K+ Channel Expression Distinguishes Subpopulations of Parvalbumin- and Somatostatin-Containing Neocortical Interneurons

Kv3.1 and Kv3.2 K(+) channel proteins form similar voltage-gated K(+) channels with unusual properties, including fast activation at voltages positive to -10 mV and very fast deactivation rates. These properties are thought to facilitate sustained high-frequency firing. Kv3.1 subunits are specifical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 1999-11, Vol.19 (21), p.9332-9345
Hauptverfasser: Chow, A, Erisir, A, Farb, C, Nadal, M. S, Ozaita, A, Lau, D, Welker, E, Rudy, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9345
container_issue 21
container_start_page 9332
container_title The Journal of neuroscience
container_volume 19
creator Chow, A
Erisir, A
Farb, C
Nadal, M. S
Ozaita, A
Lau, D
Welker, E
Rudy, B
description Kv3.1 and Kv3.2 K(+) channel proteins form similar voltage-gated K(+) channels with unusual properties, including fast activation at voltages positive to -10 mV and very fast deactivation rates. These properties are thought to facilitate sustained high-frequency firing. Kv3.1 subunits are specifically found in fast-spiking, parvalbumin (PV)-containing cortical interneurons, and recent studies have provided support for a crucial role in the generation of the fast-spiking phenotype. Kv3.2 mRNAs are also found in a small subset of neocortical neurons, although the distribution of these neurons is different. We raised antibodies directed against Kv3.2 proteins and used dual-labeling methods to identify the neocortical neurons expressing Kv3.2 proteins and to determine their subcellular localization. Kv3.2 proteins are prominently expressed in patches in somatic and proximal dendritic membrane as well as in axons and presynaptic terminals of GABAergic interneurons. Kv3.2 subunits are found in all PV-containing neurons in deep cortical layers where they probably form heteromultimeric channels with Kv3.1 subunits. In contrast, in superficial layer PV-positive neurons Kv3.2 immunoreactivity is low, but Kv3.1 is still prominently expressed. Because Kv3.1 and Kv3.2 channels are differentially modulated by protein kinases, these results raise the possibility that the fast-spiking properties of superficial- and deep-layer PV neurons are differentially regulated by neuromodulators. Interestingly, Kv3. 2 but not Kv3.1 proteins are also prominent in a subset of seemingly non-fast-spiking, somatostatin- and calbindin-containing interneurons, suggesting that the Kv3.1-Kv3.2 current type can have functions other than facilitating high-frequency firing.
doi_str_mv 10.1523/jneurosci.19-21-09332.1999
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6782929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69207958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c619t-bce41afb3619b773cd09548b3a786f9ab588a1dc2e8c95c5068fecad4e9e73ca3</originalsourceid><addsrcrecordid>eNpVkVtv1DAQhSMEokvhL6CIB3hAKb7kZh6QUFhgoWoRS5-tiTPZdZXYi-008O_xXlSVB8sez3eOxzpJ8oqSC1ow_u7W4OSsV_qCiozRjAjOWTwL8ShZRCJe5oQ-ThaEVSQr8yo_S555f0sIqQitniZnlBSc5rxeJPP3t2mzBWNwSJd_dg6919akn7QP2mwm7bfo0_XU7uxuGiDEnk9tn_4AdwdDO43aZCmYLl3bEYL1ISIma6wJoE00SK_QKuuCVjCkKxPQHWY3_nnypIfB44vTfp7cfF7-ar5ml9dfVs3Hy0yVVISsVZhT6Fseq7aquOqIKPK65VDVZS-gLeoaaKcY1koUqiBl3aOCLkeBkQZ-nnw4-u6mdsROoQkOBrlzegT3V1rQ8v-O0Vu5sXeyrGommIgG9Gig_KSkQ4VOQTgI74v9YqRiklFOWRk1r0-POvt7Qh_kqL3CYQCDdvKyFJEWRR3B9yfzmKd32N8PRoncZy2_XS1vfl6vm5WkItrLQ9Zyn3UUv3z4tQfSY7gReHMEtnqznbVD6UcYhohTOc_z0XDvx_8Bk466Tw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69207958</pqid></control><display><type>article</type><title>K+ Channel Expression Distinguishes Subpopulations of Parvalbumin- and Somatostatin-Containing Neocortical Interneurons</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Recercat</source><source>PubMed Central</source><creator>Chow, A ; Erisir, A ; Farb, C ; Nadal, M. S ; Ozaita, A ; Lau, D ; Welker, E ; Rudy, B</creator><creatorcontrib>Chow, A ; Erisir, A ; Farb, C ; Nadal, M. S ; Ozaita, A ; Lau, D ; Welker, E ; Rudy, B</creatorcontrib><description>Kv3.1 and Kv3.2 K(+) channel proteins form similar voltage-gated K(+) channels with unusual properties, including fast activation at voltages positive to -10 mV and very fast deactivation rates. These properties are thought to facilitate sustained high-frequency firing. Kv3.1 subunits are specifically found in fast-spiking, parvalbumin (PV)-containing cortical interneurons, and recent studies have provided support for a crucial role in the generation of the fast-spiking phenotype. Kv3.2 mRNAs are also found in a small subset of neocortical neurons, although the distribution of these neurons is different. We raised antibodies directed against Kv3.2 proteins and used dual-labeling methods to identify the neocortical neurons expressing Kv3.2 proteins and to determine their subcellular localization. Kv3.2 proteins are prominently expressed in patches in somatic and proximal dendritic membrane as well as in axons and presynaptic terminals of GABAergic interneurons. Kv3.2 subunits are found in all PV-containing neurons in deep cortical layers where they probably form heteromultimeric channels with Kv3.1 subunits. In contrast, in superficial layer PV-positive neurons Kv3.2 immunoreactivity is low, but Kv3.1 is still prominently expressed. Because Kv3.1 and Kv3.2 channels are differentially modulated by protein kinases, these results raise the possibility that the fast-spiking properties of superficial- and deep-layer PV neurons are differentially regulated by neuromodulators. Interestingly, Kv3. 2 but not Kv3.1 proteins are also prominent in a subset of seemingly non-fast-spiking, somatostatin- and calbindin-containing interneurons, suggesting that the Kv3.1-Kv3.2 current type can have functions other than facilitating high-frequency firing.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.19-21-09332.1999</identifier><identifier>PMID: 10531438</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Amino Acid Sequence ; Animals ; Antibodies ; Axons - physiology ; Axons - ultrastructure ; Brain - physiology ; Cell Line ; Cell Membrane - physiology ; Cell Membrane - ultrastructure ; Dendrites - physiology ; Dendrites - ultrastructure ; Fast spiking ; Fisiologia ; GABA ; High-frequency firing ; Humans ; Inhibition ; Interneurons - cytology ; Interneurons - physiology ; Kv3 subunits ; Mice ; Molecular Sequence Data ; Neocortex - cytology ; Neocortex - physiology ; Neurones ; Neurons - classification ; Neurons - cytology ; Neurons - physiology ; Neuropeptides - analysis ; Neuropeptides - genetics ; Neuropeptides - physiology ; Parvalbumins - analysis ; Peptide Fragments - chemistry ; Peptide Fragments - immunology ; Potassium Channels - analysis ; Potassium Channels - genetics ; Potassium Channels - physiology ; Potassium Channels, Voltage-Gated ; Rabbits ; Rats ; Recombinant Proteins - analysis ; Recombinant Proteins - metabolism ; Shaw Potassium Channels ; Somatosensory Cortex - cytology ; Somatosensory Cortex - physiology ; Somatostatin - analysis ; Transfection ; Voltage-gated K1 channels ; Xarxes neuronals (Neurobiologia)</subject><ispartof>The Journal of neuroscience, 1999-11, Vol.19 (21), p.9332-9345</ispartof><rights>info:eu-repo/semantics/openAccess (c) 1999, Society for Neuroscience. The published version is available at: &lt;a href="http://www.jneurosci.org/content/19/21/9332"&gt;http://www.jneurosci.org/content/19/21/9332&lt;/a&gt;</rights><rights>Copyright © 1999 Society for Neuroscience 