Opportunities and challenges for transcriptome-wide association studies

Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and gene expression datasets to identify gene–trait associations. In this Perspective, we explore properties of TWAS as a potential approach to prioritize causal genes at GWAS loci, by using simulations an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2019-04, Vol.51 (4), p.592-599
Hauptverfasser: Wainberg, Michael, Sinnott-Armstrong, Nasa, Mancuso, Nicholas, Barbeira, Alvaro N., Knowles, David A., Golan, David, Ermel, Raili, Ruusalepp, Arno, Quertermous, Thomas, Hao, Ke, Björkegren, Johan L. M., Im, Hae Kyung, Pasaniuc, Bogdan, Rivas, Manuel A., Kundaje, Anshul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 599
container_issue 4
container_start_page 592
container_title Nature genetics
container_volume 51
creator Wainberg, Michael
Sinnott-Armstrong, Nasa
Mancuso, Nicholas
Barbeira, Alvaro N.
Knowles, David A.
Golan, David
Ermel, Raili
Ruusalepp, Arno
Quertermous, Thomas
Hao, Ke
Björkegren, Johan L. M.
Im, Hae Kyung
Pasaniuc, Bogdan
Rivas, Manuel A.
Kundaje, Anshul
description Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and gene expression datasets to identify gene–trait associations. In this Perspective, we explore properties of TWAS as a potential approach to prioritize causal genes at GWAS loci, by using simulations and case studies of literature-curated candidate causal genes for schizophrenia, low-density-lipoprotein cholesterol and Crohn’s disease. We explore risk loci where TWAS accurately prioritizes the likely causal gene as well as loci where TWAS prioritizes multiple genes, some likely to be non-causal, owing to sharing of expression quantitative trait loci (eQTL). TWAS is especially prone to spurious prioritization with expression data from non-trait-related tissues or cell types, owing to substantial cross-cell-type variation in expression levels and eQTL strengths. Nonetheless, TWAS prioritizes candidate causal genes more accurately than simple baselines. We suggest best practices for causal-gene prioritization with TWAS and discuss future opportunities for improvement. Our results showcase the strengths and limitations of using eQTL datasets to determine causal genes at GWAS loci. Transcriptome-wide association studies (TWAS) prioritize candidate causal genes at GWAS loci. This Perspective discusses the challenges to TWAS analysis, caveats to interpretation of results and opportunities for improvements to this class of methods.
doi_str_mv 10.1038/s41588-019-0385-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6777347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2200783543</sourcerecordid><originalsourceid>FETCH-LOGICAL-p267t-1328de8bc49ac4d786dbfeb4e538e99b026e183470f12761990c1d42b77a494e3</originalsourceid><addsrcrecordid>eNpdkUlLBDEQhYMo7j_AizR48RKtLJ3lIoi4geBFzyHdndFIT9Im3Yr-ejOM-6lS1FePl3oI7RE4IsDUceakVgoD0bi0NX5fQZuk5gITSdRqeYMgmAMTG2gr5ycAwjmodbTBQFOhhdpEl7fDENM4BT96lysbuqp9tH3vwkNpZzFVY7Iht8kPY5w7_Oo7V9mcY-vt6GOo8jh1ZXMHrc1sn93uZ91G9xfnd2dX-Ob28vrs9AYPVMgRE0ZV51TTcm1b3kklumbmGu5qppzWDVDhiGJcwoxQKYjW0JKO00ZKyzV3bBudLHWHqZm7rnWh-OvNkPzcpjcTrTd_J8E_mof4YoSUsugWgcNPgRSfJ5dHM_e5dX1vg4tTNpQCSMVqzgp68A99ilMK5XsLSgCAEKRQ-78dfVv5unEB6BLIZVTOmn5kCJhFkGYZpClBmkWQ5p19ALMrj9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206000661</pqid></control><display><type>article</type><title>Opportunities and challenges for transcriptome-wide association studies</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Complete Journals</source><creator>Wainberg, Michael ; Sinnott-Armstrong, Nasa ; Mancuso, Nicholas ; Barbeira, Alvaro N. ; Knowles, David A. ; Golan, David ; Ermel, Raili ; Ruusalepp, Arno ; Quertermous, Thomas ; Hao, Ke ; Björkegren, Johan L. M. ; Im, Hae Kyung ; Pasaniuc, Bogdan ; Rivas, Manuel A. ; Kundaje, Anshul</creator><creatorcontrib>Wainberg, Michael ; Sinnott-Armstrong, Nasa ; Mancuso, Nicholas ; Barbeira, Alvaro N. ; Knowles, David A. ; Golan, David ; Ermel, Raili ; Ruusalepp, Arno ; Quertermous, Thomas ; Hao, Ke ; Björkegren, Johan L. M. ; Im, Hae Kyung ; Pasaniuc, Bogdan ; Rivas, Manuel A. ; Kundaje, Anshul</creatorcontrib><description>Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and gene expression datasets to identify gene–trait associations. In this Perspective, we explore properties of TWAS as a potential approach to prioritize causal genes at GWAS loci, by using simulations and case studies of literature-curated