QKI‐6 inhibits bladder cancer malignant behaviours through down‐regulating E2F3 and NF‐κB signalling
Quaking homolog (QKI) is a member of the RNA‐binding signal transduction and activator of proteins family. Previous studies showed that QKI possesses the tumour suppressor activity in human cancers by interacting with the 3'‐untraslated region (3'‐UTR) of various gene transcripts via the S...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2019-10, Vol.23 (10), p.6578-6594 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6594 |
---|---|
container_issue | 10 |
container_start_page | 6578 |
container_title | Journal of cellular and molecular medicine |
container_volume | 23 |
creator | Shi, Fei Deng, Zheng Zhou, Zheng Jiang, Chen‐Yi Zhao, Rui‐Zhe Sun, Feng Cui, Di Bei, Xiao‐Yu Yang, Bo‐Yu Sun, Qian Wang, Xing‐Jie Wu, Qi Xia, Shu‐Jie Han, Bang‐Min |
description | Quaking homolog (QKI) is a member of the RNA‐binding signal transduction and activator of proteins family. Previous studies showed that QKI possesses the tumour suppressor activity in human cancers by interacting with the 3'‐untraslated region (3'‐UTR) of various gene transcripts via the STAR domain. This study first assessed the association of QKI‐6 expression with clinicopathological and survival data from bladder cancer patients and then investigated the underlying molecular mechanisms. Bladder cancer tissues (n = 223) were subjected to immunohistochemistry, and tumour cell lines and nude mice were used for different in vitro and in vivo assays following QKI‐6 overexpression or knockdown. QKI‐6 down‐regulation was associated with advanced tumour TNM stages and poor patient overall survival. QKI‐6 overexpression inhibited bladder cancer cell growth and invasion capacity, but induced tumour cell apoptosis and cell cycle arrest. Furthermore, ectopic expression of QKI‐6 reduced tumour xenograft growth and expression of proliferation markers, Ki67 and PCNA. However, knockdown of QKI‐6 expression had opposite effects in vitro and in vivo. QKI‐6 inhibited expression of E2 transcription factor 3 (E2F3) by directly binding to the E2F3 3'‐UTR, whereas E2F3 induced QKI‐6 transcription by binding to the QKI‐6 promoter in negative feedback mechanism. QKI‐6 expression also suppressed activity and expression of nuclear factor‐κB (NF‐κB) signalling proteins in vitro, implying a novel multilevel regulatory network downstream of QKI‐6. In conclusion, QKI‐6 down‐regulation contributes to bladder cancer development and progression. |
doi_str_mv | 10.1111/jcmm.14481 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6787450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2280516096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4481-4971ac0cc6952730df2d1c798ff971ced10c73915afad7042b717c7d64ed17da3</originalsourceid><addsrcrecordid>eNp9kU9O3TAQxi1UVP60mx6gstRNVemBHSdxskGiT7yWFlpVKmvLsZ3ED8ehdgJixxF6Hg7BIXoSJn0PVFjUm7H0_ebTzHwIvaFkj8LbX6qu26NpWtANtE2zIpmlJUtfrP-0YMUW2olxSQjLKStfoi0GNCDZNjr_8fX4z83vHFvf2soOEVdOam0CVtIrKJ10tvHSD7gyrby0_RgiHtrQj02LdX_loTuYZnRysL7BR8mCYek1_rYA4e72I45Tu3MgvkKbtXTRvF7XXXS2OPo5_zw7-f7peH54MlPTDjA8p1IRpfIySzgjuk40Vbws6hoUZTQlirOSZrKWmpM0qTjlius8BYlryXbRwcr3Yqw6o5XxQ5BOXATbyXAtemnFU8XbVjT9pch5wdOMgMH7tUHof40mDqKzURnnpDf9GEWSFCSjOSlzQN89Q5dwIVgYKEZYliUlmww_rCgV-hiDqR-HoURMGYopQ_E3Q4Df_jv-I_oQGgB0BVxZZ67_YyW-zE9PV6b3WYirJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303552930</pqid></control><display><type>article</type><title>QKI‐6 inhibits bladder cancer malignant behaviours through down‐regulating E2F3 and NF‐κB signalling</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Shi, Fei ; Deng, Zheng ; Zhou, Zheng ; Jiang, Chen‐Yi ; Zhao, Rui‐Zhe ; Sun, Feng ; Cui, Di ; Bei, Xiao‐Yu ; Yang, Bo‐Yu ; Sun, Qian ; Wang, Xing‐Jie ; Wu, Qi ; Xia, Shu‐Jie ; Han, Bang‐Min</creator><creatorcontrib>Shi, Fei ; Deng, Zheng ; Zhou, Zheng ; Jiang, Chen‐Yi ; Zhao, Rui‐Zhe ; Sun, Feng ; Cui, Di ; Bei, Xiao‐Yu ; Yang, Bo‐Yu ; Sun, Qian ; Wang, Xing‐Jie ; Wu, Qi ; Xia, Shu‐Jie ; Han, Bang‐Min</creatorcontrib><description>Quaking homolog (QKI) is a member of the RNA‐binding signal transduction and activator of proteins family. Previous