Opportunities and challenges for transcriptome-wide association studies
Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and gene expression datasets to identify gene–trait associations. In this Perspective, we explore properties of TWAS as a potential approach to prioritize causal genes at GWAS loci, by using simulations an...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2019-04, Vol.51 (4), p.592-599 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 599 |
---|---|
container_issue | 4 |
container_start_page | 592 |
container_title | Nature genetics |
container_volume | 51 |
creator | Wainberg, Michael Sinnott-Armstrong, Nasa Mancuso, Nicholas Barbeira, Alvaro N. Knowles, David A. Golan, David Ermel, Raili Ruusalepp, Arno Quertermous, Thomas Hao, Ke Björkegren, Johan L. M. Im, Hae Kyung Pasaniuc, Bogdan Rivas, Manuel A. Kundaje, Anshul |
description | Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and gene expression datasets to identify gene–trait associations. In this Perspective, we explore properties of TWAS as a potential approach to prioritize causal genes at GWAS loci, by using simulations and case studies of literature-curated candidate causal genes for schizophrenia, low-density-lipoprotein cholesterol and Crohn’s disease. We explore risk loci where TWAS accurately prioritizes the likely causal gene as well as loci where TWAS prioritizes multiple genes, some likely to be non-causal, owing to sharing of expression quantitative trait loci (eQTL). TWAS is especially prone to spurious prioritization with expression data from non-trait-related tissues or cell types, owing to substantial cross-cell-type variation in expression levels and eQTL strengths. Nonetheless, TWAS prioritizes candidate causal genes more accurately than simple baselines. We suggest best practices for causal-gene prioritization with TWAS and discuss future opportunities for improvement. Our results showcase the strengths and limitations of using eQTL datasets to determine causal genes at GWAS loci.
Transcriptome-wide association studies (TWAS) prioritize candidate causal genes at GWAS loci. This Perspective discusses the challenges to TWAS analysis, caveats to interpretation of results and opportunities for improvements to this class of methods. |
doi_str_mv | 10.1038/s41588-019-0385-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6777347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2200783543</sourcerecordid><originalsourceid>FETCH-LOGICAL-p267t-1328de8bc49ac4d786dbfeb4e538e99b026e183470f12761990c1d42b77a494e3</originalsourceid><addsrcrecordid>eNpdkUlLBDEQhYMo7j_AizR48RKtLJ3lIoi4geBFzyHdndFIT9Im3Yr-ejOM-6lS1FePl3oI7RE4IsDUceakVgoD0bi0NX5fQZuk5gITSdRqeYMgmAMTG2gr5ycAwjmodbTBQFOhhdpEl7fDENM4BT96lysbuqp9tH3vwkNpZzFVY7Iht8kPY5w7_Oo7V9mcY-vt6GOo8jh1ZXMHrc1sn93uZ91G9xfnd2dX-Ob28vrs9AYPVMgRE0ZV51TTcm1b3kklumbmGu5qppzWDVDhiGJcwoxQKYjW0JKO00ZKyzV3bBudLHWHqZm7rnWh-OvNkPzcpjcTrTd_J8E_mof4YoSUsugWgcNPgRSfJ5dHM_e5dX1vg4tTNpQCSMVqzgp68A99ilMK5XsLSgCAEKRQ-78dfVv5unEB6BLIZVTOmn5kCJhFkGYZpClBmkWQ5p19ALMrj9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206000661</pqid></control><display><type>article</type><title>Opportunities and challenges for transcriptome-wide association studies</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Complete Journals</source><creator>Wainberg, Michael ; Sinnott-Armstrong, Nasa ; Mancuso, Nicholas ; Barbeira, Alvaro N. ; Knowles, David A. ; Golan, David ; Ermel, Raili ; Ruusalepp, Arno ; Quertermous, Thomas ; Hao, Ke ; Björkegren, Johan L. M. ; Im, Hae Kyung ; Pasaniuc, Bogdan ; Rivas, Manuel A. ; Kundaje, Anshul</creator><creatorcontrib>Wainberg, Michael ; Sinnott-Armstrong, Nasa ; Mancuso, Nicholas ; Barbeira, Alvaro N. ; Knowles, David A. ; Golan, David ; Ermel, Raili ; Ruusalepp, Arno ; Quertermous, Thomas ; Hao, Ke ; Björkegren, Johan L. M. ; Im, Hae Kyung ; Pasaniuc, Bogdan ; Rivas, Manuel A. ; Kundaje, Anshul</creatorcontrib><description>Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and gene expression datasets to identify gene–trait associations. In this Perspective, we explore properties of TWAS as a potential approach to prioritize causal genes at GWAS loci, by using simulations and case studies of literature-curated candidate causal genes for schizophrenia, low-density-lipoprotein cholesterol and Crohn’s disease. We explore risk loci where TWAS accurately prioritizes the likely causal gene as well as loci where TWAS prioritizes multiple genes, some likely to be non-causal, owing to sharing of expression quantitative trait loci (eQTL). TWAS is especially prone to spurious prioritization with expression data from non-trait-related tissues or cell types, owing to substantial cross-cell-type variation in expression levels and eQTL strengths. Nonetheless, TWAS prioritizes candidate causal genes more accurately than simple baselines. We suggest best practices for causal-gene prioritization with TWAS and discuss future opportunities for improvement. Our results showcase the strengths and limitations of using eQTL datasets to determine causal genes at GWAS loci.
