Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle

Uniform endless fibers are ubiquitous and their applications range from functional textiles over biomedical engineering to high-performance filtering and drug delivery systems. Here, we report a new method for the direct, reproducible fabrication of uniform polymer and composite micro-/nanofibers us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-10, Vol.9 (1), p.14297-10, Article 14297
Hauptverfasser: Vasireddi, Ramakrishna, Kruse, Joscha, Vakili, Mohammad, Kulkarni, Satishkumar, Keller, Thomas F., Monteiro, Diana C. F., Trebbin, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 14297
container_title Scientific reports
container_volume 9
creator Vasireddi, Ramakrishna
Kruse, Joscha
Vakili, Mohammad
Kulkarni, Satishkumar
Keller, Thomas F.
Monteiro, Diana C. F.
Trebbin, Martin
description Uniform endless fibers are ubiquitous and their applications range from functional textiles over biomedical engineering to high-performance filtering and drug delivery systems. Here, we report a new method for the direct, reproducible fabrication of uniform polymer and composite micro-/nanofibers using a microfluidic gas flow focusing nozzle (Gas Dynamic Virtual Nozzle (GDVN)) relinquishing the need for external fiber pulling mechanisms. Compared to other methods, this technique is inexpensive, user-friendly and permits precise fiber diameter control (~250 nm to ~15 µm), high production rate (m/s-range) and direct fiber deposition without clogging due to stable, gas-focused jetting. Control over shape (flat or round) and surface patterning are achieved by simply tuning the air pressure and polymer concentration. The main thinning process happens after the polymer exits the device and is, therefore, mostly independent of the nozzle’s internal geometry. Nevertheless, the lithography-based device design is versatile, allowing for precise flow-field control for operation stability as well as particle alignment control. As an example, we demonstrate the successful production of endless hematite nanocomposite fibers which highlights this technology’s exciting possibilities that can lead to the fabrication of multifunctional/stimuli-responsive fibers with thermal and electrical conductivity, magnetic properties and enhanced mechanical stability.
doi_str_mv 10.1038/s41598-019-50477-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6778068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300955457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-4fd2ea57296b3586a5f2203efaab3ac69bbb1d6cd0879e7db1123a9f239f8cbe3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEolXpC7BAltiwCfVvEm-QUFV-pEosgLU1TuxcV44d7KTV7TPw0Di9pRQWeGNr5ptjH5-qeknwW4JZd5Y5EbKrMZG1wLxt6-ZJdUwxFzVllD59dD6qTnO-wmUJKjmRz6sjRkTXEE6Oq59fo18XFwPSPt6gPLsQXBhRtGiOfj-ZdBYgxD5Oc8xuMWhyfYr1XdE6bVJGN27ZoWUNoL1Bg4PJLFsZwoCmmOZd9HF0JqM1b8KARsho2AcoSujapWUFj0K8vfXmRfXMgs_m9H4_qb5_uPh2_qm-_PLx8_n7y7rnLV9qbgdqQLRUNpoVIyAspZgZC6AZ9I3UWpOh6QfctdK0gyaEMpCWMmm7Xht2Ur076M6rnszQm7Ak8GpOboK0VxGc-rsT3E6N8Vo1bdvhpisCb-4FUvyxmryoyeXeeA_BxDUryjDhnAqyoa__Qa_imkKxt1FYCsFFWyh6oMrn5pyMfXgMwWrLWx3yViVvdZe3asrQq8c2HkZ-p1sAdgByaYXRpD93_0f2F8WPuw8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300955457</pqid></control><display><type>article</type><title>Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Vasireddi, Ramakrishna ; Kruse, Joscha ; Vakili, Mohammad ; Kulkarni, Satishkumar ; Keller, Thomas F. ; Monteiro, Diana C. F. ; Trebbin, Martin</creator><creatorcontrib>Vasireddi, Ramakrishna ; Kruse, Joscha ; Vakili, Mohammad ; Kulkarni, Satishkumar ; Keller, Thomas F. ; Monteiro, Diana C. F. ; Trebbin, Martin</creatorcontrib><description>Uniform endless fibers are ubiquitous and their applications range from functional textiles over biomedical engineering to high-performance filtering and drug delivery systems. Here, we report a new method for the direct, reproducible fabrication of uniform polymer and composite micro-/nanofibers using a microfluidic gas flow focusing nozzle (Gas Dynamic Virtual Nozzle (GDVN)) relinquishing the need for external fiber pulling mechanisms. Compared to other methods, this technique is inexpensive, user-friendly and permits precise fiber diameter control (~250 nm to ~15 µm), high production rate (m/s-range) and direct fiber deposition without clogging due to stable, gas-focused jetting. Control over shape (flat or round) and surface patterning are achieved by simply tuning the air pressure and polymer concentration. The main thinning process happens after the polymer exits the device and is, therefore, mostly independent of the nozzle’s internal geometry. Nevertheless, the lithography-based device design is versatile, allowing for precise flow-field control for operation stability as well as particle alignment control. As an example, we demonstrate the successful production of endless hematite nanocomposite fibers which highlights this technology’s exciting possibilities that can lead to the fabrication of multifunctional/stimuli-responsive fibers with thermal and electrical conductivity, magnetic properties and enhanced mechanical stability.