studies showed that QKI possesses the tumour suppressor activity in human cancers by interacting with the 3'‐untraslated region (3'‐UTR) of various gene transcripts via the STAR domain. This study first assessed the association of QKI‐6 expression with clinicopathological and survival data from bladder cancer patients and then investigated the underlying molecular mechanisms. Bladder cancer tissues (n = 223) were subjected to immunohistochemistry, and tumour cell lines and nude mice were used for different in vitro and in vivo assays following QKI‐6 overexpression or knockdown. QKI‐6 down‐regulation was associated with advanced tumour TNM stages and poor patient overall survival. QKI‐6 overexpression inhibited bladder cancer cell growth and invasion capacity, but induced tumour cell apoptosis and cell cycle arrest. Furthermore, ectopic expression of QKI‐6 reduced tumour xenograft growth and expression of proliferation markers, Ki67 and PCNA. However, knockdown of QKI‐6 expression had opposite effects in vitro and in vivo. QKI‐6 inhibited expression of E2 transcription factor 3 (E2F3) by directly binding to the E2F3 3'‐UTR, whereas E2F3 induced QKI‐6 transcription by binding to the QKI‐6 promoter in negative feedback mechanism. QKI‐6 expression also suppressed activity and expression of nuclear factor‐κB (NF‐κB) signalling proteins in vitro, implying a novel multilevel regulatory network downstream of QKI‐6. In conclusion, QKI‐6 down‐regulation contributes to bladder cancer development and progression.</description><identifier>ISSN: 1582-1838</identifier><identifier>ISSN: 1582-4934</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.14481</identifier><identifier>PMID: 31449345</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>3' Untranslated Regions ; Animals ; Apoptosis ; Apoptosis - genetics ; Bladder cancer ; Cancer ; Cancer therapies ; Cell cycle ; Cell Cycle Checkpoints - genetics ; Cell Line, Tumor ; Cell Movement - genetics ; Cell Proliferation - genetics ; Chemotherapy ; Down-Regulation ; E2F3 ; E2F3 Transcription Factor - genetics ; E2F3 Transcription Factor - metabolism ; Ectopic expression ; Feedback ; Female ; Gene amplification ; Gene expression ; Gene Expression Regulation, Neoplastic - genetics ; gene regulation ; Homology ; Humans ; Immunohistochemistry ; Ki-67 Antigen - metabolism ; Male ; Medical prognosis ; Mice ; Mice, Nude ; Middle Aged ; Molecular modelling ; Negative feedback ; Neoplasm Staging ; NF-kappa B - antagonists & inhibitors ; NF-kappa B - metabolism ; Original ; Patients ; Phosphorylation ; Proliferating cell nuclear antigen ; Proliferating Cell Nuclear Antigen - metabolism ; Prostate ; Proteins ; QKI ; Ribonucleic acid ; RNA ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Signal transduction ; Signal Transduction - genetics ; Studies ; Survival ; Transcription factors ; Transplantation, Heterologous ; Tumor cell lines ; Tumors ; tumour progression ; Urinary Bladder Neoplasms - genetics ; Urinary Bladder Neoplasms - metabolism ; Urinary Bladder Neoplasms - mortality ; Urinary Bladder Neoplasms - pathology ; Xenografts</subject><ispartof>Journal of cellular and molecular medicine, 2019-10, Vol.23 (10), p.6578-6594</ispartof><rights>2019 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4481-4971ac0cc6952730df2d1c798ff971ced10c73915afad7042b717c7d64ed17da3</citedby><cites>FETCH-LOGICAL-c4481-4971ac0cc6952730df2d1c798ff971ced10c73915afad7042b717c7d64ed17da3</cites><orcidid>0000-0001-9101-8377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787450/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787450/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31449345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Fei</creatorcontrib><creatorcontrib>Deng, Zheng</creatorcontrib><creatorcontrib>Zhou, Zheng</creatorcontrib><creatorcontrib>Jiang, Chen‐Yi</creatorcontrib><creatorcontrib>Zhao, Rui‐Zhe</creatorcontrib><creatorcontrib>Sun, Feng</creatorcontrib><creatorcontrib>Cui, Di</creatorcontrib><creatorcontrib>Bei, Xiao‐Yu</creatorcontrib><creatorcontrib>Yang, Bo‐Yu</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>Wang, Xing‐Jie</creatorcontrib><creatorcontrib>Wu, Qi</creatorcontrib><creatorcontrib>Xia, Shu‐Jie</creatorcontrib><creatorcontrib>Han, Bang‐Min</creatorcontrib><title>QKI‐6 