Transcriptome-wide association studies (TWAS) prioritize candidate causal genes at GWAS loci. This Perspective discusses the challenges to TWAS analysis, caveats to interpretation of results and opportunities for improvements to this class of methods.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-019-0385-z</identifier><identifier>PMID: 30926968</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>38/39 ; 38/91 ; 45/43 ; 631/208 ; 631/208/212 ; Agriculture ; Animal Genetics and Genomics ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Causality ; Cholesterol ; Crohn Disease - genetics ; Crohn's disease ; Datasets ; Disease ; Gene expression ; Gene Function ; Gene loci ; Gene mapping ; Genes ; Genetic Predisposition to Disease - genetics ; Genetic Variation - genetics ; Genome-wide association studies ; Genome-Wide Association Study - methods ; Genomes ; Human Genetics ; Humans ; Lipoproteins, LDL - genetics ; Mental disorders ; Perspective ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Schizophrenia ; Schizophrenia - genetics ; Transcriptome - genetics</subject><ispartof>Nature genetics, 2019-04, Vol.51 (4), p.592-599</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>Copyright Nature Publishing Group Apr 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1945-7425 ; 0000-0003-1457-9925 ; 0000-0002-7408-146X ; 0000-0002-9352-5927 ; 0000-0002-0227-2056 ; 0000-0003-4490-0601 ; 0000-0003-3084-2287 ; 0000-0002-9153-6120 ; 0000-0003-0333-5685 ; 0000-0002-7645-9067 ; 0000-0002-1815-9197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-019-0385-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-019-0385-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30926968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wainberg, Michael</creatorcontrib><creatorcontrib>Sinnott-Armstrong, Nasa</creatorcontrib><creatorcontrib>Mancuso, Nicholas</creatorcontrib><creatorcontrib>Barbeira, Alvaro N.</creatorcontrib><creatorcontrib>Knowles, David A.</creatorcontrib><creatorcontrib>Golan, David</creatorcontrib><creatorcontrib>Ermel, Raili</creatorcontrib><creatorcontrib>Ruusalepp, Arno</creatorcontrib><creatorcontrib>Quertermous, Thomas</creatorcontrib><creatorcontrib>Hao, Ke</creatorcontrib><creatorcontrib>Björkegren, Johan L. M.</creatorcontrib><creatorcontrib>Im, Hae Kyung</creatorcontrib><creatorcontrib>Pasaniuc, Bogdan</creatorcontrib><creatorcontrib>Rivas, Manuel A.</creatorcontrib><creatorcontrib>Kundaje, Anshul</creatorcontrib><title>Opportunities and challenges for transcriptome-wide association studies</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and gene expression datasets to identify gene–trait associations. In this Perspective, we explore properties of TWAS as a potential approach to prioritize causal genes at GWAS loci, by using simulations and case studies of literature-curated candidate causal genes for schizophrenia, low-density-lipoprotein cholesterol and Crohn’s disease. We explore risk loci where TWAS accurately prioritizes the likely causal gene as well as loci where TWAS prioritizes multiple genes, some likely to be non-causal, owing to sharing of expression quantitative trait loci (eQTL). TWAS is especially prone to spurious prioritization with expression data from non-trait-related tissues or cell types, owing to substantial cross-cell-type variation in expression levels and eQTL strengths. Nonetheless, TWAS prioritizes candidate causal genes more accurately than simple baselines. We suggest best practices for causal-gene prioritization with TWAS and discuss future opportunities for improvement. Our results showcase the strengths and limitations of using eQTL datasets to determine causal genes at GWAS loci.
