ClimCKmap, a spatially, temporally and climatically explicit distribution database for the Italian fauna
Understanding and counteracting biodiversity losses requires quantitative knowledge on species distribution and abundance across space and time, as well as integrated and interoperable information on climate conditions and climatic changes. In this paper we developed a new biodiversity-climate datab...
Gespeichert in:
Veröffentlicht in: | Scientific data 2019-10, Vol.6 (1), p.195-6, Article 195 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 1 |
container_start_page | 195 |
container_title | Scientific data |
container_volume | 6 |
creator | Marta, Silvio Brunetti, Michele Ficetola, Gentile Francesco Stoch, Fabio Amori, Giovanni Cesaroni, Donatella Sbordoni, Valerio Provenzale, Antonello |
description | Understanding and counteracting biodiversity losses requires quantitative knowledge on species distribution and abundance across space and time, as well as integrated and interoperable information on climate conditions and climatic changes. In this paper we developed a new biodiversity-climate database for Italy, ClimCKmap, based on the critical analysis, quality estimation and subsequent integration of the CKmap database with several high-resolution climate datasets. The original database was quality-checked for errors in toponym, species name and dating; the retained records were georeferenced and their distribution polygonised via Voronoi tessellation. We then integrated the species distribution information with several high-resolution climatic datasets: average monthly minimum and maximum temperature and total monthly precipitation were reconstructed for each Voronoi cell and year. The resulting database contains 268,977 occurrence records from 8,445 binomials and 16,332 localities, dating between 1680 and 2006 CE. This dataset, fully available at
https://doi.org/10.6084/m9.figshare.7906739.v4
and
http://hdl.handle.net/21.11125/a91f85cb-befd-4e14-8e83-24f17c4a0491
, represents the largest, fully quality-checked, spatially, temporally and climatically explicit distribution database ever assembled for the Italian fauna, now ready for scientific exploitation.
Measurement(s)
biodiversity • climate
Technology Type(s)
digital curation
Factor Type(s)
species • geographic location
Sample Characteristic - Environment
key biodiversity area
Sample Characteristic - Location
Italy
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.9822593 |
doi_str_mv | 10.1038/s41597-019-0203-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6783616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2303203927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-5e3d912a46de850a058d376b26d3de71f7ba170af8b7259653c0b265524c34933</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS0EolXpA7BBltiwaMD_TjZI6ApKRSU2sLYmttPrKomD7VT07XF6SylIrDzy-eZ4xgehl5S8pYS377KgstMNoV1DGOGNeoKOGZGsEULxp4_qI3Sa8zUhhHJBpCbP0RGvraIT_Bjtd2OYdl8mWM4w4LxACTCOt2e4-GmJaasxzA7bilXN3l34n8sYbCjYhVxS6NcS4owdFOghezzEhMve44sCY4AZD7DO8AI9G2DM_vT-PEHfP338tvvcXH49v9h9uGys0KQ00nPXUQZCOd9KAkS2jmvVM-W485oOugeqCQxtr5nslOSWVFFKJiwXHecn6P3Bd1n7yTvr51K3MEuq86dbEyGYv5U57M1VvDFKt1xRVQ3e3Buk-GP1uZgpZOvHEWYf12wYJ7z-d8d0RV__g17HNc11vY1igknBaKXogbIp5pz88DAMJWaL0hyiNDVKs0VptiFePd7ioeN3cBVgByBXab7y6c_T_3f9BSAVqas</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302425421</pqid></control><display><type>article</type><title>ClimCKmap, a spatially, temporally and climatically explicit distribution database for the Italian fauna</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Marta, Silvio ; Brunetti, Michele ; Ficetola, Gentile Francesco ; Stoch, Fabio ; Amori, Giovanni ; Cesaroni, Donatella ; Sbordoni, Valerio ; Provenzale, Antonello</creator><creatorcontrib>Marta, Silvio ; Brunetti, Michele ; Ficetola, Gentile Francesco ; Stoch, Fabio ; Amori, Giovanni ; Cesaroni, Donatella ; Sbordoni, Valerio ; Provenzale, Antonello</creatorcontrib><description>Understanding and counteracting biodiversity losses requires quantitative knowledge on species distribution and abundance across space and time, as well as integrated and interoperable information on climate conditions and climatic changes. In this paper we developed a new biodiversity-climate database for Italy, ClimCKmap, based on the critical analysis, quality estimation and subsequent integration of the CKmap database with several high-resolution climate datasets. The original database was quality-checked for errors in toponym, species name and dating; the retained records were georeferenced and their distribution polygonised via Voronoi tessellation. We then integrated the species distribution information with several high-resolution climatic datasets: average monthly minimum and maximum temperature and total monthly precipitation were reconstructed for each Voronoi cell and year. The resulting database contains 268,977 occurrence records from 8,445 binomials and 16,332 localities, dating between 1680 and 2006 CE. This dataset, fully available at
https://doi.org/10.6084/m9.figshare.7906739.v4
and
http://hdl.handle.net/21.11125/a91f85cb-befd-4e14-8e83-24f17c4a0491
, represents the largest, fully quality-checked, spatially, temporally and climatically explicit distribution database ever assembled for the Italian fauna, now ready for scientific exploitation.