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-50477-6</identifier><identifier>PMID: 31586141</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/62 ; 142/126 ; 639/301/357/551 ; 639/301/923/1028 ; 639/301/930/1032 ; Composite materials ; Drug delivery ; Electrical conductivity ; Fabrication ; Fibers ; Humanities and Social Sciences ; Magnetic properties ; Microfluidics ; multidisciplinary ; Nanocomposites ; Polymers ; Science ; Science (multidisciplinary) ; Textiles</subject><ispartof>Scientific reports, 2019-10, Vol.9 (1), p.14297-10, Article 14297</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-4fd2ea57296b3586a5f2203efaab3ac69bbb1d6cd0879e7db1123a9f239f8cbe3</citedby><cites>FETCH-LOGICAL-c474t-4fd2ea57296b3586a5f2203efaab3ac69bbb1d6cd0879e7db1123a9f239f8cbe3</cites><orcidid>0000-0001-9123-2437 ; 0000-0001-9776-0177 ; 0000-0002-3770-6344 ; 0000-0001-8278-5865 ; 0000-0002-6318-7306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778068/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778068/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31586141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasireddi, Ramakrishna</creatorcontrib><creatorcontrib>Kruse, Joscha</creatorcontrib><creatorcontrib>Vakili, Mohammad</creatorcontrib><creatorcontrib>Kulkarni, Satishkumar</creatorcontrib><creatorcontrib>Keller, Thomas F.</creatorcontrib><creatorcontrib>Monteiro, Diana C. F.</creatorcontrib><creatorcontrib>Trebbin, Martin</creatorcontrib><title>Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Uniform endless fibers are ubiquitous and their applications range from functional textiles over biomedical engineering to high-performance filtering and drug delivery systems. Here, we report a new method for the direct, reproducible fabrication of uniform polymer and composite micro-/nanofibers using a microfluidic gas flow focusing nozzle (Gas Dynamic Virtual Nozzle (GDVN)) relinquishing the need for external fiber pulling mechanisms. Compared to other methods, this technique is inexpensive, user-friendly and permits precise fiber diameter control (~250 nm to ~15 µm), high production rate (m/s-range) and direct fiber deposition without clogging due to stable, gas-focused jetting. Control over shape (flat or round) and surface patterning are achieved by simply tuning the air pressure and polymer concentration. The main thinning process happens after the polymer exits the device and is, therefore, mostly independent of the nozzle’s internal geometry. Nevertheless, the lithography-based device design is versatile, allowing for precise flow-field control for operation stability as well as particle alignment control. As an example, we demonstrate the successful production of endless hematite nanocomposite fibers which highlights this technology’s exciting possibilities that can lead to the fabrication of multifunctional/stimuli-responsive fibers with thermal and electrical conductivity, magnetic properties and enhanced mechanical stability.</description><subject>101/62</subject><subject>142/126</subject><subject>639/301/357/551</subject><subject>639/301/923/1028</subject><subject>639/301/930/1032</subject><subject>Composite materials</subject><subject>Drug delivery</subject><subject>Electrical conductivity</subject><subject>Fabrication</subject><subject>Fibers</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic properties</subject><subject>Microfluidics</subject><subject>multidisciplinary</subject><subject>Nanocomposites</subject><subject>Polymers</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Textiles</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1u1TAQhSMEolXpC7BAltiwCfVvEm-QUFV-pEosgLU1TuxcV44d7KTV7TPw0Di9pRQWeGNr5ptjH5-qeknwW4JZd5Y5EbKrMZG1wLxt6-ZJdUwxFzVllD59dD6qTnO-wmUJKjmRz6sjRkTXEE6Oq59fo18XFwPSPt6gPLsQXBhRtGiOfj-ZdBYgxD5Oc8xuMWhyfYr1XdE6bVJGN27ZoWUNoL1Bg4PJLFsZwoCmmOZd9HF0JqM1b8KARsho2AcoSujapWUFj0K8vfXmRfXMgs_m9H4_qb5_uPh2_qm-_PLx8_n7y7rnLV9qbgdqQLRUNpoVIyAspZgZC6AZ9I3UWpOh6QfctdK0gyaEMpCWMmm7Xht2Ur076M6rnszQm7Ak8GpOboK0VxGc-rsT3E6N8Vo1bdvhpisCb-4FUvyxmryoyeXeeA_BxDUryjDhnAqyoa__Qa_imkKxt1FYCsFFWyh6oMrn5pyMfXgMwWrLWx3yViVvdZe3asrQq8c2HkZ-p1sAdgByaYXRpD93_0f2F8WPuw8</recordid><startdate>20191004</startdate><enddate>20191004</enddate><creator>Vasireddi, Ramakrishna</creator><creator>Kruse, Joscha</creator><creator>Vakili, Mohammad</creator><creator>Kulkarni, Satishkumar</creator><creator>Keller, Thomas F.</creator><creator>Monteiro, Diana C. F.