Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites

Carbon nanomaterials are used to improve electrodes for neurotransmitter detection, but what properties are important for maximizing those effects? In this work, we compare a newer form of graphene, carbon nanospikes (CNSs), with carbon nanotubes (CNTs) grown on wires and carbon fibers (CFs). CNS el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2019-12, Vol.155 (C), p.250-257
Hauptverfasser: Cao, Qun, Hensley, Dale K., Lavrik, Nickolay V., Venton, B. Jill
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue C
container_start_page 250
container_title Carbon (New York)
container_volume 155
creator Cao, Qun
Hensley, Dale K.
Lavrik, Nickolay V.
Venton, B. Jill
description Carbon nanomaterials are used to improve electrodes for neurotransmitter detection, but what properties are important for maximizing those effects? In this work, we compare a newer form of graphene, carbon nanospikes (CNSs), with carbon nanotubes (CNTs) grown on wires and carbon fibers (CFs). CNS electrodes have a short, dense, defect-filled surface that produces remarkable electrochemical properties, much better than CNTs or CFs. The CNS surface roughness is 5.5 times greater than glassy carbon, while CNTs enhance roughness only 1.8-fold. D/G ratios are higher for CNS electrodes than CNT electrodes, an indication of more defect sites. For cyclic voltammetry of dopamine and ferricyanide, CNSs have both higher currents and smaller ΔEp values than CNTs and CFs. CNS electrodes also have a very low resistance to charge transfer. With fast-scan cyclic voltammetry (FSCV), CNS electrodes have enhanced current density for dopamine and cationic neurotransmitters due to increased adsorption to edge plane sites. This study establishes that not all carbon nanomaterials are equally advantageous for dopamine electrochemistry, but that short, dense nanomaterials that add defect sites provide improved current and electron transfer. CNSs are simple to mass fabricate on a variety of substrates and thus could be a favorable material for neurotransmitter sensing. [Display omitted]
doi_str_mv 10.1016/j.carbon.2019.08.064
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6777722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622319308747</els_id><sourcerecordid>2318637767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-ec89dcdf52d9c141f75cc88fd8de2eb3e0559c14bfab29e21cedf72daa5788d23</originalsourceid><addsrcrecordid>eNp9Uk2PFCEQJUbjjqv_wBiil710C_QXfTExE1dNNvGiZ0IX1dOMPTACPYk3f7q0s-6qB7nwUe-9qlcUIc85Kznj7et9CToM3pWC8b5ksmRt_YBsuOyqopI9f0g2jDFZtEJUF-RJjPt8rSWvH5OLijcyn9oN-bH9JUKddj4e7VeMdNInpAOmhIHijJCChwkPFvRMj8EfMSSbYWnSjsI9Oy1DfjUL0uTpLqBe-XEJowakwS-7yWGMVDtDDY5ZlkabMD4lj0Y9R3x2u1-SL9fvPm8_FDef3n_cvr0poOEyFQiyN2DGRpgeeM3HrgGQcjTSoMChQtY0a2AY9SB6FBzQjJ0wWjedlEZUl-TNWfe4DAc0gC4FPatjsAcdviuvrfo74uykdv6k2i4vsQq8PAv4mKyKkIuHCbxz2YriTcuqXmbQ1W2W4L8tGJM62Ag4z9qhX6ISFeNSMtGwDH31D3Tvl-ByDzKKy7bqurbLqPqMguBjDDjeVcyZWudA7dX5E9Q6B4pJlecg01786faO9Pvj79uBuecni2F1hC53zYbVkPH2_xl-AsrEymQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2318637767</pqid></control><display><type>article</type><title>Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cao, Qun ; Hensley, Dale K. ; Lavrik, Nickolay V. ; Venton, B. Jill</creator><creatorcontrib>Cao, Qun ; Hensley, Dale K. ; Lavrik, Nickolay V. ; Venton, B. Jill ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Carbon nanomaterials are used to improve electrodes for neurotransmitter detection, but what properties are important for maximizing those effects? In this work, we compare a newer form of graphene, carbon nanospikes (CNSs), with carbon nanotubes (CNTs) grown on wires and carbon fibers (CFs). CNS electrodes have a short, dense, defect-filled surface that produces remarkable electrochemical properties, much better than CNTs or CFs. The CNS surface roughness is 5.5 times greater than glassy carbon, while CNTs enhance roughness only 1.8-fold. D/G ratios are higher for CNS electrodes than CNT electrodes, an indication of more defect sites. For cyclic voltammetry of dopamine and ferricyanide, CNSs have both higher currents and smaller ΔEp values than CNTs and CFs. CNS electrodes also have a very low resistance to charge transfer. With fast-scan cyclic voltammetry (FSCV), CNS electrodes have enhanced current density for dopamine and cationic neurotransmitters due to increased adsorption to edge plane sites. This study establishes that not all carbon nanomaterials are equally advantageous for dopamine electrochemistry, but that short, dense nanomaterials that add defect sites provide improved current and electron transfer. CNSs are simple to mass fabricate on a variety of substrates and thus could be a favorable material for neurotransmitter sensing. