Changes in Expression of the DNA Repair Protein Complex DNA-Dependent Protein Kinase after Ischemia and Reperfusion

Reperfusion of ischemic tissue causes an immediate increase in DNA damage, including base lesions and strand breaks. Damage is reversible in surviving regions indicating that repair mechanisms are operable. DNA strand breaks are repaired by nonhomologous end joining in mammalian cells. This process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 1999-06, Vol.19 (12), p.4727-4738
Hauptverfasser: Shackelford, Deborah A, Tobaru, Takaaki, Zhang, Shengjia, Zivin, Justin A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4738
container_issue 12
container_start_page 4727
container_title The Journal of neuroscience
container_volume 19
creator Shackelford, Deborah A
Tobaru, Takaaki
Zhang, Shengjia
Zivin, Justin A
description Reperfusion of ischemic tissue causes an immediate increase in DNA damage, including base lesions and strand breaks. Damage is reversible in surviving regions indicating that repair mechanisms are operable. DNA strand breaks are repaired by nonhomologous end joining in mammalian cells. This process requires DNA-dependent protein kinase (DNA-PK), composed of heterodimeric Ku antigen and a 460,000 Da catalytic subunit (DNA-PKcs). In this study, a rabbit spinal cord model of reversible ischemia was used to demonstrate the effect of acute CNS injury on the activity and expression of DNA-dependent protein kinase. The DNA-binding activity of Ku antigen, analyzed by an electrophoretic mobility shift assay, increased during reperfusion after a short ischemic insult (15 min of occlusion), from which the animals recover neurological function. After severe ischemic injury (60 min of occlusion) and reperfusion that results in permanent paraplegia, Ku DNA binding was reduced. Protein levels of the DNA-PK components-Ku70, Ku80, and DNA-PKcs-were monitored by immunoblotting. After 60 min of occlusion, the amount of DNA-PKcs and the enzyme poly(ADP-ribose) polymerase (PARP) decreased with the same time course during reperfusion. Concurrently 150 and 120 kDa fragments were immunostained by an anti-DNA-PKcs monoclonal antibody. This antibody was shown to cross-react with alpha-fodrin breakdown products. The 120 kDa fodrin peptide is associated with caspase-3 activation during apoptosis. Both DNA-PKcs and PARP are also substrates for caspase-3-like activities. The results are consistent with a model in which after a short ischemic insult, DNA repair proteins such as DNA-PK are activated. After severe ischemic injury, DNA damage overwhelms repair capabilities, and cell death programs are initiated.
doi_str_mv 10.1523/jneurosci.19-12-04727.1999
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6782663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17259747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-2ba5689b2aae3469217244a383954b612798461d964f147a86097e33f669e1933</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi0EokPhFZDFAlYp_osds0Cq0gEGqhYVurY8mZuJq8RJ7YQpb49DqqqsWNnSd-7RvfoQekPJCc0Zf3_jYQp9rNwJ1RllGRGKqfTX-glaJUJnTBD6FK0IUySTQokj9CLGG0KIIlQ9R0eUcCklkSsUy8b6PUTsPF7fDQFidL3HfY3HBvDZxSm-gsG6gL-HfoQElX03tHA3R9kZDOB34MeH9JvzNgK29QgBb2LVQOcstn43ayDU02x_iZ7Vto3w6v49Rtef1j_LL9n55edNeXqeVXlOx4xtbS4LvWXWAhdSM6qYEJYXXOdiKylTuhCS7rQUNRXKFpJoBZzXUmqgmvNj9HHxDtO2g12VFg22NUNwnQ2_TW-d-TfxrjH7_peRqmBSzoK394LQ304QR9O5WEHbWg_9FI3UBS0oIf8F0-a5VkIl8MMCVqnAGKB-2IYSM5drvl6sr68uf5QbQ7WhzPwt18zlpuHXj-95NLq0mYB3C9C4fXNwAUzsbNsmnJrD4bAIZx__A7NysAU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17259747</pqid></control><display><type>article</type><title>Changes in Expression of the DNA Repair Protein Complex DNA-Dependent Protein Kinase after Ischemia and Reperfusion</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Shackelford, Deborah A ; Tobaru, Takaaki ; Zhang, Shengjia ; Zivin, Justin A</creator><creatorcontrib>Shackelford, Deborah A ; Tobaru, Takaaki ; Zhang, Shengjia ; Zivin, Justin A</creatorcontrib><description>Reperfusion of ischemic tissue causes an immediate increase in DNA damage, including base lesions and strand breaks. Damage is reversible in surviving regions indicating that repair mechanisms are operable. DNA strand breaks are repaired by nonhomologous end joining in mammalian cells. This process requires DNA-dependent protein kinase (DNA-PK), composed of heterodimeric Ku antigen and a 460,000 Da catalytic subunit (DNA-PKcs). In this study, a rabbit spinal cord model of reversible ischemia was used to demonstrate the effect of acute CNS injury on the activity and expression of DNA-dependent