candidate causal genes for schizophrenia, low-density-lipoprotein cholesterol and Crohn’s disease. We explore risk loci where TWAS accurately prioritizes the likely causal gene as well as loci where TWAS prioritizes multiple genes, some likely to be non-causal, owing to sharing of expression quantitative trait loci (eQTL). TWAS is especially prone to spurious prioritization with expression data from non-trait-related tissues or cell types, owing to substantial cross-cell-type variation in expression levels and eQTL strengths. Nonetheless, TWAS prioritizes candidate causal genes more accurately than simple baselines. We suggest best practices for causal-gene prioritization with TWAS and discuss future opportunities for improvement. Our results showcase the strengths and limitations of using eQTL datasets to determine causal genes at GWAS loci. Transcriptome-wide association studies (TWAS) prioritize candidate causal genes at GWAS loci. This Perspective discusses the challenges to TWAS analysis, caveats to interpretation of results and opportunities for improvements to this class of methods.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-019-0385-z</identifier><identifier>PMID: 30926968</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>38/39 ; 38/91 ; 45/43 ; 631/208 ; 631/208/212 ; Agriculture ; Animal Genetics and Genomics ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Causality ; Cholesterol ; Crohn Disease - genetics ; Crohn's disease ; Datasets ; Disease ; Gene expression ; Gene Function ; Gene loci ; Gene mapping ; Genes ; Genetic Predisposition to Disease - genetics ; Genetic Variation - genetics ; Genome-wide association studies ; Genome-Wide Association Study - methods ; Genomes ; Human Genetics ; Humans ; Lipoproteins, LDL - genetics ; Mental disorders ; Perspective ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Schizophrenia ; Schizophrenia - genetics ; Transcriptome - genetics</subject><ispartof>Nature genetics, 2019-04, Vol.51 (4), p.592-599</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>Copyright Nature Publishing Group Apr 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1945-7425 ; 0000-0003-1457-9925 ; 0000-0002-7408-146X ; 0000-0002-9352-5927 ; 0000-0002-0227-2056 ; 0000-0003-4490-0601 ; 0000-0003-3084-2287 ; 0000-0002-9153-6120 ; 0000-0003-0333-5685 ; 0000-0002-7645-9067 ; 0000-0002-1815-9197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-019-0385-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-019-0385-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30926968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wainberg, Michael</creatorcontrib><creatorcontrib>Sinnott-Armstrong, Nasa</creatorcontrib><creatorcontrib>Mancuso, Nicholas</creatorcontrib><creatorcontrib>Barbeira, Alvaro N.</creatorcontrib><creatorcontrib>Knowles, David A.</creatorcontrib><creatorcontrib>Golan, David</creatorcontrib><creatorcontrib>Ermel, Raili</creatorcontrib><creatorcontrib>Ruusalepp, Arno</creatorcontrib><creatorcontrib>Quertermous, Thomas</creatorcontrib><creatorcontrib>Hao, Ke</creatorcontrib><creatorcontrib>Björkegren, Johan L. M.</creatorcontrib><creatorcontrib>Im, Hae Kyung</creatorcontrib><creatorcontrib>Pasaniuc, Bogdan</creatorcontrib><creatorcontrib>Rivas, Manuel A.</creatorcontrib><creatorcontrib>Kundaje, Anshul</creatorcontrib><title>Opportunities and challenges for transcriptome-wide association studies</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and gene expression datasets to identify gene–trait associations. In this Perspective, we explore properties of TWAS as a potential approach to prioritize causal genes at GWAS loci, by using simulations and case studies of literature-curated candidate causal genes for schizophrenia, low-density-lipoprotein cholesterol and Crohn’s disease. We explore risk loci where TWAS accurately prioritizes the likely causal gene as well as loci where TWAS prioritizes multiple genes, some likely to be non-causal, owing to sharing of expression quantitative trait loci (eQTL). TWAS is especially prone to spurious prioritization with expression data from non-trait-related tissues or cell types, owing to substantial cross-cell-type variation in expression levels and eQTL strengths. Nonetheless, TWAS prioritizes candidate causal genes more accurately than simple baselines. We suggest best practices for causal-gene prioritization with TWAS and discuss future opportunities for improvement. Our results showcase the strengths and limitations of using eQTL datasets to determine causal genes at GWAS loci. Transcriptome-wide association studies (TWAS) prioritize candidate causal genes at GWAS loci. This Perspective discusses the challenges to TWAS analysis, caveats to interpretation of results and opportunities for improvements to this class of methods.