Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites
Carbon nanomaterials are used to improve electrodes for neurotransmitter detection, but what properties are important for maximizing those effects? In this work, we compare a newer form of graphene, carbon nanospikes (CNSs), with carbon nanotubes (CNTs) grown on wires and carbon fibers (CFs). CNS el...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2019-12, Vol.155 (C), p.250-257 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 257 |
---|---|
container_issue | C |
container_start_page | 250 |
container_title | Carbon (New York) |
container_volume | 155 |
creator | Cao, Qun Hensley, Dale K. Lavrik, Nickolay V. Venton, B. Jill |
description | Carbon nanomaterials are used to improve electrodes for neurotransmitter detection, but what properties are important for maximizing those effects? In this work, we compare a newer form of graphene, carbon nanospikes (CNSs), with carbon nanotubes (CNTs) grown on wires and carbon fibers (CFs). CNS electrodes have a short, dense, defect-filled surface that produces remarkable electrochemical properties, much better than CNTs or CFs. The CNS surface roughness is 5.5 times greater than glassy carbon, while CNTs enhance roughness only 1.8-fold. D/G ratios are higher for CNS electrodes than CNT electrodes, an indication of more defect sites. For cyclic voltammetry of dopamine and ferricyanide, CNSs have both higher currents and smaller ΔEp values than CNTs and CFs. CNS electrodes also have a very low resistance to charge transfer. With fast-scan cyclic voltammetry (FSCV), CNS electrodes have enhanced current density for dopamine and cationic neurotransmitters due to increased adsorption to edge plane sites. This study establishes that not all carbon nanomaterials are equally advantageous for dopamine electrochemistry, but that short, dense nanomaterials that add defect sites provide improved current and electron transfer. CNSs are simple to mass fabricate on a variety of substrates and thus could be a favorable material for neurotransmitter sensing.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2019.08.064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6777722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622319308747</els_id><sourcerecordid>2318637767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-ec89dcdf52d9c141f75cc88fd8de2eb3e0559c14bfab29e21cedf72daa5788d23</originalsourceid><addsrcrecordid>eNp9Uk2PFCEQJUbjjqv_wBiil710C_QXfTExE1dNNvGiZ0IX1dOMPTACPYk3f7q0s-6qB7nwUe-9qlcUIc85Kznj7et9CToM3pWC8b5ksmRt_YBsuOyqopI9f0g2jDFZtEJUF-RJjPt8rSWvH5OLijcyn9oN-bH9JUKddj4e7VeMdNInpAOmhIHijJCChwkPFvRMj8EfMSSbYWnSjsI9Oy1DfjUL0uTpLqBe-XEJowakwS-7yWGMVDtDDY5ZlkabMD4lj0Y9R3x2u1-SL9fvPm8_FDef3n_cvr0poOEyFQiyN2DGRpgeeM3HrgGQcjTSoMChQtY0a2AY9SB6FBzQjJ0wWjedlEZUl-TNWfe4DAc0gC4FPatjsAcdviuvrfo74uykdv6k2i4vsQq8PAv4mKyKkIuHCbxz2YriTcuqXmbQ1W2W4L8tGJM62Ag4z9qhX6ISFeNSMtGwDH31D3Tvl-ByDzKKy7bqurbLqPqMguBjDDjeVcyZWudA7dX5E9Q6B4pJlecg01786faO9Pvj79uBuecni2F1hC53zYbVkPH2_xl-AsrEymQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2318637767</pqid></control><display><type>article</type><title>Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cao, Qun ; Hensley, Dale K. ; Lavrik, Nickolay V. ; Venton, B. Jill</creator><creatorcontrib>Cao, Qun ; Hensley, Dale K. ; Lavrik, Nickolay V. ; Venton, B. Jill ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Carbon nanomaterials are used to improve electrodes for neurotransmitter detection, but what properties are important for maximizing those effects? In this work, we compare a newer form of graphene, carbon nanospikes (CNSs), with carbon nanotubes (CNTs) grown on wires and carbon fibers (CFs). CNS electrodes have a short, dense, defect-filled surface that produces remarkable electrochemical properties, much better than CNTs or CFs. The CNS surface roughness is 5.5 times greater than glassy carbon, while CNTs enhance roughness only 1.8-fold. D/G ratios are higher for CNS electrodes than CNT electrodes, an indication of more defect sites. For cyclic voltammetry of dopamine and ferricyanide, CNSs have both higher currents and smaller ΔEp values than CNTs and CFs. CNS electrodes also have a very low resistance to charge transfer. With fast-scan cyclic voltammetry (FSCV), CNS electrodes have enhanced current density for dopamine and cationic neurotransmitters due to increased adsorption to edge plane sites. This study establishes that not all carbon nanomaterials are equally advantageous for dopamine electrochemistry, but that short, dense nanomaterials that add defect sites provide improved current and electron transfer. CNSs are simple to mass fabricate on a variety of substrates and thus could be a favorable material for neurotransmitter sensing.