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2019.08.064</identifier><identifier>PMID: 31588146</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Carbon ; Carbon fibers ; Carbon nanotubes ; Charge transfer ; Dopamine ; Electrochemical analysis ; Electrochemistry ; Electrodes ; Electron transfer ; Glassy carbon ; Graphene ; Low resistance ; MATERIALS SCIENCE ; Nanomaterials ; Nanotubes ; Neurotransmitters ; Properties (attributes) ; Substrates ; Surface roughness ; Voltammetry</subject><ispartof>Carbon (New York), 2019-12, Vol.155 (C), p.250-257</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Dec 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-ec89dcdf52d9c141f75cc88fd8de2eb3e0559c14bfab29e21cedf72daa5788d23</citedby><cites>FETCH-LOGICAL-c518t-ec89dcdf52d9c141f75cc88fd8de2eb3e0559c14bfab29e21cedf72daa5788d23</cites><orcidid>0000-0002-5096-9309 ; 0000-0002-6167-2455 ; 0000000295435634 ; 0000000187637765 ; 0000000250969309 ; 0000000261672455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2019.08.064$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31588146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1560398$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Qun</creatorcontrib><creatorcontrib>Hensley, Dale K.</creatorcontrib><creatorcontrib>Lavrik, Nickolay V.</creatorcontrib><creatorcontrib>Venton, B. Jill</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites</title><title>Carbon (New York)</title><addtitle>Carbon N Y</addtitle><description>Carbon nanomaterials are used to improve electrodes for neurotransmitter detection, but what properties are important for maximizing those effects? In this work, we compare a newer form of graphene, carbon nanospikes (CNSs), with carbon nanotubes (CNTs) grown on wires and carbon fibers (CFs). CNS electrodes have a short, dense, defect-filled surface that produces remarkable electrochemical properties, much better than CNTs or CFs. The CNS surface roughness is 5.5 times greater than glassy carbon, while CNTs enhance roughness only 1.8-fold. D/G ratios are higher for CNS electrodes than CNT electrodes, an indication of more defect sites. For cyclic voltammetry of dopamine and ferricyanide, CNSs have both higher currents and smaller ΔEp values than CNTs and CFs. CNS electrodes also have a very low resistance to charge transfer. With fast-scan cyclic voltammetry (FSCV), CNS electrodes have enhanced current density for dopamine and cationic neurotransmitters due to increased adsorption to edge plane sites. This study establishes that not all carbon nanomaterials are equally advantageous for dopamine electrochemistry, but that short, dense nanomaterials that add defect sites provide improved current and electron transfer. CNSs are simple to mass fabricate on a variety of substrates and thus could be a favorable material for neurotransmitter sensing. [Display omitted]</description><subject>Carbon</subject><subject>Carbon fibers</subject><subject>Carbon nanotubes</subject><subject>Charge transfer</subject><subject>Dopamine</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Glassy carbon</subject><subject>Graphene</subject><subject>Low resistance</subject><subject>MATERIALS SCIENCE</subject><subject>Nanomaterials</subject><subject>Nanotubes</subject><subject>Neurotransmitters</subject><subject>Properties (attributes)</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Voltammetry</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9Uk2PFCEQJUbjjqv_wBiil710C_QXfTExE1dNNvGiZ0IX1dOMPTACPYk3f7q0s-6qB7nwUe-9qlcUIc85Kznj7et9CToM3pWC8b5ksmRt_YBsuOyqopI9f0g2jDFZtEJUF-RJjPt8rSWvH5OLijcyn9oN-bH9JUKddj4e7VeMdNInpAOmhIHijJCChwkPFvRMj8EfMSSbYWnSjsI9Oy1DfjUL0uTpLqBe-XEJowakwS-7yWGMVDtDDY5ZlkabMD4lj0Y9R3x2u1-SL9fvPm8_FDef3n_cvr0poOEyFQiyN2DGRpgeeM3HrgGQcjTSoMChQtY0a2AY9SB6FBzQjJ0wWjedlEZUl-TNWfe4DAc0gC4FPatjsAcdviuvrfo74uykdv6k2i4vsQq8PAv4mKyKkIuHCbxz2YriTcuqXmbQ1W2W4L8tGJM62Ag4z9qhX6ISFeNSMtGwDH31D3Tvl-ByDzKKy7bqurbLqPqMguBjDDjeVcyZWudA7dX5E9Q6B4pJlecg01786faO9Pvj79uBuecni2F1hC53zYbVkPH2_xl-AsrEymQ</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Cao, Qun</creator><creator>Hensley, Dale K.</creator><creator>Lavrik, Nickolay V.