ClimCKmap, a spatially, temporally and climatically explicit distribution database for the Italian fauna

Understanding and counteracting biodiversity losses requires quantitative knowledge on species distribution and abundance across space and time, as well as integrated and interoperable information on climate conditions and climatic changes. In this paper we developed a new biodiversity-climate datab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific data 2019-10, Vol.6 (1), p.195-6, Article 195
Hauptverfasser: Marta, Silvio, Brunetti, Michele, Ficetola, Gentile Francesco, Stoch, Fabio, Amori, Giovanni, Cesaroni, Donatella, Sbordoni, Valerio, Provenzale, Antonello
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 1
container_start_page 195
container_title Scientific data
container_volume 6
creator Marta, Silvio
Brunetti, Michele
Ficetola, Gentile Francesco
Stoch, Fabio
Amori, Giovanni
Cesaroni, Donatella
Sbordoni, Valerio
Provenzale, Antonello
description Understanding and counteracting biodiversity losses requires quantitative knowledge on species distribution and abundance across space and time, as well as integrated and interoperable information on climate conditions and climatic changes. In this paper we developed a new biodiversity-climate database for Italy, ClimCKmap, based on the critical analysis, quality estimation and subsequent integration of the CKmap database with several high-resolution climate datasets. The original database was quality-checked for errors in toponym, species name and dating; the retained records were georeferenced and their distribution polygonised via Voronoi tessellation. We then integrated the species distribution information with several high-resolution climatic datasets: average monthly minimum and maximum temperature and total monthly precipitation were reconstructed for each Voronoi cell and year. The resulting database contains 268,977 occurrence records from 8,445 binomials and 16,332 localities, dating between 1680 and 2006 CE. This dataset, fully available at https://doi.org/10.6084/m9.figshare.7906739.v4 and http://hdl.handle.net/21.11125/a91f85cb-befd-4e14-8e83-24f17c4a0491 , represents the largest, fully quality-checked, spatially, temporally and climatically explicit distribution database ever assembled for the Italian fauna, now ready for scientific exploitation. Measurement(s) biodiversity • climate Technology Type(s) digital curation Factor Type(s) species • geographic location Sample Characteristic - Environment key biodiversity area Sample Characteristic - Location Italy Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.9822593
doi_str_mv 10.1038/s41597-019-0203-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6783616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2303203927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-5e3d912a46de850a058d376b26d3de71f7ba170af8b7259653c0b265524c34933</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS0EolXpA7BBltiwaMD_TjZI6ApKRSU2sLYmttPrKomD7VT07XF6SylIrDzy-eZ4xgehl5S8pYS377KgstMNoV1DGOGNeoKOGZGsEULxp4_qI3Sa8zUhhHJBpCbP0RGvraIT_Bjtd2OYdl8mWM4w4LxACTCOt2e4-GmJaasxzA7bilXN3l34n8sYbCjYhVxS6NcS4owdFOghezzEhMve44sCY4AZD7DO8AI9G2DM_vT-PEHfP338tvvcXH49v9h9uGys0KQ00nPXUQZCOd9KAkS2jmvVM-W485oOugeqCQxtr5nslOSWVFFKJiwXHecn6P3Bd1n7yTvr51K3MEuq86dbEyGYv5U57M1VvDFKt1xRVQ3e3Buk-GP1uZgpZOvHEWYf12wYJ7z-d8d0RV__g17HNc11vY1igknBaKXogbIp5pz88DAMJWaL0hyiNDVKs0VptiFePd7ioeN3cBVgByBXab7y6c_T_3f9BSAVqas</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302425421</pqid></control><display><type>article</type><title>ClimCKmap, a spatially, temporally and climatically explicit distribution database for the Italian fauna</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Marta, Silvio ; Brunetti, Michele ; Ficetola, Gentile Francesco ; Stoch, Fabio ; Amori, Giovanni ; Cesaroni, Donatella ; Sbordoni, Valerio ; Provenzale, Antonello</creator><creatorcontrib>Marta, Silvio ; Brunetti, Michele ; Ficetola, Gentile Francesco ; Stoch, Fabio ; Amori, Giovanni ; Cesaroni, Donatella ; Sbordoni, Valerio ; Provenzale, Antonello</creatorcontrib><description>Understanding and counteracting biodiversity losses requires quantitative knowledge on species distribution and abundance across space and time, as well as integrated and interoperable information on climate conditions and climatic changes. In this paper we developed a new biodiversity-climate database for Italy, ClimCKmap, based on the critical analysis, quality estimation and subsequent integration of the CKmap database with several high-resolution climate datasets. The original database was quality-checked for errors in toponym, species name and dating; the retained records were georeferenced and their distribution polygonised via Voronoi tessellation. We then integrated the species distribution information with several high-resolution climatic datasets: average monthly minimum and maximum temperature and total monthly precipitation were reconstructed for each Voronoi cell and year. The resulting database contains 268,977 occurrence records from 8,445 binomials and 16,332 localities, dating between 1680 and 2006 CE. This dataset, fully available at https://doi.org/10.6084/m9.figshare.7906739.v4 and http://hdl.handle.net/21.11125/a91f85cb-befd-4e14-8e83-24f17c4a0491 , represents the largest, fully quality-checked, spatially, temporally and climatically explicit distribution database ever assembled for the Italian fauna, now ready for scientific exploitation. Measurement(s) biodiversity • climate Technology Type(s) digital curation Factor Type(s) species • geographic location Sample Characteristic - Environment key biodiversity area Sample Characteristic - Location Italy Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.9822593</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><identifier>DOI: 10.1038/s41597-019-0203-6</identifier><identifier>PMID: 31594943</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/158/670 ; 704/158/852 ; Animals ; Biodiversity ; Biota ; Climate ; Data Descriptor ; Dating ; Geographical distribution ; High density lipoprotein ; Humanities and Social Sciences ; Italy ; multidisciplinary ; New records ; Science ; Science (multidisciplinary) ; Spatio-Temporal Analysis ; Species</subject><ispartof>Scientific data, 2019-10, Vol.6 (1), p.195-6, Article 195</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-5e3d912a46de850a058d376b26d3de71f7ba170af8b7259653c0b265524c34933</citedby><cites>FETCH-LOGICAL-c470t-5e3d912a46de850a058d376b26d3de71f7ba170af8b7259653c0b265524c34933</cites><orcidid>0000-0001-8850-610X ; 0000-0003-3414-5155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783616/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783616/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31594943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marta, Silvio</creatorcontrib><creatorcontrib>Brunetti, Michele</creatorcontrib><creatorcontrib>Ficetola, Gentile Francesco</creatorcontrib><creatorcontrib>Stoch, Fabio</creatorcontrib><creatorcontrib>Amori, Giovanni</creatorcontrib><creatorcontrib>Cesaroni, Donatella</creatorcontrib><creatorcontrib>Sbordoni, Valerio</creatorcontrib><creatorcontrib>Provenzale, Antonello</creatorcontrib><title>ClimCKmap, a spatially, temporally and climatically explicit distribution database for the Italian fauna</title><title>Scientific data</title><addtitle>Sci Data</addtitle><addtitle>Sci Data</addtitle><description>Understanding and counteracting biodiversity losses requires quantitative knowledge on species distribution and abundance across space and time, as well as integrated and interoperable information on climate conditions and climatic changes. In this paper we developed a new biodiversity-climate database for Italy, ClimCKmap, based on the critical analysis, quality estimation and subsequent integration of the CKmap database with several high-resolution climate datasets. The original database was quality-checked for errors in toponym, species name and dating; the retained records were georeferenced and their distribution polygonised via Voronoi tessellation. We then integrated the species distribution information with several high-resolution climatic datasets: average monthly minimum and maximum temperature and total monthly precipitation were reconstructed for each Voronoi cell and year. The resulting database contains 268,977 occurrence records from 8,445 binomials and 16,332 localities, dating between 1680 and 2006 CE. This dataset, fully available at https://doi.org/10.6084/m9.figshare.7906739.v4 and http://hdl.handle.net/21.11125/a91f85cb-befd-4e14-8e83-24f17c4a0491 , represents the largest, fully quality-checked, spatially, temporally and climatically explicit distribution database ever assembled for the Italian fauna, now ready for scientific exploitation. Measurement(s) biodiversity • climate Technology Type(s) digital curation Factor Type(s) species • geographic location Sample Characteristic - Environment key biodiversity area Sample Characteristic - Location Italy Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.9822593</description><subject>704/158/670</subject><subject>704/158/852</subject><subject>Animals</subject><subject>Biodiversity</subject><subject>Biota</subject><subject>Climate</subject><subject>Data Descriptor</subject><subject>Dating</subject><subject>Geographical distribution</subject><subject>High density lipoprotein</subject><subject>Humanities and Social Sciences</subject><subject>Italy</subject><subject>multidisciplinary</subject><subject>New records</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatio-Temporal Analysis</subject><subject>Species</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1u1TAQhS0EolXpA7BBltiwaMD_TjZI6ApKRSU2sLYmttPrKomD7VT07XF6SylIrDzy-eZ4xgehl5S8pYS377KgstMNoV1DGOGNeoKOGZGsEULxp4_qI3Sa8zUhhHJBpCbP0RGvraIT_Bjtd2OYdl8mWM4w4LxACTCOt2e4-GmJaasxzA7bilXN3l34n8sYbCjYhVxS6NcS4owdFOghezzEhMve44sCY4AZD7DO8AI9G2DM_vT-PEHfP338tvvcXH49v9h9uGys0KQ00nPXUQZCOd9KAkS2jmvVM-W485oOugeqCQxtr5nslOSWVFFKJiwXHecn6P3Bd1n7yTvr51K3MEuq86dbEyGYv5U57M1VvDFKt1xRVQ3e3Buk-GP1uZgpZOvHEWYf12wYJ7z-d8d0RV__g17HNc11vY1igknBaKXogbIp5pz88DAMJWaL0hyiNDVKs0VptiFePd7ioeN3cBVgByBXab7y6c_T_3f9BSAVqas</recordid><startdate>20191008</startdate><enddate>20191008</enddate><creator>Marta, Silvio</creator><creator>Brunetti, Michele</creator><creator>Ficetola, Gentile Francesco</creator><creator>Stoch, Fabio</creator><creator>Amori, Giovanni</creator><creator>Cesaroni, Donatella</creator><creator>Sbordoni, Valerio</creator><creator>Provenzale, Antonello</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8850-610X</orcidid><orcidid>https://orcid.org/0000-0003-3414-5155</orcidid></search><sort><creationdate>20191008</creationdate><title>ClimCKmap, a