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2019.08.064</identifier><identifier>PMID: 31588146</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Carbon ; Carbon fibers ; Carbon nanotubes ; Charge transfer ; Dopamine ; Electrochemical analysis ; Electrochemistry ; Electrodes ; Electron transfer ; Glassy carbon ; Graphene ; Low resistance ; MATERIALS SCIENCE ; Nanomaterials ; Nanotubes ; Neurotransmitters ; Properties (attributes) ; Substrates ; Surface roughness ; Voltammetry</subject><ispartof>Carbon (New York), 2019-12, Vol.155 (C), p.250-257</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-ec89dcdf52d9c141f75cc88fd8de2eb3e0559c14bfab29e21cedf72daa5788d23</citedby><cites>FETCH-LOGICAL-c518t-ec89dcdf52d9c141f75cc88fd8de2eb3e0559c14bfab29e21cedf72daa5788d23</cites><orcidid>0000-0002-5096-9309 ; 0000-0002-6167-2455 ; 0000000295435634 ; 0000000187637765 ; 0000000250969309 ; 0000000261672455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2019.08.064$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31588146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1560398$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Qun</creatorcontrib><creatorcontrib>Hensley, Dale K.</creatorcontrib><creatorcontrib>Lavrik, Nickolay V.</creatorcontrib><creatorcontrib>Venton, B. Jill</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites</title><title>Carbon (New York)</title><addtitle>Carbon N Y</addtitle><description>Carbon nanomaterials are used to improve electrodes for neurotransmitter detection, but what properties are important for maximizing those effects? In this work, we compare a newer form of graphene, carbon nanospikes (CNSs), with carbon nanotubes (CNTs) grown on wires and carbon fibers (CFs). CNS electrodes have a short, dense, defect-filled surface that produces remarkable electrochemical properties, much better than CNTs or CFs. The CNS surface roughness is 5.5 times greater than glassy carbon, while CNTs enhance roughness only 1.8-fold. D/G ratios are higher for CNS electrodes than CNT electrodes, an indication of more defect sites. For cyclic voltammetry of dopamine and ferricyanide, CNSs have both higher currents and smaller ΔEp values than CNTs and CFs. CNS electrodes also have a very low resistance to charge transfer. With fast-scan cyclic voltammetry (FSCV), CNS electrodes have enhanced current density for dopamine and cationic neurotransmitters due to increased adsorption to edge plane sites. This study establishes that not all carbon nanomaterials are equally advantageous for dopamine electrochemistry, but that short, dense nanomaterials that add defect sites provide improved current and electron transfer. CNSs are simple to mass fabricate on a variety of substrates and thus could be a favorable material for neurotransmitter sensing.
[Display omitted]</description><subject>Carbon</subject><subject>Carbon fibers</subject><subject>Carbon nanotubes</subject><subject>Charge transfer</subject><subject>Dopamine</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Glassy carbon</subject><subject>Graphene</subject><subject>Low resistance</subject><subject>MATERIALS SCIENCE</subject><subject>Nanomaterials</subject><subject>Nanotubes</subject><subject>Neurotransmitters</subject><subject>Properties (attributes)</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Voltammetry</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9Uk2PFCEQJUbjjqv_wBiil710C_QXfTExE1dNNvGiZ0IX1dOMPTACPYk3f7q0s-6qB7nwUe-9qlcUIc85Kznj7et9CToM3pWC8b5ksmRt_YBsuOyqopI9f0g2jDFZtEJUF-RJjPt8rSWvH5OLijcyn9oN-bH9JUKddj4e7VeMdNInpAOmhIHijJCChwkPFvRMj8EfMSSbYWnSjsI9Oy1DfjUL0uTpLqBe-XEJowakwS-7yWGMVDtDDY5ZlkabMD4lj0Y9R3x2u1-SL9fvPm8_FDef3n_cvr0poOEyFQiyN2DGRpgeeM3HrgGQcjTSoMChQtY0a2AY9SB6FBzQjJ0wWjedlEZUl-TNWfe4DAc0gC4FPatjsAcdviuvrfo74uykdv6k2i4vsQq8PAv4mKyKkIuHCbxz2YriTcuqXmbQ1W2W4L8tGJM62Ag4z9qhX6ISFeNSMtGwDH31D3Tvl-ByDzKKy7bqurbLqPqMguBjDDjeVcyZWudA7dX5E9Q6B4pJlecg01786faO9Pvj79uBuecni2F1hC53zYbVkPH2_xl-AsrEymQ</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Cao, Qun</creator><creator>Hensley, Dale K.</creator><creator>Lavrik, Nickolay V.