Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook
Although most patients who experience a first-episode of psychosis achieve remission of positive psychotic symptoms, relapse is common. Existing relapse evaluation strategies are limited by their reliance on direct and timely contact with professionals, and accurate reporting of symptoms. A method b...
Gespeichert in:
Veröffentlicht in: | NPJ schizophrenia 2019-10, Vol.5 (1), p.17-9, Article 17 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | NPJ schizophrenia |
container_volume | 5 |
creator | Birnbaum, M. L. Ernala, S. K. Rizvi, A. F. Arenare, E. R. Van Meter, A. De Choudhury, M. Kane, J. M. |
description | Although most patients who experience a first-episode of psychosis achieve remission of positive psychotic symptoms, relapse is common. Existing relapse evaluation strategies are limited by their reliance on direct and timely contact with professionals, and accurate reporting of symptoms. A method by which to objectively identify early relapse warning signs could facilitate swift intervention. We collected 52,815 Facebook posts across 51 participants with recent onset psychosis (mean age = 23.96 years; 70.58% male) and applied anomaly detection to explore linguistic and behavioral changes associated with psychotic relapse. We built a one-class classification model that makes patient-specific personalized predictions on risk to relapse. Significant differences were identified in the words posted to Facebook in the month preceding a relapse hospitalization compared to periods of relative health, including increased usage of words belonging to the swear (
p
< 0.0001, Wilcoxon signed rank test), anger (
p
< 0.001), and death (
p
< 0.0001) categories, decreased usage of words belonging to work (
p
= 0.00579), friends (
p
< 0.0001), and health (
p
< 0.0001) categories, as well as a significantly increased use of first (
p
< 0.0001) and second-person (
p
< 0.001) pronouns. We additionally observed a significant increase in co-tagging (
p
< 0.001) and friending (
p
< 0.0001) behaviors in the month before a relapse hospitalization. Our classifier achieved a specificity of 0.71 in predicting relapse. Results indicate that social media activity captures objective linguistic and behavioral markers of psychotic relapse in young individuals with recent onset psychosis. Machine-learning models were capable of making personalized predictions of imminent relapse hospitalizations at the patient-specific level. |
doi_str_mv | 10.1038/s41537-019-0085-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6779748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2301875792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-b90e88434d3ec1fbc8d58094a38550f5d524af7d3620251a856f05509a6d684f3</originalsourceid><addsrcrecordid>eNp1kU9rFTEUxYNYbHn2A7iRgBs3o_k7k2wEqVaFgpsWuguZJDMvdV4yJhnlufSTm-HVZxXcJOGec0_u5QfAM4xeYUTF68wwp12DsGwQEryRj8AZoZQ1pOW3jx-8T8F5zncIIcwkoYI8AacUc4kZQmfg5ztXnCk-jDC5Sc_ZQR_gPi5lC7_7esx5b7axeAOtzzFZlzJcip_8j7Vn1sW7UJrRBZd0cRbqYI9VE0NJvl_WuvWjL3qCVhcNhxR38FIb18f45Sk4GfSU3fn9vQE3l--vLz42V58_fLp4e9UY1qHS9BI5IRhlljqDh94IywWSTFPBORq45YTpobO0JYhwrAVvB1QVqVvbCjbQDXhzyJ2XfuesqRMmPak5-Z1OexW1V38rwW_VGL-ptutkx0QNeHkfkOLXxeWidj4bN006uLhkRSgiTGBJWLW--Md6F5cU6nqrC4uOd5XFBuCDy6SYc3LDcRiM1ApZHSCrClmtkJWsPc8fbnHs-I20GsjBkKsURpf-fP3_1F_F_bUC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301875792</pqid></control><display><type>article</type><title>Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Birnbaum, M. L. ; Ernala, S. K. ; Rizvi, A. F. ; Arenare, E. ; R. Van Meter, A. ; De Choudhury, M. ; Kane, J. M.</creator><creatorcontrib>Birnbaum, M. L. ; Ernala, S. K. ; Rizvi, A. F. ; Arenare, E. ; R. Van Meter, A. ; De Choudhury, M. ; Kane, J. M.</creatorcontrib><description><![CDATA[Although most patients who experience a first-episode of psychosis achieve remission of positive psychotic symptoms, relapse is common. Existing relapse evaluation strategies are limited by their reliance on direct and timely contact with professionals, and accurate reporting of symptoms. A method by which to objectively identify early relapse warning signs could facilitate swift intervention. We collected 52,815 Facebook posts across 51 participants with recent onset psychosis (mean age = 23.96 years; 70.58% male) and applied anomaly detection to explore linguistic and behavioral changes associated with psychotic relapse. We built a one-class classification model that makes patient-specific personalized predictions on risk to relapse. Significant differences were identified in the words posted to Facebook in the month preceding a relapse hospitalization compared to periods of relative health, including increased usage of words belonging to the swear (
p
< 0.0001, Wilcoxon signed rank test), anger (
p
< 0.001), and death (
p
< 0.0001) categories, decreased usage of words belonging to work (
p
= 0.00579), friends (
p
< 0.0001), and health (
p