</creator><creator>Venton, B. Jill</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5096-9309</orcidid><orcidid>https://orcid.org/0000-0002-6167-2455</orcidid><orcidid>https://orcid.org/0000000295435634</orcidid><orcidid>https://orcid.org/0000000187637765</orcidid><orcidid>https://orcid.org/0000000250969309</orcidid><orcidid>https://orcid.org/0000000261672455</orcidid></search><sort><creationdate>20191201</creationdate><title>Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites</title><author>Cao, Qun ; Hensley, Dale K. ; Lavrik, Nickolay V. ; Venton, B. Jill</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-ec89dcdf52d9c141f75cc88fd8de2eb3e0559c14bfab29e21cedf72daa5788d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Carbon fibers</topic><topic>Carbon nanotubes</topic><topic>Charge transfer</topic><topic>Dopamine</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Glassy carbon</topic><topic>Graphene</topic><topic>Low resistance</topic><topic>MATERIALS SCIENCE</topic><topic>Nanomaterials</topic><topic>Nanotubes</topic><topic>Neurotransmitters</topic><topic>Properties (attributes)</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Qun</creatorcontrib><creatorcontrib>Hensley, Dale K.</creatorcontrib><creatorcontrib>Lavrik, Nickolay V.</creatorcontrib><creatorcontrib>Venton, B. Jill</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Qun</au><au>Hensley, Dale K.</au><au>Lavrik, Nickolay V.</au><au>Venton, B. Jill</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites</atitle><jtitle>Carbon (New York)</jtitle><addtitle>Carbon N Y</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>155</volume><issue>C</issue><spage>250</spage><epage>257</epage><pages>250-257</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Carbon nanomaterials are used to improve electrodes for neurotransmitter detection, but what properties are important for maximizing those effects? In this work, we compare a newer form of graphene, carbon nanospikes (CNSs), with carbon nanotubes (CNTs) grown on wires and carbon fibers (CFs). CNS electrodes have a short, dense, defect-filled surface that produces remarkable electrochemical properties, much better than CNTs or CFs. The CNS surface roughness is 5.5 times greater than glassy carbon, while CNTs enhance roughness only 1.8-fold. D/G ratios are higher for CNS electrodes than CNT electrodes, an indication of more defect sites. For cyclic voltammetry of dopamine and ferricyanide, CNSs have both higher currents and smaller ΔEp values than CNTs and CFs. CNS electrodes also have a very low resistance to charge transfer. With fast-scan cyclic voltammetry (FSCV), CNS electrodes have enhanced current density for dopamine and cationic neurotransmitters due to increased adsorption to edge plane sites. This study establishes that not all carbon nanomaterials are equally advantageous for dopamine electrochemistry, but that short, dense nanomaterials that add defect sites provide improved current and electron transfer. CNSs are simple to mass fabricate on a variety of substrates and thus could be a favorable material for neurotransmitter sensing. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>31588146</pmid><doi>10.1016/j.carbon.2019.08.064</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5096-9309</orcidid><orcidid>https://orcid.org/0000-0002-6167-2455</orcidid><orcidid>https://orcid.org/0000000295435634</orcidid><orcidid>https://orcid.org/0000000187637765</orcidid><orcidid>https://orcid.org/0000000250969309</orcidid><orcidid>https://orcid.org/0000000261672455</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2019-12, Vol.155 (C), p.250-257
issn 0008-6223
1873-3891
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6777722
source Access via ScienceDirect (Elsevier)
subjects Carbon
Carbon fibers
Carbon nanotubes
Charge transfer
Dopamine
Electrochemical analysis
Electrochemistry
Electrodes
Electron transfer
Glassy carbon
Graphene
Low resistance
MATERIALS SCIENCE
Nanomaterials
Nanotubes
Neurotransmitters
Properties (attributes)
Substrates
Surface roughness
Voltammetry
title Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T00%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanospikes%20have%20better%20electrochemical%20properties%20than%20carbon%20nanotubes%20due%20to%20greater%20surface%20roughness%20and%20defect%20sites&rft.jtitle=Carbon%20(New%20York)&rft.au=Cao,%20Qun&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-12-01&rft.volume=155&rft.issue=C&rft.spage=250&rft.epage=257&rft.pages=250-257&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2019.08.064&rft_dat=%3Cproquest_pubme%3E2318637767%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2318637767&rft_id=info:pmid/31588146&rft_els_id=S0008622319308747&rfr_iscdi=true