Measurement(s)
biodiversity • climate
Technology Type(s)
digital curation
Factor Type(s)
species • geographic location
Sample Characteristic - Environment
key biodiversity area
Sample Characteristic - Location
Italy
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.9822593</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><identifier>DOI: 10.1038/s41597-019-0203-6</identifier><identifier>PMID: 31594943</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/158/670 ; 704/158/852 ; Animals ; Biodiversity ; Biota ; Climate ; Data Descriptor ; Dating ; Geographical distribution ; High density lipoprotein ; Humanities and Social Sciences ; Italy ; multidisciplinary ; New records ; Science ; Science (multidisciplinary) ; Spatio-Temporal Analysis ; Species</subject><ispartof>Scientific data, 2019-10, Vol.6 (1), p.195-6, Article 195</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-5e3d912a46de850a058d376b26d3de71f7ba170af8b7259653c0b265524c34933</citedby><cites>FETCH-LOGICAL-c470t-5e3d912a46de850a058d376b26d3de71f7ba170af8b7259653c0b265524c34933</cites><orcidid>0000-0001-8850-610X ; 0000-0003-3414-5155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783616/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783616/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31594943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marta, Silvio</creatorcontrib><creatorcontrib>Brunetti, Michele</creatorcontrib><creatorcontrib>Ficetola, Gentile Francesco</creatorcontrib><creatorcontrib>Stoch, Fabio</creatorcontrib><creatorcontrib>Amori, Giovanni</creatorcontrib><creatorcontrib>Cesaroni, Donatella</creatorcontrib><creatorcontrib>Sbordoni, Valerio</creatorcontrib><creatorcontrib>Provenzale, Antonello</creatorcontrib><title>ClimCKmap, a spatially, temporally and climatically explicit distribution database for the Italian fauna</title><title>Scientific data</title><addtitle>Sci Data</addtitle><addtitle>Sci Data</addtitle><description>Understanding and counteracting biodiversity losses requires quantitative knowledge on species distribution and abundance across space and time, as well as integrated and interoperable information on climate conditions and climatic changes. In this paper we developed a new biodiversity-climate database for Italy, ClimCKmap, based on the critical analysis, quality estimation and subsequent integration of the CKmap database with several high-resolution climate datasets. The original database was quality-checked for errors in toponym, species name and dating; the retained records were georeferenced and their distribution polygonised via Voronoi tessellation. We then integrated the species distribution information with several high-resolution climatic datasets: average monthly minimum and maximum temperature and total monthly precipitation were reconstructed for each Voronoi cell and year. The resulting database contains 268,977 occurrence records from 8,445 binomials and 16,332 localities, dating between 1680 and 2006 CE. This dataset, fully available at
https://doi.org/10.6084/m9.figshare.7906739.v4
and
http://hdl.handle.net/21.11125/a91f85cb-befd-4e14-8e83-24f17c4a0491
, represents the largest, fully quality-checked, spatially, temporally and climatically explicit distribution database ever assembled for the Italian fauna, now ready for scientific exploitation.
Measurement(s)
biodiversity • climate
Technology Type(s)
digital curation
Factor Type(s)
species • geographic location
Sample Characteristic - Environment
key biodiversity area
Sample Characteristic - Location
Italy
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.9822593</description><subject>704/158/670</subject><subject>704/158/852</subject><subject>Animals</subject><subject>Biodiversity</subject><subject>Biota</subject><subject>Climate</subject><subject>Data Descriptor</subject><subject>Dating</subject><subject>Geographical distribution</subject><subject>High density lipoprotein</subject><subject>Humanities and Social Sciences</subject><subject>Italy</subject><subject>multidisciplinary</subject><subject>New records</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatio-Temporal Analysis</subject><subject>Species</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1u1TAQhS0EolXpA7BBltiwaMD_TjZI6ApKRSU2sLYmttPrKomD7VT07XF6SylIrDzy-eZ4xgehl5S8pYS377KgstMNoV1DGOGNeoKOGZGsEULxp4_qI3Sa8zUhhHJBpCbP0RGvraIT_Bjtd2OYdl8mWM4w4LxACTCOt2e4-GmJaasxzA7bilXN3l34n8sYbCjYhVxS6NcS4owdFOghezzEhMve44sCY4AZD7DO8AI9G2DM_vT-PEHfP338tvvcXH49v9h9uGys0KQ00nPXUQZCOd9KAkS2jmvVM-W485oOugeqCQxtr5nslOSWVFFKJiwXHecn6P3Bd1n7yTvr51K3MEuq86dbEyGYv5U57M1VvDFKt1xRVQ3e3Buk-GP1uZgpZOvHEWYf12wYJ7z-d8d0RV__g17HNc11vY1igknBaKXogbIp5pz88DAMJWaL0hyiNDVKs0VptiFePd7ioeN3cBVgByBXab7y6c_T_3f9BSAVqas</recordid><startdate>20191008</startdate><enddate>20191008</enddate><creator>Marta, Silvio</creator><creator>Brunetti, Michele</creator><creator>Ficetola, Gentile Francesco</creator><creator>Stoch, Fabio</creator><creator>Amori, Giovanni</creator><creator>Cesaroni, Donatella</creator><creator>Sbordoni, Valerio</creator><creator>Provenzale, Antonello</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8850-610X</orcidid><orcidid>https://orcid.org/0000-0003-3414-5155</orcidid></search><sort><creationdate>20191008</creationdate><title>ClimCKmap, a