</description><subject>38/39</subject><subject>38/91</subject><subject>45/43</subject><subject>631/208</subject><subject>631/208/212</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Causality</subject><subject>Cholesterol</subject><subject>Crohn Disease - genetics</subject><subject>Crohn's disease</subject><subject>Datasets</subject><subject>Disease</subject><subject>Gene expression</subject><subject>Gene Function</subject><subject>Gene loci</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genetic Variation - genetics</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Lipoproteins, LDL - genetics</subject><subject>Mental disorders</subject><subject>Perspective</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Schizophrenia</subject><subject>Schizophrenia - genetics</subject><subject>Transcriptome - genetics</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUlLBDEQhYMo7j_AizR48RKtLJ3lIoi4geBFzyHdndFIT9Im3Yr-ejOM-6lS1FePl3oI7RE4IsDUceakVgoD0bi0NX5fQZuk5gITSdRqeYMgmAMTG2gr5ycAwjmodbTBQFOhhdpEl7fDENM4BT96lysbuqp9tH3vwkNpZzFVY7Iht8kPY5w7_Oo7V9mcY-vt6GOo8jh1ZXMHrc1sn93uZ91G9xfnd2dX-Ob28vrs9AYPVMgRE0ZV51TTcm1b3kklumbmGu5qppzWDVDhiGJcwoxQKYjW0JKO00ZKyzV3bBudLHWHqZm7rnWh-OvNkPzcpjcTrTd_J8E_mof4YoSUsugWgcNPgRSfJ5dHM_e5dX1vg4tTNpQCSMVqzgp68A99ilMK5XsLSgCAEKRQ-78dfVv5unEB6BLIZVTOmn5kCJhFkGYZpClBmkWQ5p19ALMrj9g</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Wainberg, Michael</creator><creator>Sinnott-Armstrong, Nasa</creator><creator>Mancuso, Nicholas</creator><creator>Barbeira, Alvaro N.</creator><creator>Knowles, David A.</creator><creator>Golan, David</creator><creator>Ermel, Raili</creator><creator>Ruusalepp, Arno</creator><creator>Quertermous, Thomas</creator><creator>Hao, Ke</creator><creator>Björkegren, Johan L. M.</creator><creator>Im, Hae Kyung</creator><creator>Pasaniuc, Bogdan</creator><creator>Rivas, Manuel A.</creator><creator>Kundaje, Anshul</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1945-7425</orcidid><orcidid>https://orcid.org/0000-0003-1457-9925</orcidid><orcidid>https://orcid.org/0000-0002-7408-146X</orcidid><orcidid>https://orcid.org/0000-0002-9352-5927</orcidid><orcidid>https://orcid.org/0000-0002-0227-2056</orcidid><orcidid>https://orcid.org/0000-0003-4490-0601</orcidid><orcidid>https://orcid.org/0000-0003-3084-2287</orcidid><orcidid>https://orcid.org/0000-0002-9153-6120</orcidid><orcidid>https://orcid.org/0000-0003-0333-5685</orcidid><orcidid>https://orcid.org/0000-0002-7645-9067</orcidid><orcidid>https://orcid.org/0000-0002-1815-9197</orcidid></search><sort><creationdate>20190401</creationdate><title>Opportunities and challenges for transcriptome-wide association studies</title><author>Wainberg, Michael ; Sinnott-Armstrong, Nasa ; Mancuso, Nicholas ; Barbeira, Alvaro N. ; Knowles, David A. ; Golan, David ; Ermel, Raili ; Ruusalepp, Arno ; Quertermous, Thomas ; Hao, Ke ; Björkegren, Johan L. M. ; Im, Hae Kyung ; Pasaniuc, Bogdan ; Rivas, Manuel A. ; Kundaje, Anshul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p267t-1328de8bc49ac4d786dbfeb4e538e99b026e183470f12761990c1d42b77a494e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>38/39</topic><topic>38/91</topic><topic>45/43</topic><topic>631/208</topic><topic>631/208/212</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Causality</topic><topic>Cholesterol</topic><topic>Crohn Disease - genetics</topic><topic>Crohn's disease</topic><topic>Datasets</topic><topic>Disease</topic><topic>Gene expression</topic><topic>Gene Function</topic><topic>Gene loci</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genetic Variation - genetics</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Lipoproteins, LDL - genetics</topic><topic>Mental disorders</topic><topic>Perspective</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Schizophrenia</topic><topic>Schizophrenia - genetics</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wainberg, Michael</creatorcontrib><creatorcontrib>Sinnott-Armstrong, Nasa</creatorcontrib><creatorcontrib>Mancuso, Nicholas</creatorcontrib><creatorcontrib>Barbeira, Alvaro N.</creatorcontrib><creatorcontrib>Knowles, David A.