Computation of Inertial Motion: Neural Strategies to Resolve Ambiguous Otolith Information

According to Einstein's equivalence principle, inertial accelerations during translational motion are physically indistinguishable from gravitational accelerations experienced during tilting movements. Nevertheless, despite ambiguous sensory representation of motion in primary otolith afferents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 1999-01, Vol.19 (1), p.316-327
Hauptverfasser: Angelaki, Dora E, McHenry, M. Quinn, Dickman, J. David, Newlands, Shawn D, Hess, Bernhard J. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 327
container_issue 1
container_start_page 316
container_title The Journal of neuroscience
container_volume 19
creator Angelaki, Dora E
McHenry, M. Quinn
Dickman, J. David
Newlands, Shawn D
Hess, Bernhard J. M
description According to Einstein's equivalence principle, inertial accelerations during translational motion are physically indistinguishable from gravitational accelerations experienced during tilting movements. Nevertheless, despite ambiguous sensory representation of motion in primary otolith afferents, primate oculomotor responses are appropriately compensatory for the correct translational component of the head movement. The neural computational strategies used by the brain to discriminate the two and to reliably detect translational motion were investigated in the primate vestibulo-ocular system. The experimental protocols consisted of either lateral translations, roll tilts, or combined translation-tilt paradigms. Results using both steady-state sinusoidal and transient motion profiles in darkness or near target viewing demonstrated that semicircular canal signals are necessary sensory cues for the discrimination between different sources of linear acceleration. When the semicircular canals were inactivated, horizontal eye movements (appropriate for translational motion) could no longer be correlated with head translation. Instead, translational eye movements totally reflected the erroneous primary otolith afferent signals and were correlated with the resultant acceleration, regardless of whether it resulted from translation or tilt. Therefore, at least for frequencies in which the vestibulo-ocular reflex is important for gaze stabilization (>0.1 Hz), the oculomotor system discriminates between head translation and tilt primarily by sensory integration mechanisms rather than frequency segregation of otolith afferent information. Nonlinear neural computational schemes are proposed in which not only linear acceleration information from the otolith receptors but also angular velocity signals from the semicircular canals are simultaneously used by the brain to correctly estimate the source of linear acceleration and to elicit appropriate oculomotor responses.
doi_str_mv 10.1523/jneurosci.19-01-00316.1999
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6782388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17141856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-b2495aafbb1ea6b1526f887a05db3eb7cf68ecbe0999f582693747d1ffcff50e3</originalsourceid><addsrcrecordid>eNqFUctuEzEUtRCohMInII2QYDfFd2b86gKpigoElUZq6YaN5ZlcJ65mxsH2NOLvcZqoghUrP87jnqtDyDugZ8Cq-uP9iFPwsXNnoEoKJaU18HxX6hmZZYYqq4bCczKjlaAlb0TzkryK8Z5SKiiIE3KipKCKw4z8nPthOyWTnB8Lb4vFiCE50xff_f7rvLjOo_LzNgWTcO0wFskXNxh9_4DFxdC69eSnWCyT713aZL31YXi0e01eWNNHfHM8T8nd58sf86_l1fLLYn5xVXaskalsq0YxY2zbAhre5vjcSikMZau2xlZ0lkvsWqR5PctkxVUtGrECaztrGcX6lHw6-G6ndsBVh2PO2uttcIMJv7U3Tv-LjG6j1_5BcyGrWsps8OFoEPyvCWPSg4sd9r0ZMe-muWIMBK_-SwQBDUjGM_H8QOxyTTGgfUoDVO8r1N-uL-9ulrfzhQalKejHCvW-wix--_c-T9JjZxl_f8A3br3ZuYA6DqbvMxv0brfLfqCzWf0HL1CqZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17141856</pqid></control><display><type>article</type><title>Computation of Inertial Motion: Neural Strategies to Resolve Ambiguous Otolith Information</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Angelaki, Dora E ; McHenry, M. Quinn ; Dickman, J. David ; Newlands, Shawn D ; Hess, Bernhard J. M</creator><creatorcontrib>Angelaki, Dora E ; McHenry, M. Quinn ; Dickman, J. David ; Newlands, Shawn D ; Hess, Bernhard J. M</creatorcontrib><description>According to Einstein's equivalence principle, inertial accelerations during translational motion are physically indistinguishable from gravitational accelerations experienced during tilting movements. Nevertheless, despite ambiguous sensory representation of motion in primary otolith afferents, primate oculomotor responses are appropriately compensatory for the correct translational component of the head movement. The neural computational strategies used by the brain to discriminate the two and to reliably detect translational motion were investigated in the primate vestibulo-ocular system. The experimental protocols consisted of either lateral translations, roll tilts, or combined translation-tilt paradigms. Results using both steady-state sinusoidal and transient motion profiles in darkness or near target viewing demonstrated that semicircular canal signals are necessary sensory cues for the discrimination between different sources of linear acceleration. When the semicircular canals were inactivated, horizontal eye movements (appropriate for translational motion) could no longer be correlated with head