</creator><creator>Trebbin, Martin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9123-2437</orcidid><orcidid>https://orcid.org/0000-0001-9776-0177</orcidid><orcidid>https://orcid.org/0000-0002-3770-6344</orcidid><orcidid>https://orcid.org/0000-0001-8278-5865</orcidid><orcidid>https://orcid.org/0000-0002-6318-7306</orcidid></search><sort><creationdate>20191004</creationdate><title>Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle</title><author>Vasireddi, Ramakrishna ; Kruse, Joscha ; Vakili, Mohammad ; Kulkarni, Satishkumar ; Keller, Thomas F. ; Monteiro, Diana C. F. ; Trebbin, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-4fd2ea57296b3586a5f2203efaab3ac69bbb1d6cd0879e7db1123a9f239f8cbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>101/62</topic><topic>142/126</topic><topic>639/301/357/551</topic><topic>639/301/923/1028</topic><topic>639/301/930/1032</topic><topic>Composite materials</topic><topic>Drug delivery</topic><topic>Electrical conductivity</topic><topic>Fabrication</topic><topic>Fibers</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic properties</topic><topic>Microfluidics</topic><topic>multidisciplinary</topic><topic>Nanocomposites</topic><topic>Polymers</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Textiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasireddi, Ramakrishna</creatorcontrib><creatorcontrib>Kruse, Joscha</creatorcontrib><creatorcontrib>Vakili, Mohammad</creatorcontrib><creatorcontrib>Kulkarni, Satishkumar</creatorcontrib><creatorcontrib>Keller, Thomas F.</creatorcontrib><creatorcontrib>Monteiro, Diana C. F.</creatorcontrib><creatorcontrib>Trebbin, Martin</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasireddi, Ramakrishna</au><au>Kruse, Joscha</au><au>Vakili, Mohammad</au><au>Kulkarni, Satishkumar</au><au>Keller, Thomas F.</au><au>Monteiro, Diana C. F.</au><au>Trebbin, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-10-04</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>14297</spage><epage>10</epage><pages>14297-10</pages><artnum>14297</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Uniform endless fibers are ubiquitous and their applications range from functional textiles over biomedical engineering to high-performance filtering and drug delivery systems. Here, we report a new method for the direct, reproducible fabrication of uniform polymer and composite micro-/nanofibers using a microfluidic gas flow focusing nozzle (Gas Dynamic Virtual Nozzle (GDVN)) relinquishing the need for external fiber pulling mechanisms. Compared to other methods, this technique is inexpensive, user-friendly and permits precise fiber diameter control (~250 nm to ~15 µm), high production rate (m/s-range) and direct fiber deposition without clogging due to stable, gas-focused jetting. Control over shape (flat or round) and surface patterning are achieved by simply tuning the air pressure and polymer concentration. The main thinning process happens after the polymer exits the device and is, therefore, mostly independent of the nozzle’s internal geometry. Nevertheless, the lithography-based device design is versatile, allowing for precise flow-field control for operation stability as well as particle alignment control. As an example, we demonstrate the successful production of endless hematite nanocomposite fibers which highlights this technology’s exciting possibilities that can lead to the fabrication of multifunctional/stimuli-responsive fibers with thermal and electrical conductivity, magnetic properties and enhanced mechanical stability.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31586141</pmid><doi>10.1038/s41598-019-50477-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9123-2437</orcidid><orcidid>https://orcid.org/0000-0001-9776-0177</orcidid><orcidid>https://orcid.org/0000-0002-3770-6344</orcidid><orcidid>https://orcid.org/0000-0001-8278-5865</orcidid><orcidid>https://orcid.org/0000-0002-6318-7306</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-10, Vol.9 (1), p.14297-10, Article 14297
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6778068
source Nature Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 101/62
142/126
639/301/357/551
639/301/923/1028
639/301/930/1032
Composite materials
Drug delivery
Electrical conductivity
Fabrication
Fibers
Humanities and Social Sciences
Magnetic properties
Microfluidics
multidisciplinary
Nanocomposites
Polymers
Science
Science (multidisciplinary)
Textiles
title Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20blow%20spinning%20of%20polymer/nanocomposite%20micro-/nanofibers%20with%20tunable%20diameters%20and%20morphologies%20using%20a%20gas%20dynamic%20virtual%20nozzle&rft.jtitle=Scientific%20reports&rft.au=Vasireddi,%20Ramakrishna&rft.date=2019-10-04&rft.volume=9&rft.issue=1&rft.spage=14297&rft.epage=10&rft.pages=14297-10&rft.artnum=14297&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-50477-6&rft_dat=%3Cproquest_pubme%3E2300955457%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300955457&rft_id=info:pmid/31586141&rfr_iscdi=true