spatially, temporally and climatically explicit distribution database for the Italian fauna</title><author>Marta, Silvio ; Brunetti, Michele ; Ficetola, Gentile Francesco ; Stoch, Fabio ; Amori, Giovanni ; Cesaroni, Donatella ; Sbordoni, Valerio ; Provenzale, Antonello</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-5e3d912a46de850a058d376b26d3de71f7ba170af8b7259653c0b265524c34933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>704/158/670</topic><topic>704/158/852</topic><topic>Animals</topic><topic>Biodiversity</topic><topic>Biota</topic><topic>Climate</topic><topic>Data Descriptor</topic><topic>Dating</topic><topic>Geographical distribution</topic><topic>High density lipoprotein</topic><topic>Humanities and Social Sciences</topic><topic>Italy</topic><topic>multidisciplinary</topic><topic>New records</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatio-Temporal Analysis</topic><topic>Species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marta, Silvio</creatorcontrib><creatorcontrib>Brunetti, Michele</creatorcontrib><creatorcontrib>Ficetola, Gentile Francesco</creatorcontrib><creatorcontrib>Stoch, Fabio</creatorcontrib><creatorcontrib>Amori, Giovanni</creatorcontrib><creatorcontrib>Cesaroni, Donatella</creatorcontrib><creatorcontrib>Sbordoni, Valerio</creatorcontrib><creatorcontrib>Provenzale, Antonello</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marta, Silvio</au><au>Brunetti, Michele</au><au>Ficetola, Gentile Francesco</au><au>Stoch, Fabio</au><au>Amori, Giovanni</au><au>Cesaroni, Donatella</au><au>Sbordoni, Valerio</au><au>Provenzale, Antonello</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ClimCKmap, a spatially, temporally and climatically explicit distribution database for the Italian fauna</atitle><jtitle>Scientific data</jtitle><stitle>Sci Data</stitle><addtitle>Sci Data</addtitle><date>2019-10-08</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>195</spage><epage>6</epage><pages>195-6</pages><artnum>195</artnum><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>Understanding and counteracting biodiversity losses requires quantitative knowledge on species distribution and abundance across space and time, as well as integrated and interoperable information on climate conditions and climatic changes. In this paper we developed a new biodiversity-climate database for Italy, ClimCKmap, based on the critical analysis, quality estimation and subsequent integration of the CKmap database with several high-resolution climate datasets. The original database was quality-checked for errors in toponym, species name and dating; the retained records were georeferenced and their distribution polygonised via Voronoi tessellation. We then integrated the species distribution information with several high-resolution climatic datasets: average monthly minimum and maximum temperature and total monthly precipitation were reconstructed for each Voronoi cell and year. The resulting database contains 268,977 occurrence records from 8,445 binomials and 16,332 localities, dating between 1680 and 2006 CE. This dataset, fully available at https://doi.org/10.6084/m9.figshare.7906739.v4 and http://hdl.handle.net/21.11125/a91f85cb-befd-4e14-8e83-24f17c4a0491 , represents the largest, fully quality-checked, spatially, temporally and climatically explicit distribution database ever assembled for the Italian fauna, now ready for scientific exploitation. Measurement(s) biodiversity • climate Technology Type(s) digital curation Factor Type(s) species • geographic location Sample Characteristic - Environment key biodiversity area Sample Characteristic - Location Italy Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.9822593</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31594943</pmid><doi>10.1038/s41597-019-0203-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8850-610X</orcidid><orcidid>https://orcid.org/0000-0003-3414-5155</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2052-4463
ispartof Scientific data, 2019-10, Vol.6 (1), p.195-6, Article 195
issn 2052-4463
2052-4463
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6783616
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 704/158/670
704/158/852
Animals
Biodiversity
Biota
Climate
Data Descriptor
Dating
Geographical distribution
High density lipoprotein
Humanities and Social Sciences
Italy
multidisciplinary
New records
Science
Science (multidisciplinary)
Spatio-Temporal Analysis
Species
title ClimCKmap, a spatially, temporally and climatically explicit distribution database for the Italian fauna
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ClimCKmap,%20a%20spatially,%20temporally%20and%20climatically%20explicit%20distribution%20database%20for%20the%20Italian%20fauna&rft.jtitle=Scientific%20data&rft.au=Marta,%20Silvio&rft.date=2019-10-08&rft.volume=6&rft.issue=1&rft.spage=195&rft.epage=6&rft.pages=195-6&rft.artnum=195&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/10.1038/s41597-019-0203-6&rft_dat=%3Cproquest_pubme%3E2303203927%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2302425421&rft_id=info:pmid/31594943&rfr_iscdi=true