spatially, temporally and climatically explicit distribution database for the Italian fauna</title><author>Marta, Silvio ; Brunetti, Michele ; Ficetola, Gentile Francesco ; Stoch, Fabio ; Amori, Giovanni ; Cesaroni, Donatella ; Sbordoni, Valerio ; Provenzale, Antonello</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-5e3d912a46de850a058d376b26d3de71f7ba170af8b7259653c0b265524c34933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>704/158/670</topic><topic>704/158/852</topic><topic>Animals</topic><topic>Biodiversity</topic><topic>Biota</topic><topic>Climate</topic><topic>Data Descriptor</topic><topic>Dating</topic><topic>Geographical distribution</topic><topic>High density lipoprotein</topic><topic>Humanities and Social Sciences</topic><topic>Italy</topic><topic>multidisciplinary</topic><topic>New records</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatio-Temporal Analysis</topic><topic>Species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marta, Silvio</creatorcontrib><creatorcontrib>Brunetti, Michele</creatorcontrib><creatorcontrib>Ficetola, Gentile Francesco</creatorcontrib><creatorcontrib>Stoch, Fabio</creatorcontrib><creatorcontrib>Amori, Giovanni</creatorcontrib><creatorcontrib>Cesaroni, Donatella</creatorcontrib><creatorcontrib>Sbordoni, Valerio</creatorcontrib><creatorcontrib>Provenzale, Antonello</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marta, Silvio</au><au>Brunetti, Michele</au><au>Ficetola, Gentile Francesco</au><au>Stoch, Fabio</au><au>Amori, Giovanni</au><au>Cesaroni, Donatella</au><au>Sbordoni, Valerio</au><au>Provenzale, Antonello</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ClimCKmap, a spatially, temporally and climatically explicit distribution database for the Italian fauna</atitle><jtitle>Scientific data</jtitle><stitle>Sci Data</stitle><addtitle>Sci Data</addtitle><date>2019-10-08</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>195</spage><epage>6</epage><pages>195-6</pages><artnum>195</artnum><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>Understanding and counteracting biodiversity losses requires quantitative knowledge on species distribution and abundance across space and time, as well as integrated and interoperable information on climate conditions and climatic changes. In this paper we developed a new biodiversity-climate database for Italy, ClimCKmap, based on the critical analysis, quality estimation and subsequent integration of the CKmap database with several high-resolution climate datasets. The original database was quality-checked for errors in toponym, species name and dating; the retained records were georeferenced and their distribution polygonised via Voronoi tessellation. We then integrated the species distribution information with several high-resolution climatic datasets: average monthly minimum and maximum temperature and total monthly precipitation were reconstructed for each Voronoi cell and year. The resulting database contains 268,977 occurrence records from 8,445 binomials and 16,332 localities, dating between 1680 and 2006 CE. This dataset, fully available at
https://doi.org/10.6084/m9.figshare.7906739.v4
and
http://hdl.handle.net/21.11125/a91f85cb-befd-4e14-8e83-24f17c4a0491
, represents the largest, fully quality-checked, spatially, temporally and climatically explicit distribution database ever assembled for the Italian fauna, now ready for scientific exploitation.
Measurement(s)
biodiversity • climate
Technology Type(s)
digital curation
Factor Type(s)
species • geographic location
Sample Characteristic - Environment
key biodiversity area
Sample Characteristic - Location
Italy
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.9822593</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31594943</pmid><doi>10.1038/s41597-019-0203-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8850-610X</orcidid><orcidid>https://orcid.org/0000-0003-3414-5155</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-4463 |
ispartof | Scientific data, 2019-10, Vol.6 (1), p.195-6, Article 195 |
issn | 2052-4463 2052-4463 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6783616 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 704/158/670 704/158/852 Animals Biodiversity Biota Climate Data Descriptor Dating Geographical distribution High density lipoprotein Humanities and Social Sciences Italy multidisciplinary New records Science Science (multidisciplinary) Spatio-Temporal Analysis Species |
title | ClimCKmap, a spatially, temporally and climatically explicit distribution database for the Italian fauna |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ClimCKmap,%20a%20spatially,%20temporally%20and%20climatically%20explicit%20distribution%20database%20for%20the%20Italian%20fauna&rft.jtitle=Scientific%20data&rft.au=Marta,%20Silvio&rft.date=2019-10-08&rft.volume=6&rft.issue=1&rft.spage=195&rft.epage=6&rft.pages=195-6&rft.artnum=195&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/10.1038/s41597-019-0203-6&rft_dat=%3Cproquest_pubme%3E2303203927%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2302425421&rft_id=info:pmid/31594943&rfr_iscdi=true |