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c619t-bce41afb3619b773cd09548b3a786f9ab588a1dc2e8c95c5068fecad4e9e73ca3</citedby><cites>FETCH-LOGICAL-c619t-bce41afb3619b773cd09548b3a786f9ab588a1dc2e8c95c5068fecad4e9e73ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782929/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782929/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,26953,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10531438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chow, A</creatorcontrib><creatorcontrib>Erisir, A</creatorcontrib><creatorcontrib>Farb, C</creatorcontrib><creatorcontrib>Nadal, M. S</creatorcontrib><creatorcontrib>Ozaita, A</creatorcontrib><creatorcontrib>Lau, D</creatorcontrib><creatorcontrib>Welker, E</creatorcontrib><creatorcontrib>Rudy, B</creatorcontrib><title>K+ Channel Expression Distinguishes Subpopulations of Parvalbumin- and Somatostatin-Containing Neocortical Interneurons</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Kv3.1 and Kv3.2 K(+) channel proteins form similar voltage-gated K(+) channels with unusual properties, including fast activation at voltages positive to -10 mV and very fast deactivation rates. These properties are thought to facilitate sustained high-frequency firing. Kv3.1 subunits are specifically found in fast-spiking, parvalbumin (PV)-containing cortical interneurons, and recent studies have provided support for a crucial role in the generation of the fast-spiking phenotype. Kv3.2 mRNAs are also found in a small subset of neocortical neurons, although the distribution of these neurons is different. We raised antibodies directed against Kv3.2 proteins and used dual-labeling methods to identify the neocortical neurons expressing Kv3.2 proteins and to determine their subcellular localization. Kv3.2 proteins are prominently expressed in patches in somatic and proximal dendritic membrane as well as in axons and presynaptic terminals of GABAergic interneurons. Kv3.2 subunits are found in all PV-containing neurons in deep cortical layers where they probably form heteromultimeric channels with Kv3.1 subunits. In contrast, in superficial layer PV-positive neurons Kv3.2 immunoreactivity is low, but Kv3.1 is still prominently expressed. Because Kv3.1 and Kv3.2 channels are differentially modulated by protein kinases, these results raise the possibility that the fast-spiking properties of superficial- and deep-layer PV neurons are differentially regulated by neuromodulators. Interestingly, Kv3. 2 but not Kv3.1 proteins are also prominent in a subset of seemingly non-fast-spiking, somatostatin- and calbindin-containing interneurons, suggesting that the Kv3.1-Kv3.2 current type can have functions other than facilitating high-frequency firing.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Axons - physiology</subject><subject>Axons - ultrastructure</subject><subject>Brain - physiology</subject><subject>Cell Line</subject><subject>Cell Membrane - physiology</subject><subject>Cell Membrane - ultrastructure</subject><subject>Dendrites - physiology</subject><subject>Dendrites - ultrastructure</subject><subject>Fast spiking</subject><subject>Fisiologia</subject><subject>GABA</subject><subject>High-frequency firing</subject><subject>Humans</subject><subject>Inhibition</subject><subject>Interneurons - cytology</subject><subject>Interneurons - physiology</subject><subject>Kv3 subunits</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Neocortex - cytology</subject><subject>Neocortex - physiology</subject><subject>Neurones</subject><subject>Neurons - classification</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neuropeptides - analysis</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - physiology</subject><subject>Parvalbumins - analysis</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - immunology</subject><subject>Potassium Channels - analysis</subject><subject>Potassium Channels - genetics</subject><subject>Potassium Channels - physiology</subject><subject>Potassium Channels, Voltage-Gated</subject><subject>Rabbits</subject><subject>Rats</subject><subject>Recombinant Proteins - analysis</subject><subject>Recombinant Proteins - metabolism</subject><subject>Shaw Potassium Channels</subject><subject>Somatosensory Cortex - cytology</subject><subject>Somatosensory Cortex - physiology</subject><subject>Somatostatin - analysis</subject><subject>Transfection</subject><subject>Voltage-gated K1 channels</subject><subject>Xarxes neuronals (Neurobiologia)</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>XX2</sourceid><recordid>eNpVkVtv1DAQhSMEokvhL6CIB3hAKb7kZh6QUFhgoWoRS5-tiTPZdZXYi-008O_xXlSVB8sez3eOxzpJ8oqSC1ow_u7W4OSsV_qCiozRjAjOWTwL8ShZRCJe5oQ-ThaEVSQr8yo_S555f0sIqQitniZnlBSc5rxeJPP3t2mzBWNwSJd_dg6919akn7QP2mwm7bfo0_XU7uxuGiDEnk9tn_4AdwdDO43aZCmYLl3bEYL1ISIma6wJoE00SK_QKuuCVjCkKxPQHWY3_nnypIfB44vTfp7cfF7-ar5ml9dfVs3Hy0yVVISsVZhT6Fseq7aquOqIKPK65VDVZS-gLeoaaKcY1koUqiBl3aOCLkeBkQZ-nnw4-u6mdsROoQkOBrlzegT3V1rQ8v-O0Vu5sXeyrGommIgG9Gig_KSkQ4VOQTgI74v9YqRiklFOWRk1r0-POvt7Qh_kqL3CYQCDdvKyFJEWRR3B9yfzmKd32N8PRoncZy2_XS1vfl6vm5WkItrLQ9Zyn3UUv3z4tQfSY7gReHMEtnqznbVD6UcYhohTOc_z0XDvx_8Bk466Tw</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>Chow, A</creator><creator>Erisir, A</creator><creator>Farb, C</creator><creator>Nadal, M. S</creator><creator>Ozaita, A</creator><creator>Lau, D</creator><creator>Welker, E</creator><creator>Rudy, B</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope></search><sort><creationdate>19991101</creationdate><title>K+ Channel Expression Distinguishes Subpopulations of Parvalbumin- and Somatostatin-Containing Neocortical Interneurons</title><author>Chow, A ; Erisir, A ; Farb, C ; Nadal, M. S ; Ozaita, A ; Lau, D ; Welker, E ; Rudy, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c619t-bce41afb3619b773cd09548b3a786f9ab588a1dc2e8c95c5068fecad4e9e73ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Axons - physiology</topic><topic>Axons - ultrastructure</topic><topic>Brain - physiology</topic><topic>Cell Line</topic><topic>Cell Membrane - physiology</topic><topic>Cell Membrane - ultrastructure</topic><topic>Dendrites - physiology</topic><topic>Dendrites - ultrastructure</topic><topic>Fast spiking</topic><topic>Fisiologia</topic><topic>GABA</topic><topic>High-frequency firing</topic><topic>Humans</topic><topic>Inhibition</topic><topic>Interneurons - cytology</topic><topic>Interneurons - physiology</topic><topic>Kv3 subunits</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Neocortex - cytology</topic><topic>Neocortex - physiology</topic><topic>Neurones</topic><topic>Neurons - classification</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neuropeptides - analysis</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - physiology</topic><topic>Parvalbumins - analysis</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - immunology</topic><topic>Potassium Channels - analysis</topic><topic>Potassium Channels - genetics</topic><topic>Potassium Channels - physiology</topic><topic>Potassium Channels, Voltage-Gated</topic><topic>Rabbits</topic><topic>Rats</topic><topic>Recombinant Proteins - analysis</topic><topic>Recombinant Proteins - metabolism</topic><topic>Shaw Potassium Channels</topic><topic>Somatosensory Cortex - cytology</topic><topic>Somatosensory Cortex - physiology</topic><topic>Somatostatin - analysis</topic><topic>Transfection</topic><topic>Voltage-gated K1 channels</topic><topic>Xarxes neuronals (Neurobiologia)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chow, A</creatorcontrib><creatorcontrib>Erisir, A</creatorcontrib><creatorcontrib>Farb, C</creatorcontrib><creatorcontrib>Nadal, M. S</creatorcontrib><creatorcontrib>Ozaita, A</creatorcontrib><creatorcontrib>Lau, D</creatorcontrib><creatorcontrib>Welker, E</creatorcontrib><creatorcontrib>Rudy, B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chow, A</au><au>Erisir, A</au><au>Farb, C</au><au>Nadal, M. S</au><au>Ozaita, A</au><au>Lau, D</au><au>Welker, E</au><au>Rudy, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>K+ Channel Expression Distinguishes Subpopulations of Parvalbumin- and Somatostatin-Containing Neocortical Interneurons</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>1999-11-01</date><risdate>1999</risdate><volume>19</volume><issue>21</issue><spage>9332</spage><epage>9345</epage><pages>9332-9345</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Kv3.1 