protein kinase. The DNA-binding activity of Ku antigen, analyzed by an electrophoretic mobility shift assay, increased during reperfusion after a short ischemic insult (15 min of occlusion), from which the animals recover neurological function. After severe ischemic injury (60 min of occlusion) and reperfusion that results in permanent paraplegia, Ku DNA binding was reduced. Protein levels of the DNA-PK components-Ku70, Ku80, and DNA-PKcs-were monitored by immunoblotting. After 60 min of occlusion, the amount of DNA-PKcs and the enzyme poly(ADP-ribose) polymerase (PARP) decreased with the same time course during reperfusion. Concurrently 150 and 120 kDa fragments were immunostained by an anti-DNA-PKcs monoclonal antibody. This antibody was shown to cross-react with alpha-fodrin breakdown products. The 120 kDa fodrin peptide is associated with caspase-3 activation during apoptosis. Both DNA-PKcs and PARP are also substrates for caspase-3-like activities. The results are consistent with a model in which after a short ischemic insult, DNA repair proteins such as DNA-PK are activated. After severe ischemic injury, DNA damage overwhelms repair capabilities, and cell death programs are initiated.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.19-12-04727.1999</identifier><identifier>PMID: 10366606</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Antigens, Nuclear ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Caspase 3 ; Caspases - metabolism ; Cell Nucleus - chemistry ; Cell Nucleus - enzymology ; Cytosol - chemistry ; Cytosol - enzymology ; DNA Damage ; DNA Helicases ; DNA Repair ; DNA-Activated Protein Kinase ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Enzyme Activation - physiology ; Gene Expression Regulation, Enzymologic ; HeLa Cells ; Humans ; Ku Autoantigen ; Microfilament Proteins - genetics ; Microfilament Proteins - metabolism ; NF-kappa B - metabolism ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Oligonucleotide Probes ; Paraplegia - genetics ; Paraplegia - metabolism ; Paraplegia - physiopathology ; PC12 Cells ; Poly (ADP-Ribose) Polymerase-1 ; Poly(ADP-ribose) Polymerases ; Protein Binding - physiology ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Proteins - genetics ; Proteins - metabolism ; Rabbits ; Rats ; Reperfusion Injury - genetics ; Reperfusion Injury - metabolism ; Reperfusion Injury - physiopathology ; Spinal Cord - blood supply ; Spinal Cord - enzymology</subject><ispartof>The Journal of neuroscience, 1999-06, Vol.19 (12), p.4727-4738</ispartof><rights>Copyright © 1999 Society for Neuroscience 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-2ba5689b2aae3469217244a383954b612798461d964f147a86097e33f669e1933</citedby><cites>FETCH-LOGICAL-c551t-2ba5689b2aae3469217244a383954b612798461d964f147a86097e33f669e1933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782663/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782663/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10366606$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shackelford, Deborah A</creatorcontrib><creatorcontrib>Tobaru, Takaaki</creatorcontrib><creatorcontrib>Zhang, Shengjia</creatorcontrib><creatorcontrib>Zivin, Justin A</creatorcontrib><title>Changes in Expression of the DNA Repair Protein Complex DNA-Dependent Protein Kinase after Ischemia and Reperfusion</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Reperfusion of ischemic tissue causes an immediate increase in DNA damage, including base lesions and strand breaks. Damage is reversible in surviving regions indicating that repair mechanisms are operable. DNA strand breaks are repaired by nonhomologous end joining in mammalian cells. This process requires DNA-dependent protein kinase (DNA-PK), composed of heterodimeric Ku antigen and a 460,000 Da catalytic subunit (DNA-PKcs). In this study, a rabbit spinal cord model of reversible ischemia was used to demonstrate the effect of acute CNS injury on the activity and expression of DNA-dependent protein kinase. The DNA-binding activity of Ku antigen, analyzed by an electrophoretic mobility shift assay, increased during reperfusion after a short ischemic insult (15 min of occlusion), from which the animals recover neurological function. After severe ischemic injury (60 min of occlusion) and reperfusion that results in permanent paraplegia, Ku DNA binding was reduced. Protein levels of the DNA-PK components-Ku70, Ku80, and DNA-PKcs-were monitored by immunoblotting. After 60 min of occlusion, the amount of DNA-PKcs and the enzyme poly(ADP-ribose) polymerase (PARP) decreased with the same time course during reperfusion. Concurrently 150 and 120 kDa fragments were immunostained by an anti-DNA-PKcs monoclonal antibody. This antibody was shown to cross-react with alpha-fodrin breakdown products. The 120 kDa fodrin peptide is associated with caspase-3 activation during apoptosis. Both DNA-PKcs and PARP are also substrates for caspase-3-like activities. The results are consistent with a model in which after a short ischemic insult, DNA repair proteins such as DNA-PK are activated. After severe ischemic injury, DNA damage overwhelms repair capabilities, and cell death programs are initiated.