< 0.0001) categories, as well as a significantly increased use of first (
p
< 0.0001) and second-person (
p
< 0.001) pronouns. We additionally observed a significant increase in co-tagging (
p
< 0.001) and friending (
p
< 0.0001) behaviors in the month before a relapse hospitalization. Our classifier achieved a specificity of 0.71 in predicting relapse. Results indicate that social media activity captures objective linguistic and behavioral markers of psychotic relapse in young individuals with recent onset psychosis. Machine-learning models were capable of making personalized predictions of imminent relapse hospitalizations at the patient-specific level.]]></description><identifier>ISSN: 2334-265X</identifier><identifier>EISSN: 2334-265X</identifier><identifier>DOI: 10.1038/s41537-019-0085-9</identifier><identifier>PMID: 31591400</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/477/2811 ; 692/699/476/1761 ; Cognitive Psychology ; Medicine ; Medicine & Public Health ; Neurology ; Neurosciences ; Psychiatry ; Psychosis ; Social networks</subject><ispartof>NPJ schizophrenia, 2019-10, Vol.5 (1), p.17-9, Article 17</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-b90e88434d3ec1fbc8d58094a38550f5d524af7d3620251a856f05509a6d684f3</citedby><cites>FETCH-LOGICAL-c470t-b90e88434d3ec1fbc8d58094a38550f5d524af7d3620251a856f05509a6d684f3</cites><orcidid>0000-0002-4285-7868 ; 0000-0003-0012-206X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779748/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779748/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31591400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Birnbaum, M. L.</creatorcontrib><creatorcontrib>Ernala, S. K.</creatorcontrib><creatorcontrib>Rizvi, A. F.</creatorcontrib><creatorcontrib>Arenare, E.</creatorcontrib><creatorcontrib>R. Van Meter, A.</creatorcontrib><creatorcontrib>De Choudhury, M.</creatorcontrib><creatorcontrib>Kane, J. M.</creatorcontrib><title>Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook</title><title>NPJ schizophrenia</title><addtitle>npj Schizophr</addtitle><addtitle>NPJ Schizophr</addtitle><description><![CDATA[Although most patients who experience a first-episode of psychosis achieve remission of positive psychotic symptoms, relapse is common. Existing relapse evaluation strategies are limited by their reliance on direct and timely contact with professionals, and accurate reporting of symptoms. A method by which to objectively identify early relapse warning signs could facilitate swift intervention. We collected 52,815 Facebook posts across 51 participants with recent onset psychosis (mean age = 23.96 years; 70.58% male) and applied anomaly detection to explore linguistic and behavioral changes associated with psychotic relapse. We built a one-class classification model that makes patient-specific personalized predictions on risk to relapse. Significant differences were identified in the words posted to Facebook in the month preceding a relapse hospitalization compared to periods of relative health, including increased usage of words belonging to the swear (
p
< 0.0001, Wilcoxon signed rank test), anger (
p
< 0.001), and death (
p
< 0.0001) categories, decreased usage of words belonging to work (
p
= 0.00579), friends (
p
< 0.0001), and health (
p
< 0.0001) categories, as well as a significantly increased use of first (
p
< 0.0001) and second-person (
p
< 0.001) pronouns. We additionally observed a significant increase in co-tagging (
p
< 0.001) and friending (
p
< 0.0001) behaviors in the month before a relapse hospitalization. Our classifier achieved a specificity of 0.71 in predicting relapse. Results indicate that social media activity captures objective linguistic and behavioral markers of psychotic relapse in young individuals with recent onset psychosis. Machine-learning models were capable of making personalized predictions of imminent relapse hospitalizations at the patient-specific level.]]></description><subject>631/477/2811</subject><subject>692/699/476/1761</subject><subject>Cognitive Psychology</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Psychiatry</subject><subject>Psychosis</subject><subject>Social networks</subject><issn>2334-265X</issn><issn>2334-265X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU9rFTEUxYNYbHn2A7iRgBs3o_k7k2wEqVaFgpsWuguZJDMvdV4yJhnlufSTm-HVZxXcJOGec0_u5QfAM4xeYUTF68wwp12DsGwQEryRj8AZoZQ1pOW3jx-8T8F5zncIIcwkoYI8AacUc4kZQmfg5ztXnCk-jDC5Sc_ZQR_gPi5lC7_7esx5b7axeAOtzzFZlzJcip_8j7Vn1sW7UJrRBZd0cRbqYI9VE0NJvl_WuvWjL3qCVhcNhxR38FIb18f45Sk4GfSU3fn9vQE3l--vLz42V58_fLp4e9UY1qHS9BI5IRhlljqDh94IywWSTFPBORq45YTpobO0JYhwrAVvB1QVqVvbCjbQDXhzyJ2XfuesqRMmPak5-Z1OexW1V38rwW_VGL-ptutkx0QNeHkfkOLXxeWidj4bN006uLhkRSgiTGBJWLW--Md6F5cU6nqrC4uOd5XFBuCDy6SYc3LDcRiM1ApZHSCrClmtkJWsPc8fbnHs-I20GsjBkKsURpf-fP3_1F_F_bUC</recordid><startdate>20191007</startdate><enddate>20191007</enddate><creator>Birnbaum, M. L.</creator><creator>Ernala, S. K.</creator><creator>Rizvi, A. F.</creator><creator>Arenare, E.