translation. Instead, translational eye movements totally reflected the erroneous primary otolith afferent signals and were correlated with the resultant acceleration, regardless of whether it resulted from translation or tilt. Therefore, at least for frequencies in which the vestibulo-ocular reflex is important for gaze stabilization (&gt;0.1 Hz), the oculomotor system discriminates between head translation and tilt primarily by sensory integration mechanisms rather than frequency segregation of otolith afferent information. Nonlinear neural computational schemes are proposed in which not only linear acceleration information from the otolith receptors but also angular velocity signals from the semicircular canals are simultaneously used by the brain to correctly estimate the source of linear acceleration and to elicit appropriate oculomotor responses.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.19-01-00316.1999</identifier><identifier>PMID: 9870961</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Cues ; Discrimination (Psychology) - physiology ; Ear, Inner - physiology ; Eye Movements - physiology ; Gravitation ; Head Movements - physiology ; Macaca mulatta ; Neural Analyzers - physiology ; Orientation - physiology ; Oscillometry ; Otolithic Membrane - physiology ; Reflex, Vestibulo-Ocular - physiology ; Space life sciences</subject><ispartof>The Journal of neuroscience, 1999-01, Vol.19 (1), p.316-327</ispartof><rights>Copyright © 1999 Society for Neuroscience 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-b2495aafbb1ea6b1526f887a05db3eb7cf68ecbe0999f582693747d1ffcff50e3</citedby><cites>FETCH-LOGICAL-c548t-b2495aafbb1ea6b1526f887a05db3eb7cf68ecbe0999f582693747d1ffcff50e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782388/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782388/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9870961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Angelaki, Dora E</creatorcontrib><creatorcontrib>McHenry, M. Quinn</creatorcontrib><creatorcontrib>Dickman, J. David</creatorcontrib><creatorcontrib>Newlands, Shawn D</creatorcontrib><creatorcontrib>Hess, Bernhard J. M</creatorcontrib><title>Computation of Inertial Motion: Neural Strategies to Resolve Ambiguous Otolith Information</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>According to Einstein's equivalence principle, inertial accelerations during translational motion are physically indistinguishable from gravitational accelerations experienced during tilting movements. Nevertheless, despite ambiguous sensory representation of motion in primary otolith afferents, primate oculomotor responses are appropriately compensatory for the correct translational component of the head movement. The neural computational strategies used by the brain to discriminate the two and to reliably detect translational motion were investigated in the primate vestibulo-ocular system. The experimental protocols consisted of either lateral translations, roll tilts, or combined translation-tilt paradigms. Results using both steady-state sinusoidal and transient motion profiles in darkness or near target viewing demonstrated that semicircular canal signals are necessary sensory cues for the discrimination between different sources of linear acceleration. When the semicircular canals were inactivated, horizontal eye movements (appropriate for translational motion) could no longer be correlated with head translation. Instead, translational eye movements totally reflected the erroneous primary otolith afferent signals and were correlated with the resultant acceleration, regardless of whether it resulted from translation or tilt. Therefore, at least for frequencies in which the vestibulo-ocular reflex is important for gaze stabilization (&gt;0.1 Hz), the oculomotor system discriminates between head translation and tilt primarily by sensory integration mechanisms rather than frequency segregation of otolith afferent information. Nonlinear neural computational schemes are proposed in which not only linear acceleration information from the otolith receptors but also angular velocity signals from the semicircular canals are simultaneously used by the brain to correctly estimate the source of linear acceleration and to elicit appropriate oculomotor responses.</description><subject>Animals</subject><subject>Cues</subject><subject>Discrimination (Psychology) - physiology</subject><subject>Ear, Inner - physiology</subject><subject>Eye Movements - physiology</subject><subject>Gravitation</subject><subject>Head Movements - physiology</subject><subject>Macaca mulatta</subject><subject>Neural Analyzers - physiology</subject><subject>Orientation - physiology</subject><subject>Oscillometry</subject><subject>Otolithic Membrane - physiology</subject><subject>Reflex, Vestibulo-Ocular - physiology</subject><subject>Space life sciences</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUctuEzEUtRCohMInII2QYDfFd2b86gKpigoElUZq6YaN5ZlcJ65mxsH2NOLvcZqoghUrP87jnqtDyDugZ8Cq-uP9iFPwsXNnoEoKJaU18HxX6hmZZYYqq4bCczKjlaAlb0TzkryK8Z5SKiiIE3KipKCKw4z8nPthOyWTnB8Lb4vFiCE50xff_f7rvLjOo_LzNgWTcO0wFskXNxh9_4DFxdC69eSnWCyT713aZL31YXi0e01eWNNHfHM8T8nd58sf86_l1fLLYn5xVXaskalsq0YxY2zbAhre5vjcSikMZau2xlZ0lkvsWqR5PctkxVUtGrECaztrGcX6lHw6-G6ndsBVh2PO2uttcIMJv7U3Tv-LjG6j1_5BcyGrWsps8OFoEPyvCWPSg4sd9r0ZMe-muWIMBK_-SwQBDUjGM_H8QOxyTTGgfUoDVO8r1N-uL-9ulrfzhQalKejHCvW-wix--_c-T9JjZxl_f8A3br3ZuYA6DqbvMxv0brfLfqCzWf0HL1CqZQ</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Angelaki, Dora E</creator><creator>McHenry, M. Quinn</creator><creator>Dickman, J. David</creator><creator>Newlands, Shawn D</creator><creator>Hess, Bernhard J. M</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990101</creationdate><title>Computation of Inertial Motion: Neural Strategies to Resolve Ambiguous Otolith Information</title><author>Angelaki, Dora E ; McHenry, M. Quinn ; Dickman, J. David ; Newlands, Shawn D ; Hess, Bernhard J. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-b2495aafbb1ea6b1526f887a05db3eb7cf68ecbe0999f582693747d1ffcff50e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Cues</topic><topic>Discrimination (Psychology) - physiology</topic><topic>Ear, Inner - physiology</topic><topic>Eye Movements - physiology</topic><topic>Gravitation</topic><topic>Head Movements - physiology</topic><topic>Macaca mulatta</topic><topic>Neural Analyzers - physiology</topic><topic>Orientation - physiology</topic><topic>Oscillometry</topic><topic>Otolithic Membrane - physiology</topic><topic>Reflex, Vestibulo-Ocular - physiology</topic><topic>Space life sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angelaki, Dora E</creatorcontrib><creatorcontrib>McHenry, M. Quinn</creatorcontrib><creatorcontrib>Dickman, J. David</creatorcontrib><creatorcontrib>Newlands, Shawn D</creatorcontrib><creatorcontrib>Hess, Bernhard J. M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angelaki, Dora E</au><au>McHenry, M. Quinn</au><au>Dickman, J. David</au><au>Newlands, Shawn D</au><au>Hess, Bernhard J. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of Inertial Motion: Neural Strategies to Resolve Ambiguous Otolith Information</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>1999-01-01</date><risdate>1999</risdate><volume>19</volume><issue>1</issue><spage>316</spage><epage>327</epage><pages>316-327</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>According to Einstein's equivalence principle, inertial accelerations during translational motion are physically indistinguishable from gravitational accelerations experienced during tilting movements. Nevertheless, despite ambiguous sensory representation of motion in primary otolith afferents, primate oculomotor responses are appropriately compensatory for the correct translational component of the head movement. The neural computational strategies used by the brain to discriminate the two and to reliably detect translational motion were investigated in the primate vestibulo-ocular system. The experimental protocols consisted of either lateral translations, roll tilts, or combined translation-tilt paradigms. Results using both steady-state sinusoidal and transient motion profiles in darkness or near target viewing demonstrated that semicircular canal signals are necessary sensory cues for the discrimination between different sources of linear acceleration. When the semicircular canals were inactivated, horizontal eye movements (appropriate for translational motion) could no longer be correlated with head translation. Instead, translational eye movements totally reflected the erroneous primary otolith afferent signals and were correlated with the resultant acceleration, regardless of whether it resulted from translation or tilt. Therefore, at least for frequencies in which the vestibulo-ocular reflex is important for gaze stabilization (&gt;0.1 Hz), the oculomotor system discriminates between head translation and tilt primarily by sensory integration mechanisms rather than frequency segregation of otolith afferent information. Nonlinear neural computational schemes are proposed in which not only linear acceleration information from the otolith receptors but also angular velocity signals from the semicircular canals are simultaneously used by the brain to correctly estimate the source of linear acceleration and to elicit appropriate oculomotor responses.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>9870961</pmid><doi>10.1523/jneurosci.19-01-00316.1999</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 1999-01, Vol.19 (1), p.316-327
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6782388
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Cues
Discrimination (Psychology) - physiology
Ear, Inner - physiology
Eye Movements - physiology
Gravitation
Head Movements - physiology
Macaca mulatta
Neural Analyzers - physiology
Orientation - physiology
Oscillometry
Otolithic Membrane - physiology
Reflex, Vestibulo-Ocular - physiology
Space life sciences
title Computation of Inertial Motion: Neural Strategies to Resolve Ambiguous Otolith Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20Inertial%20Motion:%20Neural%20Strategies%20to%20Resolve%20Ambiguous%20Otolith%20Information&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Angelaki,%20Dora%20E&rft.date=1999-01-01&rft.volume=19&rft.issue=1&rft.spage=316&rft.epage=327&rft.pages=316-327&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.19-01-00316.1999&rft_dat=%3Cproquest_pubme%3E17141856%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17141856&rft_id=info:pmid/9870961&rfr_iscdi=true