Transcriptome-wide association studies (TWAS) prioritize candidate causal genes at GWAS loci. This Perspective discusses the challenges to TWAS analysis, caveats to interpretation of results and opportunities for improvements to this class of methods.</description><subject>38/39</subject><subject>38/91</subject><subject>45/43</subject><subject>631/208</subject><subject>631/208/212</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Causality</subject><subject>Cholesterol</subject><subject>Crohn Disease - genetics</subject><subject>Crohn's disease</subject><subject>Datasets</subject><subject>Disease</subject><subject>Gene expression</subject><subject>Gene Function</subject><subject>Gene loci</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genetic Variation - genetics</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Lipoproteins, LDL - genetics</subject><subject>Mental disorders</subject><subject>Perspective</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Schizophrenia</subject><subject>Schizophrenia - genetics</subject><subject>Transcriptome - genetics</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUlLBDEQhYMo7j_AizR48RKtLJ3lIoi4geBFzyHdndFIT9Im3Yr-ejOM-6lS1FePl3oI7RE4IsDUceakVgoD0bi0NX5fQZuk5gITSdRqeYMgmAMTG2gr5ycAwjmodbTBQFOhhdpEl7fDENM4BT96lysbuqp9tH3vwkNpZzFVY7Iht8kPY5w7_Oo7V9mcY-vt6GOo8jh1ZXMHrc1sn93uZ91G9xfnd2dX-Ob28vrs9AYPVMgRE0ZV51TTcm1b3kklumbmGu5qppzWDVDhiGJcwoxQKYjW0JKO00ZKyzV3bBudLHWHqZm7rnWh-OvNkPzcpjcTrTd_J8E_mof4YoSUsugWgcNPgRSfJ5dHM_e5dX1vg4tTNpQCSMVqzgp68A99ilMK5XsLSgCAEKRQ-78dfVv5unEB6BLIZVTOmn5kCJhFkGYZpClBmkWQ5p19ALMrj9g</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Wainberg, Michael</creator><creator>Sinnott-Armstrong, Nasa</creator><creator>Mancuso, Nicholas</creator><creator>Barbeira, Alvaro N.</creator><creator>Knowles, David A.</creator><creator>Golan, David</creator><creator>Ermel, Raili</creator><creator>Ruusalepp, Arno</creator><creator>Quertermous, Thomas</creator><creator>Hao, Ke</creator><creator>Björkegren, Johan L. M.</creator><creator>Im, Hae Kyung</creator><creator>Pasaniuc, Bogdan</creator><creator>Rivas, Manuel A.</creator><creator>Kundaje, Anshul</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1945-7425</orcidid><orcidid>https://orcid.org/0000-0003-1457-9925</orcidid><orcidid>https://orcid.org/0000-0002-7408-146X</orcidid><orcidid>https://orcid.org/0000-0002-9352-5927</orcidid><orcidid>https://orcid.org/0000-0002-0227-2056</orcidid><orcidid>https://orcid.org/0000-0003-4490-0601</orcidid><orcidid>https://orcid.org/0000-0003-3084-2287</orcidid><orcidid>https://orcid.org/0000-0002-9153-6120</orcidid><orcidid>https://orcid.org/0000-0003-0333-5685</orcidid><orcidid>https://orcid.org/0000-0002-7645-9067</orcidid><orcidid>https://orcid.org/0000-0002-1815-9197</orcidid></search><sort><creationdate>20190401</creationdate><title>Opportunities and challenges for transcriptome-wide association studies</title><author>Wainberg, Michael ; Sinnott-Armstrong, Nasa ; Mancuso, Nicholas ; Barbeira, Alvaro N. ; Knowles, David A. ; Golan, David ; Ermel, Raili ; Ruusalepp, Arno ; Quertermous, Thomas ; Hao, Ke ; Björkegren, Johan L. M. ; Im, Hae Kyung ; Pasaniuc, Bogdan ; Rivas, Manuel A. ; Kundaje, Anshul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p267t-1328de8bc49ac4d786dbfeb4e538e99b026e183470f12761990c1d42b77a494e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>38/39</topic><topic>38/91</topic><topic>45/43</topic><topic>631/208</topic><topic>631/208/212</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Causality</topic><topic>Cholesterol</topic><topic>Crohn Disease - genetics</topic><topic>Crohn's disease</topic><topic>Datasets</topic><topic>Disease</topic><topic>Gene expression</topic><topic>Gene Function</topic><topic>Gene loci</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genetic Variation - genetics</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Lipoproteins, LDL - genetics</topic><topic>Mental disorders</topic><topic>Perspective</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Schizophrenia</topic><topic>Schizophrenia - genetics</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wainberg, Michael</creatorcontrib><creatorcontrib>Sinnott-Armstrong, Nasa</creatorcontrib><creatorcontrib>Mancuso, Nicholas</creatorcontrib><creatorcontrib>Barbeira, Alvaro N.</creatorcontrib><creatorcontrib>Knowles, David A.</creatorcontrib><creatorcontrib>Golan, David</creatorcontrib><creatorcontrib>Ermel, Raili</creatorcontrib><creatorcontrib>Ruusalepp, Arno</creatorcontrib><creatorcontrib>Quertermous, Thomas</creatorcontrib><creatorcontrib>Hao, Ke</creatorcontrib><creatorcontrib>Björkegren, Johan L. M.