inhibits bladder cancer malignant behaviours through down‐regulating E2F3 and NF‐κB signalling</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Quaking homolog (QKI) is a member of the RNA‐binding signal transduction and activator of proteins family. Previous studies showed that QKI possesses the tumour suppressor activity in human cancers by interacting with the 3'‐untraslated region (3'‐UTR) of various gene transcripts via the STAR domain. This study first assessed the association of QKI‐6 expression with clinicopathological and survival data from bladder cancer patients and then investigated the underlying molecular mechanisms. Bladder cancer tissues (n = 223) were subjected to immunohistochemistry, and tumour cell lines and nude mice were used for different in vitro and in vivo assays following QKI‐6 overexpression or knockdown. QKI‐6 down‐regulation was associated with advanced tumour TNM stages and poor patient overall survival. QKI‐6 overexpression inhibited bladder cancer cell growth and invasion capacity, but induced tumour cell apoptosis and cell cycle arrest. Furthermore, ectopic expression of QKI‐6 reduced tumour xenograft growth and expression of proliferation markers, Ki67 and PCNA. However, knockdown of QKI‐6 expression had opposite effects in vitro and in vivo. QKI‐6 inhibited expression of E2 transcription factor 3 (E2F3) by directly binding to the E2F3 3'‐UTR, whereas E2F3 induced QKI‐6 transcription by binding to the QKI‐6 promoter in negative feedback mechanism. QKI‐6 expression also suppressed activity and expression of nuclear factor‐κB (NF‐κB) signalling proteins in vitro, implying a novel multilevel regulatory network downstream of QKI‐6. In conclusion, QKI‐6 down‐regulation contributes to bladder cancer development and progression.</description><subject>3' Untranslated Regions</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>Bladder cancer</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - genetics</subject><subject>Cell Proliferation - genetics</subject><subject>Chemotherapy</subject><subject>Down-Regulation</subject><subject>E2F3</subject><subject>E2F3 Transcription Factor - genetics</subject><subject>E2F3 Transcription Factor - metabolism</subject><subject>Ectopic expression</subject><subject>Feedback</subject><subject>Female</subject><subject>Gene amplification</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>gene regulation</subject><subject>Homology</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Ki-67 Antigen - metabolism</subject><subject>Male</subject><subject>Medical prognosis</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Middle Aged</subject><subject>Molecular modelling</subject><subject>Negative feedback</subject><subject>Neoplasm Staging</subject><subject>NF-kappa B - antagonists & inhibitors</subject><subject>NF-kappa B - metabolism</subject><subject>Original</subject><subject>Patients</subject><subject>Phosphorylation</subject><subject>Proliferating cell nuclear antigen</subject><subject>Proliferating Cell Nuclear Antigen - metabolism</subject><subject>Prostate</subject><subject>Proteins</subject><subject>QKI</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Studies</subject><subject>Survival</subject><subject>Transcription factors</subject><subject>Transplantation, Heterologous</subject><subject>Tumor cell lines</subject><subject>Tumors</subject><subject>tumour progression</subject><subject>Urinary Bladder Neoplasms - genetics</subject><subject>Urinary Bladder Neoplasms - metabolism</subject><subject>Urinary Bladder Neoplasms - mortality</subject><subject>Urinary Bladder Neoplasms - pathology</subject><subject>Xenografts</subject><issn>1582-1838</issn><issn>1582-4934</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9O3TAQxi1UVP60mx6gstRNVemBHSdxskGiT7yWFlpVKmvLsZ3ED8ehdgJixxF6Hg7BIXoSJn0PVFjUm7H0_ebTzHwIvaFkj8LbX6qu26NpWtANtE2zIpmlJUtfrP-0YMUW2olxSQjLKStfoi0GNCDZNjr_8fX4z83vHFvf2soOEVdOam0CVtIrKJ10tvHSD7gyrby0_RgiHtrQj02LdX_loTuYZnRysL7BR8mCYek1_rYA4e72I45Tu3MgvkKbtXTRvF7XXXS2OPo5_zw7-f7peH54MlPTDjA8p1IRpfIySzgjuk40Vbws6hoUZTQlirOSZrKWmpM0qTjlius8BYlryXbRwcr3Yqw6o5XxQ5BOXATbyXAtemnFU8XbVjT9pch5wdOMgMH7tUHof40mDqKzURnnpDf9GEWSFCSjOSlzQN89Q5dwIVgYKEZYliUlmww_rCgV-hiDqR-HoURMGYopQ_E3Q4Df_jv-I_oQGgB0BVxZZ67_YyW-zE9PV6b3WYirJA</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Shi, Fei</creator><creator>Deng, Zheng</creator><creator>Zhou, Zheng</creator><creator>Jiang, Chen‐Yi</creator><creator>Zhao, Rui‐Zhe</creator><creator>Sun, Feng</creator><creator>Cui, Di</creator><creator>Bei, Xiao‐Yu</creator><creator>Yang, Bo‐Yu</creator><creator>Sun, Qian</creator><creator>Wang, Xing‐Jie</creator><creator>Wu, Qi</creator><creator>Xia, Shu‐Jie</creator><creator>Han, Bang‐Min</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9101-8377</orcidid></search><sort><creationdate>201910</creationdate><title>QKI‐6 inhibits bladder cancer malignant behaviours through down‐regulating E2F3 and NF‐κB signalling</title><author>Shi, Fei ; Deng, Zheng ; Zhou, Zheng ; Jiang, Chen‐Yi ; Zhao, Rui‐Zhe ; Sun, Feng ; Cui, Di ; Bei, Xiao‐Yu ; Yang, Bo‐Yu ; Sun, Qian ; Wang, Xing‐Jie ; Wu, Qi ; Xia, Shu‐Jie ; Han, Bang‐Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4481-4971ac0cc6952730df2d1c798ff971ced10c73915afad7042b717c7d64ed17da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3' Untranslated Regions</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>Bladder cancer</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - genetics</topic><topic>Cell Proliferation - genetics</topic><topic>Chemotherapy</topic><topic>Down-Regulation</topic><topic>E2F3</topic><topic>E2F3 Transcription Factor - genetics</topic><topic>E2F3 Transcription Factor - metabolism</topic><topic>Ectopic expression</topic><topic>Feedback</topic><topic>Female</topic><topic>Gene amplification</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>gene regulation</topic><topic>Homology</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Ki-67 Antigen - metabolism</topic><topic>Male</topic><topic>Medical prognosis</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Middle Aged</topic><topic>Molecular modelling</topic><topic>Negative feedback</topic><topic>Neoplasm Staging</topic><topic>NF-kappa B - antagonists & inhibitors</topic><topic>NF-kappa B - metabolism</topic><topic>Original</topic><topic>Patients</topic><topic>Phosphorylation</topic><topic>Proliferating cell nuclear antigen</topic><topic>Proliferating Cell Nuclear Antigen - metabolism</topic><topic>Prostate</topic><topic>Proteins</topic><topic>QKI</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Studies</topic><topic>Survival</topic><topic>Transcription factors</topic><topic>Transplantation, Heterologous</topic><topic>Tumor cell lines</topic><topic>Tumors</topic><topic>tumour progression</topic><topic>Urinary Bladder Neoplasms - genetics</topic><topic>Urinary Bladder Neoplasms - metabolism</topic><topic>Urinary Bladder Neoplasms - mortality</topic><topic>Urinary Bladder Neoplasms - pathology</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Fei</creatorcontrib><creatorcontrib>Deng, Zheng</creatorcontrib><creatorcontrib>Zhou, Zheng</creatorcontrib><creatorcontrib>Jiang, Chen‐Yi</creatorcontrib><creatorcontrib>Zhao, Rui‐Zhe</creatorcontrib><creatorcontrib>Sun, Feng</creatorcontrib><creatorcontrib>Cui, Di</creatorcontrib><creatorcontrib>Bei, Xiao‐Yu</creatorcontrib><creatorcontrib>Yang, Bo‐Yu</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>Wang, Xing‐Jie</creatorcontrib><creatorcontrib>Wu, Qi</creatorcontrib><creatorcontrib>Xia, Shu‐Jie</creatorcontrib><creatorcontrib>Han, Bang‐Min</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Fei</au><au>Deng, Zheng</au><au>Zhou, Zheng</au><au>Jiang, Chen‐Yi</au><au>Zhao, Rui‐Zhe</au><au>Sun, Feng</au><au>Cui, Di</au><au>Bei, Xiao‐Yu</au><au>Yang, Bo‐Yu</au><au>Sun, Qian</au><au>Wang, Xing‐Jie</au><au>Wu, Qi</au><au>Xia, Shu‐Jie</au><au>Han, Bang‐Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QKI‐6 inhibits bladder cancer malignant behaviours through down‐regulating E2F3 and NF‐κB