPLA2-VIA–deficient Drosophila exhibits defects in neurotransmission during early developmental stages and progressive cell loss throughout the brain, including degeneration of the DA neurons. Lipid analysis of brain tissues reveals that the acyl-chain length of phospholipids is shortened by iPLA2-VIA loss, which causes endoplasmic reticulum (ER) stress through membrane lipid disequilibrium. The introduction of wild-type human iPLA2-VIA or the mitochondria–ER contact site-resident protein C19orf12 in iPLA2-VIA–deficient flies rescues the phenotypes associated with altered lipid composition, ER stress, and DA neurodegeneration, whereas the introduction of a disease-associated missense mutant, iPLA2-VIA A80T, fails to suppress these phenotypes. The acceleration of α-Syn aggregation by iPLA2-VIA loss is suppressed by the administration of linoleic acid, correcting the brain lipid composition. Our findings suggest that membrane remodeling by iPLA2-VIA is required for the survival of DA neurons and α-Syn stability.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1902958116</identifier><identifier>PMID: 31548400</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acceleration ; Agglomeration ; alpha-Synuclein - chemistry ; alpha-Synuclein - genetics ; alpha-Synuclein - metabolism ; Animals ; Animals, Genetically Modified ; Biological Sciences ; Brain ; Brain - metabolism ; Brain - pathology ; Cell Membrane - metabolism ; Cell Membrane - pathology ; Composition ; Degeneration ; Developmental stages ; Dopamine receptors ; Dopaminergic Neurons - metabolism ; Dopaminergic Neurons - pathology ; Drosophila melanogaster ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress ; Female ; Fruit flies ; Group VI Phospholipases A2 - genetics ; Group VI Phospholipases A2 - metabolism ; Group X Phospholipases A2 - genetics ; Group X Phospholipases A2 - metabolism ; Humans ; Linoleic acid ; Lipid composition ; Lipids ; Male ; Membranes ; Missense mutant ; Mitochondria ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Movement disorders ; Mutation ; Nerve Degeneration - metabolism ; Nerve Degeneration - pathology ; Neurodegeneration ; Neurodegenerative diseases ; Neurons ; Neurotransmission ; Parkinson Disease - metabolism ; Parkinson Disease - pathology ; Parkinson's disease ; Phenotypes ; Phospholipase A2 ; Phospholipids ; Phospholipids - metabolism ; PNAS Plus ; Stability ; Synaptic Transmission ; Synuclein</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-10, Vol.116 (41), p.20689-20699</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Oct 8, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-375bb82e0d2bcf385fcfa943466a30a9d7251acc30e55a2d99d1ba5a019f2ba33</citedby><cites>FETCH-LOGICAL-c575t-375bb82e0d2bcf385fcfa943466a30a9d7251acc30e55a2d99d1ba5a019f2ba33</cites><orcidid>0000-0001-8099-5367 ; 0000-0002-0830-9403 ; 0000-0002-6808-0444 ; 0000-0002-8587-0333 ; 0000-0003-2924-5231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26858021$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26858021$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31548400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mori, Akio</creatorcontrib><creatorcontrib>Hatano, Taku</creatorcontrib><creatorcontrib>Inoshita, Tsuyoshi</creatorcontrib><creatorcontrib>Shiba-Fukushima, Kahori</creatorcontrib><creatorcontrib>Koinuma, Takahiro</creatorcontrib><creatorcontrib>Meng, Hongrui</creatorcontrib><creatorcontrib>Kubo, Shin-ichiro</creatorcontrib><creatorcontrib>Spratt, Spencer</creatorcontrib><creatorcontrib>Cui, Changxu</creatorcontrib><creatorcontrib>Yamashita, Chikara</creatorcontrib><creatorcontrib>Miki, Yoshimi</creatorcontrib><creatorcontrib>Yamamoto, Kei</creatorcontrib><creatorcontrib>Hirabayashi, Tetsuya</creatorcontrib><creatorcontrib>Murakami, Makoto</creatorcontrib><creatorcontrib>Takahashi, Yoshikazu</creatorcontrib><creatorcontrib>Shindou, Hideo</creatorcontrib><creatorcontrib>Nonaka, Takashi</creatorcontrib><creatorcontrib>Hasegawa, Masato</creatorcontrib><creatorcontrib>Okuzumi, Ayami</creatorcontrib><creatorcontrib>Imai, Yuzuru</creatorcontrib><creatorcontrib>Hattori, Nobutaka</creatorcontrib><title>Parkinson’s disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mutations in the iPLA2-VIA/PLA2G6 gene are responsible for PARK14-linked Parkinson’s disease (PD) with α-synucleinopathy. However, it is unclear how iPLA2-VIA mutations lead to α-synuclein (α-Syn) aggregation and dopaminergic (DA) neurodegeneration. Here, we report that iPLA2-VIA–deficient Drosophila exhibits defects in neurotransmission during early developmental stages and progressive cell loss throughout the brain, including degeneration of the DA neurons. Lipid analysis of brain tissues reveals that the acyl-chain length of phospholipids is shortened by iPLA2-VIA loss, which causes endoplasmic reticulum (ER) stress through membrane lipid disequilibrium. The introduction of wild-type human iPLA2-VIA or the mitochondria–ER contact site-resident protein C19orf12 in iPLA2-VIA–deficient flies rescues the phenotypes associated with altered lipid composition, ER stress, and DA neurodegeneration, whereas the introduction of a disease-associated missense mutant, iPLA2-VIA A80T, fails to suppress these phenotypes. The acceleration of α-Syn aggregation by iPLA2-VIA loss is suppressed by the administration of linoleic acid, correcting the brain lipid composition. Our findings suggest that membrane remodeling by iPLA2-VIA is required for the survival of DA neurons and α-Syn stability.</description><subject>Acceleration</subject><subject>Agglomeration</subject><subject>alpha-Synuclein - chemistry</subject><subject>alpha-Synuclein - genetics</subject><subject>alpha-Synuclein - metabolism</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane - pathology</subject><subject>Composition</subject><subject>Degeneration</subject><subject>Developmental stages</subject><subject>Dopamine receptors</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>Dopaminergic Neurons - pathology</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Female</subject><subject>Fruit flies</subject><subject>Group VI Phospholipases A2 - genetics</subject><subject>Group VI Phospholipases A2 - metabolism</subject><subject>Group X Phospholipases A2 - genetics</subject><subject>Group X Phospholipases A2 - metabolism</subject><subject>Humans</subject><subject>Linoleic acid</subject><subject>Lipid composition</subject><subject>Lipids</subject><subject>Male</subject><subject>Membranes</subject><subject>Missense mutant</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Movement disorders</subject><subject>Mutation</subject><subject>Nerve Degeneration - metabolism</subject><subject>Nerve Degeneration - pathology</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurons</subject><subject>Neurotransmission</subject><subject>Parkinson Disease - metabolism</subject><subject>Parkinson Disease - pathology</subject><subject>Parkinson's disease</subject><subject>Phenotypes</subject><subject>Phospholipase A2</subject><subject>Phospholipids</subject><subject>Phospholipids - metabolism</subject><subject>PNAS Plus</subject><subject>Stability</subject><subject>Synaptic Transmission</subject><subject>Synuclein</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU2OEzEQhS0EYkJgzQpkiQ2bnvin7W5vkKIRM4wUiVkAW6va7U4cuu1gd4-UHRsOMcfgIhyCk-AoQ_hZVUnvq6eqegg9p-Sckoovdh7SOVWEKVFTKh-gGSWKFrJU5CGaEcKqoi5ZeYaepLQlhGSMPEZnnIqyLgmZoW83ED87n4L_-fUu4dYlC8kWkFIwDkbbYnezWrLi0_VycWiuJI52PfVZStjbKQYPPe4mb0YXfMLgW_zje5H2fjK9dR6nERrXu3GPx00M03qDBzs0EbzNRkNobe_8-il61EGf7LP7OkcfL99-uHhXrN5fXV8sV4URlRgLXommqZklLWtMx2vRmQ5UyUspgRNQbcUEBWM4sUIAa5VqaQMCCFUda4DzOXpz9N1NzWBbY_0Yode76AaIex3A6X8V7zZ6HW61rGql8sPn6PW9QQxfJptGPbhkbN_ne8KUNGNKSinyGhl99R-6DVPM38oUJ7yijJUHw8WRMjGkFG13WoYSfYhYHyLWfyLOEy__vuHE_840Ay-OwDaNIZ50JuscPqP8F3HcsJk</recordid><startdate>20191008</startdate><enddate>20191008</enddate><creator>Mori, Akio</creator><creator>Hatano, Taku</creator><creator>Inoshita, Tsuyoshi</creator><creator>Shiba-Fukushima, Kahori</creator><creator>Koinuma, Takahiro</creator><creator>Meng, Hongrui</creator><creator>Kubo, Shin-ichiro</creator><creator>Spratt, Spencer</creator><creator>Cui, Changxu</creator><creator>Yamashita, Chikara</creator><creator>Miki, Yoshimi</creator><creator>Yamamoto, Kei</creator><creator>Hirabayashi, Tetsuya</creator><creator>Murakami, Makoto</creator><creator>Takahashi, Yoshikazu</creator><creator>Shindou, Hideo</creator><creator>Nonaka, Takashi</creator><creator>Hasegawa, Masato</creator><creator>Okuzumi, Ayami</creator><creator>Imai, Yuzuru</creator><creator>Hattori, Nobutaka</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8099-5367</orcidid><orcidid>https://orcid.org/0000-0002-0830-9403</orcidid><orcidid>https://orcid.org/0000-0002-6808-0444</orcidid><orcidid>https://orcid.org/0000-0002-8587-0333</orcidid><orcidid>https://orcid.org/0000-0003-2924-5231</orcidid></search><sort><creationdate>20191008</creationdate><title>Parkinson’s disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling</title><author>Mori, Akio ; Hatano, Taku ; Inoshita, Tsuyoshi ; Shiba-Fukushima, Kahori ; Koinuma, Takahiro ; Meng, Hongrui ; Kubo, Shin-ichiro ; Spratt, Spencer ; Cui, Changxu ; Yamashita, Chikara ; Miki, Yoshimi ; Yamamoto, Kei ; Hirabayashi, Tetsuya ; Murakami, Makoto ; Takahashi, Yoshikazu ; Shindou, Hideo ; Nonaka, Takashi ; Hasegawa, Masato ; Okuzumi, Ayami ; Imai, Yuzuru ; Hattori, Nobutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-375bb82e0d2bcf385fcfa943466a30a9d7251acc30e55a2d99d1ba5a019f2ba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Agglomeration</topic><topic>alpha-Synuclein - chemistry</topic><topic>alpha-Synuclein - genetics</topic><topic>alpha-Synuclein - metabolism</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane - pathology</topic><topic>Composition</topic><topic>Degeneration</topic><topic>Developmental stages</topic><topic>Dopamine receptors</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>Dopaminergic Neurons - pathology</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Female</topic><topic>Fruit flies</topic><topic>Group VI Phospholipases A2 - genetics</topic><topic>Group VI Phospholipases A2 - metabolism</topic><topic>Group X Phospholipases A2 - genetics</topic><topic>Group X Phospholipases A2 - metabolism</topic><topic>Humans</topic><topic>Linoleic acid</topic><topic>Lipid composition</topic><topic>Lipids</topic><topic>Male</topic><topic>Membranes</topic><topic>Missense mutant</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Movement disorders</topic><topic>Mutation</topic><topic>Nerve Degeneration - metabolism</topic><topic>Nerve Degeneration - pathology</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurons</topic><topic>Neurotransmission</topic><topic>Parkinson Disease - metabolism</topic><topic>Parkinson Disease - pathology</topic><topic>Parkinson's disease</topic><topic>Phenotypes</topic><topic>Phospholipase A2</topic><topic>Phospholipids</topic><topic>Phospholipids - metabolism</topic><topic>PNAS Plus</topic><topic>Stability</topic><topic>Synaptic Transmission</topic><topic>Synuclein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mori, Akio</creatorcontrib><creatorcontrib>Hatano, Taku</creatorcontrib><creatorcontrib>Inoshita, Tsuyoshi</creatorcontrib><creatorcontrib>Shiba-Fukushima, Kahori</creatorcontrib><creatorcontrib>Koinuma, Takahiro</creatorcontrib><creatorcontrib>Meng, Hongrui</creatorcontrib><creatorcontrib>Kubo, Shin-ichiro</creatorcontrib><creatorcontrib>Spratt, Spencer</creatorcontrib><creatorcontrib>Cui, Changxu</creatorcontrib><creatorcontrib>Yamashita, Chikara</creatorcontrib><creatorcontrib>Miki, Yoshimi</creatorcontrib><creatorcontrib>Yamamoto, Kei</creatorcontrib><creatorcontrib>Hirabayashi, Tetsuya</creatorcontrib><creatorcontrib>Murakami, Makoto</creatorcontrib><creatorcontrib>Takahashi, Yoshikazu</creatorcontrib><creatorcontrib>Shindou, Hideo</creatorcontrib><creatorcontrib>Nonaka, Takashi</creatorcontrib><creatorcontrib>Hasegawa, Masato</creatorcontrib><creatorcontrib>Okuzumi, Ayami</creatorcontrib><creatorcontrib>Imai, Yuzuru</creatorcontrib><creatorcontrib>Hattori, Nobutaka</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mori, Akio</au><au>Hatano, Taku</au><au>Inoshita, Tsuyoshi</au><au>Shiba-Fukushima, Kahori</au><au>Koinuma, Takahiro</au><au>Meng, Hongrui</au><au>Kubo, Shin-ichiro</au><au>Spratt, Spencer</au><au>Cui, Changxu</au><au>Yamashita, Chikara</au><au>Miki, Yoshimi</au><au>Yamamoto, Kei</au><au>Hirabayashi, Tetsuya</au><au>Murakami, Makoto</au><au>Takahashi, Yoshikazu</au><au>Shindou, Hideo</au><au>Nonaka, Takashi</au><au>Hasegawa, Masato</au><au>Okuzumi, Ayami</au><au>Imai, Yuzuru</au><au>Hattori, Nobutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parkinson’s disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-10-08</date><risdate>2019</risdate><volume>116</volume><issue>41</issue><spage>20689</spage><epage>20699</epage><pages>20689-20699</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mutations in the iPLA2-VIA/PLA2G6 gene are responsible for PARK14-linked Parkinson’s disease (PD) with α-synucleinopathy. However, it is unclear how iPLA2-VIA mutations lead to α-synuclein (α-Syn) aggregation and dopaminergic (DA) neurodegeneration. Here, we report that iPLA2-VIA–deficient Drosophila exhibits defects in neurotransmission during early developmental stages and progressive cell loss throughout the brain, including degeneration of the DA neurons. Lipid analysis of brain tissues reveals that the acyl-chain length of phospholipids is shortened by iPLA2-VIA loss, which causes endoplasmic reticulum (ER) stress through membrane lipid disequilibrium. The introduction of wild-type human iPLA2-VIA or the mitochondria–ER contact site-resident protein C19orf12 in iPLA2-VIA–deficient flies rescues the phenotypes associated with altered lipid composition, ER stress, and DA neurodegeneration, whereas the introduction of a disease-associated missense mutant, iPLA2-VIA A80T, fails to suppress these phenotypes. The acceleration of α-Syn aggregation by iPLA2-VIA loss is suppressed by the administration of linoleic acid, correcting the brain lipid composition. Our findings suggest that membrane remodeling by iPLA2-VIA is required for the survival of DA neurons and α-Syn stability.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31548400</pmid><doi>10.1073/pnas.1902958116</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8099-5367</orcidid><orcidid>https://orcid.org/0000-0002-0830-9403</orcidid><orcidid>https://orcid.org/0000-0002-6808-0444</orcidid><orcidid>https://orcid.org/0000-0002-8587-0333</orcidid><orcidid>https://orcid.org/0000-0003-2924-5231</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-10, Vol.116 (41), p.20689-20699
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6789907
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acceleration
Agglomeration
alpha-Synuclein - chemistry
alpha-Synuclein - genetics
alpha-Synuclein - metabolism
Animals
Animals, Genetically Modified
Biological Sciences
Brain
Brain - metabolism
Brain - pathology
Cell Membrane - metabolism
Cell Membrane - pathology
Composition
Degeneration
Developmental stages
Dopamine receptors
Dopaminergic Neurons - metabolism
Dopaminergic Neurons - pathology
Drosophila melanogaster
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Endoplasmic reticulum
Endoplasmic Reticulum Stress
Female
Fruit flies
Group VI Phospholipases A2 - genetics
Group VI Phospholipases A2 - metabolism
Group X Phospholipases A2 - genetics
Group X Phospholipases A2 - metabolism
Humans
Linoleic acid
Lipid composition
Lipids
Male
Membranes
Missense mutant
Mitochondria
Mitochondria - metabolism
Mitochondria - pathology
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Movement disorders
Mutation
Nerve Degeneration - metabolism
Nerve Degeneration - pathology
Neurodegeneration
Neurodegenerative diseases
Neurons
Neurotransmission
Parkinson Disease - metabolism
Parkinson Disease - pathology
Parkinson's disease
Phenotypes
Phospholipase A2
Phospholipids
Phospholipids - metabolism
PNAS Plus
Stability
Synaptic Transmission
Synuclein
title Parkinson’s disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parkinson%E2%80%99s%20disease-associated%20iPLA2-VIA/PLA2G6%20regulates%20neuronal%20functions%20and%20%CE%B1-synuclein%20stability%20through%20membrane%20remodeling&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mori,%20Akio&rft.date=2019-10-08&rft.volume=116&rft.issue=41&rft.spage=20689&rft.epage=20699&rft.pages=20689-20699&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1902958116&rft_dat=%3Cjstor_pubme%3E26858021%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303712247&rft_id=info:pmid/31548400&rft_jstor_id=26858021&rfr_iscdi=true