</creatorcontrib><creatorcontrib>Im, Hae Kyung</creatorcontrib><creatorcontrib>Pasaniuc, Bogdan</creatorcontrib><creatorcontrib>Rivas, Manuel A.</creatorcontrib><creatorcontrib>Kundaje, Anshul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wainberg, Michael</au><au>Sinnott-Armstrong, Nasa</au><au>Mancuso, Nicholas</au><au>Barbeira, Alvaro N.</au><au>Knowles, David A.</au><au>Golan, David</au><au>Ermel, Raili</au><au>Ruusalepp, Arno</au><au>Quertermous, Thomas</au><au>Hao, Ke</au><au>Björkegren, Johan L. M.</au><au>Im, Hae Kyung</au><au>Pasaniuc, Bogdan</au><au>Rivas, Manuel A.</au><au>Kundaje, Anshul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opportunities and challenges for transcriptome-wide association studies</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>51</volume><issue>4</issue><spage>592</spage><epage>599</epage><pages>592-599</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and gene expression datasets to identify gene–trait associations. In this Perspective, we explore properties of TWAS as a potential approach to prioritize causal genes at GWAS loci, by using simulations and case studies of literature-curated candidate causal genes for schizophrenia, low-density-lipoprotein cholesterol and Crohn’s disease. We explore risk loci where TWAS accurately prioritizes the likely causal gene as well as loci where TWAS prioritizes multiple genes, some likely to be non-causal, owing to sharing of expression quantitative trait loci (eQTL). TWAS is especially prone to spurious prioritization with expression data from non-trait-related tissues or cell types, owing to substantial cross-cell-type variation in expression levels and eQTL strengths. Nonetheless, TWAS prioritizes candidate causal genes more accurately than simple baselines. We suggest best practices for causal-gene prioritization with TWAS and discuss future opportunities for improvement. Our results showcase the strengths and limitations of using eQTL datasets to determine causal genes at GWAS loci.
Transcriptome-wide association studies (TWAS) prioritize candidate causal genes at GWAS loci. This Perspective discusses the challenges to TWAS analysis, caveats to interpretation of results and opportunities for improvements to this class of methods.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30926968</pmid><doi>10.1038/s41588-019-0385-z</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1945-7425</orcidid><orcidid>https://orcid.org/0000-0003-1457-9925</orcidid><orcidid>https://orcid.org/0000-0002-7408-146X</orcidid><orcidid>https://orcid.org/0000-0002-9352-5927</orcidid><orcidid>https://orcid.org/0000-0002-0227-2056</orcidid><orcidid>https://orcid.org/0000-0003-4490-0601</orcidid><orcidid>https://orcid.org/0000-0003-3084-2287</orcidid><orcidid>https://orcid.org/0000-0002-9153-6120</orcidid><orcidid>https://orcid.org/0000-0003-0333-5685</orcidid><orcidid>https://orcid.org/0000-0002-7645-9067</orcidid><orcidid>https://orcid.org/0000-0002-1815-9197</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2019-04, Vol.51 (4), p.592-599 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6777347 |
source | MEDLINE; Nature; SpringerNature Complete Journals |
subjects | 38/39 38/91 45/43 631/208 631/208/212 Agriculture Animal Genetics and Genomics Biomedical and Life Sciences Biomedicine Cancer Research Causality Cholesterol Crohn Disease - genetics Crohn's disease Datasets Disease Gene expression Gene Function Gene loci Gene mapping Genes Genetic Predisposition to Disease - genetics Genetic Variation - genetics Genome-wide association studies Genome-Wide Association Study - methods Genomes Human Genetics Humans Lipoproteins, LDL - genetics Mental disorders Perspective Quantitative trait loci Quantitative Trait Loci - genetics Schizophrenia Schizophrenia - genetics Transcriptome - genetics |
title | Opportunities and challenges for transcriptome-wide association studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opportunities%20and%20challenges%20for%20transcriptome-wide%20association%20studies&rft.jtitle=Nature%20genetics&rft.au=Wainberg,%20Michael&rft.date=2019-04-01&rft.volume=51&rft.issue=4&rft.spage=592&rft.epage=599&rft.pages=592-599&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-019-0385-z&rft_dat=%3Cproquest_pubme%3E2200783543%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206000661&rft_id=info:pmid/30926968&rfr_iscdi=true |