signalling</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2019-10</date><risdate>2019</risdate><volume>23</volume><issue>10</issue><spage>6578</spage><epage>6594</epage><pages>6578-6594</pages><issn>1582-1838</issn><issn>1582-4934</issn><eissn>1582-4934</eissn><abstract>Quaking homolog (QKI) is a member of the RNA‐binding signal transduction and activator of proteins family. Previous studies showed that QKI possesses the tumour suppressor activity in human cancers by interacting with the 3'‐untraslated region (3'‐UTR) of various gene transcripts via the STAR domain. This study first assessed the association of QKI‐6 expression with clinicopathological and survival data from bladder cancer patients and then investigated the underlying molecular mechanisms. Bladder cancer tissues (n = 223) were subjected to immunohistochemistry, and tumour cell lines and nude mice were used for different in vitro and in vivo assays following QKI‐6 overexpression or knockdown. QKI‐6 down‐regulation was associated with advanced tumour TNM stages and poor patient overall survival. QKI‐6 overexpression inhibited bladder cancer cell growth and invasion capacity, but induced tumour cell apoptosis and cell cycle arrest. Furthermore, ectopic expression of QKI‐6 reduced tumour xenograft growth and expression of proliferation markers, Ki67 and PCNA. However, knockdown of QKI‐6 expression had opposite effects in vitro and in vivo. QKI‐6 inhibited expression of E2 transcription factor 3 (E2F3) by directly binding to the E2F3 3'‐UTR, whereas E2F3 induced QKI‐6 transcription by binding to the QKI‐6 promoter in negative feedback mechanism. QKI‐6 expression also suppressed activity and expression of nuclear factor‐κB (NF‐κB) signalling proteins in vitro, implying a novel multilevel regulatory network downstream of QKI‐6. In conclusion, QKI‐6 down‐regulation contributes to bladder cancer development and progression.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>31449345</pmid><doi>10.1111/jcmm.14481</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9101-8377</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2019-10, Vol.23 (10), p.6578-6594 |
issn | 1582-1838 1582-4934 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6787450 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 3' Untranslated Regions Animals Apoptosis Apoptosis - genetics Bladder cancer Cancer Cancer therapies Cell cycle Cell Cycle Checkpoints - genetics Cell Line, Tumor Cell Movement - genetics Cell Proliferation - genetics Chemotherapy Down-Regulation E2F3 E2F3 Transcription Factor - genetics E2F3 Transcription Factor - metabolism Ectopic expression Feedback Female Gene amplification Gene expression Gene Expression Regulation, Neoplastic - genetics gene regulation Homology Humans Immunohistochemistry Ki-67 Antigen - metabolism Male Medical prognosis Mice Mice, Nude Middle Aged Molecular modelling Negative feedback Neoplasm Staging NF-kappa B - antagonists & inhibitors NF-kappa B - metabolism Original Patients Phosphorylation Proliferating cell nuclear antigen Proliferating Cell Nuclear Antigen - metabolism Prostate Proteins QKI Ribonucleic acid RNA RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism Signal transduction Signal Transduction - genetics Studies Survival Transcription factors Transplantation, Heterologous Tumor cell lines Tumors tumour progression Urinary Bladder Neoplasms - genetics Urinary Bladder Neoplasms - metabolism Urinary Bladder Neoplasms - mortality Urinary Bladder Neoplasms - pathology Xenografts |
title | QKI‐6 inhibits bladder cancer malignant behaviours through down‐regulating E2F3 and NF‐κB signalling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A03%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QKI%E2%80%906%20inhibits%20bladder%20cancer%20malignant%20behaviours%20through%20down%E2%80%90regulating%20E2F3%20and%20NF%E2%80%90%CE%BAB%20signalling&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Shi,%20Fei&rft.date=2019-10&rft.volume=23&rft.issue=10&rft.spage=6578&rft.epage=6594&rft.pages=6578-6594&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.14481&rft_dat=%3Cproquest_pubme%3E2280516096%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303552930&rft_id=info:pmid/31449345&rfr_iscdi=true |