</creator><creator>Venton, B. Jill</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5096-9309</orcidid><orcidid>https://orcid.org/0000-0002-6167-2455</orcidid><orcidid>https://orcid.org/0000000295435634</orcidid><orcidid>https://orcid.org/0000000187637765</orcidid><orcidid>https://orcid.org/0000000250969309</orcidid><orcidid>https://orcid.org/0000000261672455</orcidid></search><sort><creationdate>20191201</creationdate><title>Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites</title><author>Cao, Qun ; Hensley, Dale K. ; Lavrik, Nickolay V. ; Venton, B. Jill</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-ec89dcdf52d9c141f75cc88fd8de2eb3e0559c14bfab29e21cedf72daa5788d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Carbon fibers</topic><topic>Carbon nanotubes</topic><topic>Charge transfer</topic><topic>Dopamine</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Glassy carbon</topic><topic>Graphene</topic><topic>Low resistance</topic><topic>MATERIALS SCIENCE</topic><topic>Nanomaterials</topic><topic>Nanotubes</topic><topic>Neurotransmitters</topic><topic>Properties (attributes)</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Qun</creatorcontrib><creatorcontrib>Hensley, Dale K.</creatorcontrib><creatorcontrib>Lavrik, Nickolay V.</creatorcontrib><creatorcontrib>Venton, B. Jill</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Qun</au><au>Hensley, Dale K.</au><au>Lavrik, Nickolay V.</au><au>Venton, B. Jill</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites</atitle><jtitle>Carbon (New York)</jtitle><addtitle>Carbon N Y</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>155</volume><issue>C</issue><spage>250</spage><epage>257</epage><pages>250-257</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Carbon nanomaterials are used to improve electrodes for neurotransmitter detection, but what properties are important for maximizing those effects? In this work, we compare a newer form of graphene, carbon nanospikes (CNSs), with carbon nanotubes (CNTs) grown on wires and carbon fibers (CFs). CNS electrodes have a short, dense, defect-filled surface that produces remarkable electrochemical properties, much better than CNTs or CFs. The CNS surface roughness is 5.5 times greater than glassy carbon, while CNTs enhance roughness only 1.8-fold. D/G ratios are higher for CNS electrodes than CNT electrodes, an indication of more defect sites. For cyclic voltammetry of dopamine and ferricyanide, CNSs have both higher currents and smaller ΔEp values than CNTs and CFs. CNS electrodes also have a very low resistance to charge transfer. With fast-scan cyclic voltammetry (FSCV), CNS electrodes have enhanced current density for dopamine and cationic neurotransmitters due to increased adsorption to edge plane sites. This study establishes that not all carbon nanomaterials are equally advantageous for dopamine electrochemistry, but that short, dense nanomaterials that add defect sites provide improved current and electron transfer. CNSs are simple to mass fabricate on a variety of substrates and thus could be a favorable material for neurotransmitter sensing.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>31588146</pmid><doi>10.1016/j.carbon.2019.08.064</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5096-9309</orcidid><orcidid>https://orcid.org/0000-0002-6167-2455</orcidid><orcidid>https://orcid.org/0000000295435634</orcidid><orcidid>https://orcid.org/0000000187637765</orcidid><orcidid>https://orcid.org/0000000250969309</orcidid><orcidid>https://orcid.org/0000000261672455</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2019-12, Vol.155 (C), p.250-257 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6777722 |
source | Access via ScienceDirect (Elsevier) |
subjects | Carbon Carbon fibers Carbon nanotubes Charge transfer Dopamine Electrochemical analysis Electrochemistry Electrodes Electron transfer Glassy carbon Graphene Low resistance MATERIALS SCIENCE Nanomaterials Nanotubes Neurotransmitters Properties (attributes) Substrates Surface roughness Voltammetry |
title | Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T00%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanospikes%20have%20better%20electrochemical%20properties%20than%20carbon%20nanotubes%20due%20to%20greater%20surface%20roughness%20and%20defect%20sites&rft.jtitle=Carbon%20(New%20York)&rft.au=Cao,%20Qun&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-12-01&rft.volume=155&rft.issue=C&rft.spage=250&rft.epage=257&rft.pages=250-257&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2019.08.064&rft_dat=%3Cproquest_pubme%3E2318637767%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2318637767&rft_id=info:pmid/31588146&rft_els_id=S0008622319308747&rfr_iscdi=true |