</creator><creator>R. Van Meter, A.</creator><creator>De Choudhury, M.</creator><creator>Kane, J. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4285-7868</orcidid><orcidid>https://orcid.org/0000-0003-0012-206X</orcidid></search><sort><creationdate>20191007</creationdate><title>Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook</title><author>Birnbaum, M. L. ; Ernala, S. K. ; Rizvi, A. F. ; Arenare, E. ; R. Van Meter, A. ; De Choudhury, M. ; Kane, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-b90e88434d3ec1fbc8d58094a38550f5d524af7d3620251a856f05509a6d684f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/477/2811</topic><topic>692/699/476/1761</topic><topic>Cognitive Psychology</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Psychiatry</topic><topic>Psychosis</topic><topic>Social networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Birnbaum, M. L.</creatorcontrib><creatorcontrib>Ernala, S. K.</creatorcontrib><creatorcontrib>Rizvi, A. F.</creatorcontrib><creatorcontrib>Arenare, E.</creatorcontrib><creatorcontrib>R. Van Meter, A.</creatorcontrib><creatorcontrib>De Choudhury, M.</creatorcontrib><creatorcontrib>Kane, J. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Psychology Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NPJ schizophrenia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birnbaum, M. L.</au><au>Ernala, S. K.</au><au>Rizvi, A. F.</au><au>Arenare, E.</au><au>R. Van Meter, A.</au><au>De Choudhury, M.</au><au>Kane, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook</atitle><jtitle>NPJ schizophrenia</jtitle><stitle>npj Schizophr</stitle><addtitle>NPJ Schizophr</addtitle><date>2019-10-07</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><spage>17</spage><epage>9</epage><pages>17-9</pages><artnum>17</artnum><issn>2334-265X</issn><eissn>2334-265X</eissn><abstract><![CDATA[Although most patients who experience a first-episode of psychosis achieve remission of positive psychotic symptoms, relapse is common. Existing relapse evaluation strategies are limited by their reliance on direct and timely contact with professionals, and accurate reporting of symptoms. A method by which to objectively identify early relapse warning signs could facilitate swift intervention. We collected 52,815 Facebook posts across 51 participants with recent onset psychosis (mean age = 23.96 years; 70.58% male) and applied anomaly detection to explore linguistic and behavioral changes associated with psychotic relapse. We built a one-class classification model that makes patient-specific personalized predictions on risk to relapse. Significant differences were identified in the words posted to Facebook in the month preceding a relapse hospitalization compared to periods of relative health, including increased usage of words belonging to the swear (
p
< 0.0001, Wilcoxon signed rank test), anger (
p
< 0.001), and death (
p
< 0.0001) categories, decreased usage of words belonging to work (
p
= 0.00579), friends (
p
< 0.0001), and health (
p
< 0.0001) categories, as well as a significantly increased use of first (
p
< 0.0001) and second-person (
p
< 0.001) pronouns. We additionally observed a significant increase in co-tagging (
p
< 0.001) and friending (
p
< 0.0001) behaviors in the month before a relapse hospitalization. Our classifier achieved a specificity of 0.71 in predicting relapse. Results indicate that social media activity captures objective linguistic and behavioral markers of psychotic relapse in young individuals with recent onset psychosis. Machine-learning models were capable of making personalized predictions of imminent relapse hospitalizations at the patient-specific level.]]></abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31591400</pmid><doi>10.1038/s41537-019-0085-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4285-7868</orcidid><orcidid>https://orcid.org/0000-0003-0012-206X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2334-265X |
ispartof | NPJ schizophrenia, 2019-10, Vol.5 (1), p.17-9, Article 17 |
issn | 2334-265X 2334-265X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6779748 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | 631/477/2811 692/699/476/1761 Cognitive Psychology Medicine Medicine & Public Health Neurology Neurosciences Psychiatry Psychosis Social networks |
title | Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T14%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20relapse%20in%20youth%20with%20psychotic%20disorders%20utilizing%20patient-generated%20and%20patient-contributed%20digital%20data%20from%20Facebook&rft.jtitle=NPJ%20schizophrenia&rft.au=Birnbaum,%20M.%20L.&rft.date=2019-10-07&rft.volume=5&rft.issue=1&rft.spage=17&rft.epage=9&rft.pages=17-9&rft.artnum=17&rft.issn=2334-265X&rft.eissn=2334-265X&rft_id=info:doi/10.1038/s41537-019-0085-9&rft_dat=%3Cproquest_pubme%3E2301875792%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301875792&rft_id=info:pmid/31591400&rfr_iscdi=true |