</description><subject>Animals</subject><subject>Antigens, Nuclear</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Caspase 3</subject><subject>Caspases - metabolism</subject><subject>Cell Nucleus - chemistry</subject><subject>Cell Nucleus - enzymology</subject><subject>Cytosol - chemistry</subject><subject>Cytosol - enzymology</subject><subject>DNA Damage</subject><subject>DNA Helicases</subject><subject>DNA Repair</subject><subject>DNA-Activated Protein Kinase</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Enzyme Activation - physiology</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Ku Autoantigen</subject><subject>Microfilament Proteins - genetics</subject><subject>Microfilament Proteins - metabolism</subject><subject>NF-kappa B - metabolism</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Oligonucleotide Probes</subject><subject>Paraplegia - genetics</subject><subject>Paraplegia - metabolism</subject><subject>Paraplegia - physiopathology</subject><subject>PC12 Cells</subject><subject>Poly (ADP-Ribose) Polymerase-1</subject><subject>Poly(ADP-ribose) Polymerases</subject><subject>Protein Binding - physiology</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Rabbits</subject><subject>Rats</subject><subject>Reperfusion Injury - genetics</subject><subject>Reperfusion Injury - metabolism</subject><subject>Reperfusion Injury - physiopathology</subject><subject>Spinal Cord - blood supply</subject><subject>Spinal Cord - enzymology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAURi0EokPhFZDFAlYp_osds0Cq0gEGqhYVurY8mZuJq8RJ7YQpb49DqqqsWNnSd-7RvfoQekPJCc0Zf3_jYQp9rNwJ1RllGRGKqfTX-glaJUJnTBD6FK0IUySTQokj9CLGG0KIIlQ9R0eUcCklkSsUy8b6PUTsPF7fDQFidL3HfY3HBvDZxSm-gsG6gL-HfoQElX03tHA3R9kZDOB34MeH9JvzNgK29QgBb2LVQOcstn43ayDU02x_iZ7Vto3w6v49Rtef1j_LL9n55edNeXqeVXlOx4xtbS4LvWXWAhdSM6qYEJYXXOdiKylTuhCS7rQUNRXKFpJoBZzXUmqgmvNj9HHxDtO2g12VFg22NUNwnQ2_TW-d-TfxrjH7_peRqmBSzoK394LQ304QR9O5WEHbWg_9FI3UBS0oIf8F0-a5VkIl8MMCVqnAGKB-2IYSM5drvl6sr68uf5QbQ7WhzPwt18zlpuHXj-95NLq0mYB3C9C4fXNwAUzsbNsmnJrD4bAIZx__A7NysAU</recordid><startdate>19990615</startdate><enddate>19990615</enddate><creator>Shackelford, Deborah A</creator><creator>Tobaru, Takaaki</creator><creator>Zhang, Shengjia</creator><creator>Zivin, Justin A</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990615</creationdate><title>Changes in Expression of the DNA Repair Protein Complex DNA-Dependent Protein Kinase after Ischemia and Reperfusion</title><author>Shackelford, Deborah A ; Tobaru, Takaaki ; Zhang, Shengjia ; Zivin, Justin A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-2ba5689b2aae3469217244a383954b612798461d964f147a86097e33f669e1933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Antigens, Nuclear</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Caspase 3</topic><topic>Caspases - metabolism</topic><topic>Cell Nucleus - chemistry</topic><topic>Cell Nucleus - enzymology</topic><topic>Cytosol - chemistry</topic><topic>Cytosol - enzymology</topic><topic>DNA Damage</topic><topic>DNA Helicases</topic><topic>DNA Repair</topic><topic>DNA-Activated Protein Kinase</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Enzyme Activation - physiology</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Ku Autoantigen</topic><topic>Microfilament Proteins - genetics</topic><topic>Microfilament Proteins - metabolism</topic><topic>NF-kappa B - metabolism</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Oligonucleotide Probes</topic><topic>Paraplegia - genetics</topic><topic>Paraplegia - metabolism</topic><topic>Paraplegia - physiopathology</topic><topic>PC12 Cells</topic><topic>Poly (ADP-Ribose) Polymerase-1</topic><topic>Poly(ADP-ribose) Polymerases</topic><topic>Protein Binding - physiology</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Rabbits</topic><topic>Rats</topic><topic>Reperfusion Injury - genetics</topic><topic>Reperfusion Injury - metabolism</topic><topic>Reperfusion Injury - physiopathology</topic><topic>Spinal Cord - blood supply</topic><topic>Spinal