and Kv3.2 K(+) channel proteins form similar voltage-gated K(+) channels with unusual properties, including fast activation at voltages positive to -10 mV and very fast deactivation rates. These properties are thought to facilitate sustained high-frequency firing. Kv3.1 subunits are specifically found in fast-spiking, parvalbumin (PV)-containing cortical interneurons, and recent studies have provided support for a crucial role in the generation of the fast-spiking phenotype. Kv3.2 mRNAs are also found in a small subset of neocortical neurons, although the distribution of these neurons is different. We raised antibodies directed against Kv3.2 proteins and used dual-labeling methods to identify the neocortical neurons expressing Kv3.2 proteins and to determine their subcellular localization. Kv3.2 proteins are prominently expressed in patches in somatic and proximal dendritic membrane as well as in axons and presynaptic terminals of GABAergic interneurons. Kv3.2 subunits are found in all PV-containing neurons in deep cortical layers where they probably form heteromultimeric channels with Kv3.1 subunits. In contrast, in superficial layer PV-positive neurons Kv3.2 immunoreactivity is low, but Kv3.1 is still prominently expressed. Because Kv3.1 and Kv3.2 channels are differentially modulated by protein kinases, these results raise the possibility that the fast-spiking properties of superficial- and deep-layer PV neurons are differentially regulated by neuromodulators. Interestingly, Kv3. 2 but not Kv3.1 proteins are also prominent in a subset of seemingly non-fast-spiking, somatostatin- and calbindin-containing interneurons, suggesting that the Kv3.1-Kv3.2 current type can have functions other than facilitating high-frequency firing.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>10531438</pmid><doi>10.1523/jneurosci.19-21-09332.1999</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 1999-11, Vol.19 (21), p.9332-9345
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6782929
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Recercat; PubMed Central
subjects Amino Acid Sequence
Animals
Antibodies
Axons - physiology
Axons - ultrastructure
Brain - physiology
Cell Line
Cell Membrane - physiology
Cell Membrane - ultrastructure
Dendrites - physiology
Dendrites - ultrastructure
Fast spiking
Fisiologia
GABA
High-frequency firing
Humans
Inhibition
Interneurons - cytology
Interneurons - physiology
Kv3 subunits
Mice
Molecular Sequence Data
Neocortex - cytology
Neocortex - physiology
Neurones
Neurons - classification
Neurons - cytology
Neurons - physiology
Neuropeptides - analysis
Neuropeptides - genetics
Neuropeptides - physiology
Parvalbumins - analysis
Peptide Fragments - chemistry
Peptide Fragments - immunology
Potassium Channels - analysis
Potassium Channels - genetics
Potassium Channels - physiology
Potassium Channels, Voltage-Gated
Rabbits
Rats
Recombinant Proteins - analysis
Recombinant Proteins - metabolism
Shaw Potassium Channels
Somatosensory Cortex - cytology
Somatosensory Cortex - physiology
Somatostatin - analysis
Transfection
Voltage-gated K1 channels
Xarxes neuronals (Neurobiologia)
title K+ Channel Expression Distinguishes Subpopulations of Parvalbumin- and Somatostatin-Containing Neocortical Interneurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=K+%20Channel%20Expression%20Distinguishes%20Subpopulations%20of%20Parvalbumin-%20and%20Somatostatin-Containing%20Neocortical%20Interneurons&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Chow,%20A&rft.date=1999-11-01&rft.volume=19&rft.issue=21&rft.spage=9332&rft.epage=9345&rft.pages=9332-9345&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.19-21-09332.1999&rft_dat=%3Cproquest_pubme%3E69207958%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69207958&rft_id=info:pmid/10531438&rfr_iscdi=true