Cord - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shackelford, Deborah A</creatorcontrib><creatorcontrib>Tobaru, Takaaki</creatorcontrib><creatorcontrib>Zhang, Shengjia</creatorcontrib><creatorcontrib>Zivin, Justin A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shackelford, Deborah A</au><au>Tobaru, Takaaki</au><au>Zhang, Shengjia</au><au>Zivin, Justin A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in Expression of the DNA Repair Protein Complex DNA-Dependent Protein Kinase after Ischemia and Reperfusion</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>1999-06-15</date><risdate>1999</risdate><volume>19</volume><issue>12</issue><spage>4727</spage><epage>4738</epage><pages>4727-4738</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Reperfusion of ischemic tissue causes an immediate increase in DNA damage, including base lesions and strand breaks. Damage is reversible in surviving regions indicating that repair mechanisms are operable. DNA strand breaks are repaired by nonhomologous end joining in mammalian cells. This process requires DNA-dependent protein kinase (DNA-PK), composed of heterodimeric Ku antigen and a 460,000 Da catalytic subunit (DNA-PKcs). In this study, a rabbit spinal cord model of reversible ischemia was used to demonstrate the effect of acute CNS injury on the activity and expression of DNA-dependent protein kinase. The DNA-binding activity of Ku antigen, analyzed by an electrophoretic mobility shift assay, increased during reperfusion after a short ischemic insult (15 min of occlusion), from which the animals recover neurological function. After severe ischemic injury (60 min of occlusion) and reperfusion that results in permanent paraplegia, Ku DNA binding was reduced. Protein levels of the DNA-PK components-Ku70, Ku80, and DNA-PKcs-were monitored by immunoblotting. After 60 min of occlusion, the amount of DNA-PKcs and the enzyme poly(ADP-ribose) polymerase (PARP) decreased with the same time course during reperfusion. Concurrently 150 and 120 kDa fragments were immunostained by an anti-DNA-PKcs monoclonal antibody. This antibody was shown to cross-react with alpha-fodrin breakdown products. The 120 kDa fodrin peptide is associated with caspase-3 activation during apoptosis. Both DNA-PKcs and PARP are also substrates for caspase-3-like activities. The results are consistent with a model in which after a short ischemic insult, DNA repair proteins such as DNA-PK are activated. After severe ischemic injury, DNA damage overwhelms repair capabilities, and cell death programs are initiated.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>10366606</pmid><doi>10.1523/jneurosci.19-12-04727.1999</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 1999-06, Vol.19 (12), p.4727-4738
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6782663
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Antigens, Nuclear
Carrier Proteins - genetics
Carrier Proteins - metabolism
Caspase 3
Caspases - metabolism
Cell Nucleus - chemistry
Cell Nucleus - enzymology
Cytosol - chemistry
Cytosol - enzymology
DNA Damage
DNA Helicases
DNA Repair
DNA-Activated Protein Kinase
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Enzyme Activation - physiology
Gene Expression Regulation, Enzymologic
HeLa Cells
Humans
Ku Autoantigen
Microfilament Proteins - genetics
Microfilament Proteins - metabolism
NF-kappa B - metabolism
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Oligonucleotide Probes
Paraplegia - genetics
Paraplegia - metabolism
Paraplegia - physiopathology
PC12 Cells
Poly (ADP-Ribose) Polymerase-1
Poly(ADP-ribose) Polymerases
Protein Binding - physiology
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Proteins - genetics
Proteins - metabolism
Rabbits
Rats
Reperfusion Injury - genetics
Reperfusion Injury - metabolism
Reperfusion Injury - physiopathology
Spinal Cord - blood supply
Spinal Cord - enzymology
title Changes in Expression of the DNA Repair Protein Complex DNA-Dependent Protein Kinase after Ischemia and Reperfusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20Expression%20of%20the%20DNA%20Repair%20Protein%20Complex%20DNA-Dependent%20Protein%20Kinase%20after%20Ischemia%20and%20Reperfusion&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Shackelford,%20Deborah%20A&rft.date=1999-06-15&rft.volume=19&rft.issue=12&rft.spage=4727&rft.epage=4738&rft.pages=4727-4738&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.19-12-04727.1999&rft_dat=%3Cproquest_pubme%3E17259747%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17259747&rft_id=info:pmid/10366606&rfr_iscdi=true