</creatorcontrib><creatorcontrib>Golan, David</creatorcontrib><creatorcontrib>Ermel, Raili</creatorcontrib><creatorcontrib>Ruusalepp, Arno</creatorcontrib><creatorcontrib>Quertermous, Thomas</creatorcontrib><creatorcontrib>Hao, Ke</creatorcontrib><creatorcontrib>Björkegren, Johan L. M.</creatorcontrib><creatorcontrib>Im, Hae Kyung</creatorcontrib><creatorcontrib>Pasaniuc, Bogdan</creatorcontrib><creatorcontrib>Rivas, Manuel A.</creatorcontrib><creatorcontrib>Kundaje, Anshul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wainberg, Michael</au><au>Sinnott-Armstrong, Nasa</au><au>Mancuso, Nicholas</au><au>Barbeira, Alvaro N.</au><au>Knowles, David A.</au><au>Golan, David</au><au>Ermel, Raili</au><au>Ruusalepp, Arno</au><au>Quertermous, Thomas</au><au>Hao, Ke</au><au>Björkegren, Johan L. M.</au><au>Im, Hae Kyung</au><au>Pasaniuc, Bogdan</au><au>Rivas, Manuel A.</au><au>Kundaje, Anshul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opportunities and challenges for transcriptome-wide association studies</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>51</volume><issue>4</issue><spage>592</spage><epage>599</epage><pages>592-599</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and gene expression datasets to identify gene–trait associations. In this Perspective, we explore properties of TWAS as a potential approach to prioritize causal genes at GWAS loci, by using simulations and case studies of literature-curated candidate causal genes for schizophrenia, low-density-lipoprotein cholesterol and Crohn’s disease. We explore risk loci where TWAS accurately prioritizes the likely causal gene as well as loci where TWAS prioritizes multiple genes, some likely to be non-causal, owing to sharing of expression quantitative trait loci (eQTL). TWAS is especially prone to spurious prioritization with expression data from non-trait-related tissues or cell types, owing to substantial cross-cell-type variation in expression levels and eQTL strengths. Nonetheless, TWAS prioritizes candidate causal genes more accurately than simple baselines. We suggest best practices for causal-gene prioritization with TWAS and discuss future opportunities for improvement. Our results showcase the strengths and limitations of using eQTL datasets to determine causal genes at GWAS loci. Transcriptome-wide association studies (TWAS) prioritize candidate causal genes at GWAS loci. This Perspective discusses the challenges to TWAS analysis, caveats to interpretation of results and opportunities for improvements to this class of methods.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30926968</pmid><doi>10.1038/s41588-019-0385-z</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1945-7425</orcidid><orcidid>https://orcid.org/0000-0003-1457-9925</orcidid><orcidid>https://orcid.org/0000-0002-7408-146X</orcidid><orcidid>https://orcid.org/0000-0002-9352-5927</orcidid><orcidid>https://orcid.org/0000-0002-0227-2056</orcidid><orcidid>https://orcid.org/0000-0003-4490-0601</orcidid><orcidid>https://orcid.org/0000-0003-3084-2287</orcidid><orcidid>https://orcid.org/0000-0002-9153-6120</orcidid><orcidid>https://orcid.org/0000-0003-0333-5685</orcidid><orcidid>https://orcid.org/0000-0002-7645-9067</orcidid><orcidid>https://orcid.org/0000-0002-1815-9197</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2019-04, Vol.51 (4), p.592-599
issn 1061-4036
1546-1718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6777347
source MEDLINE; Nature; SpringerNature Complete Journals
subjects 38/39
38/91
45/43
631/208
631/208/212
Agriculture
Animal Genetics and Genomics
Biomedical and Life Sciences
Biomedicine
Cancer Research
Causality
Cholesterol
Crohn Disease - genetics
Crohn's disease
Datasets
Disease
Gene expression
Gene Function
Gene loci
Gene mapping
Genes
Genetic Predisposition to Disease - genetics
Genetic Variation - genetics
Genome-wide association studies
Genome-Wide Association Study - methods
Genomes
Human Genetics
Humans
Lipoproteins, LDL - genetics
Mental disorders
Perspective
Quantitative trait loci
Quantitative Trait Loci - genetics
Schizophrenia
Schizophrenia - genetics
Transcriptome - genetics
title Opportunities and challenges for transcriptome-wide association studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opportunities%20and%20challenges%20for%20transcriptome-wide%20association%20studies&rft.jtitle=Nature%20genetics&rft.au=Wainberg,%20Michael&rft.date=2019-04-01&rft.volume=51&rft.issue=4&rft.spage=592&rft.epage=599&rft.pages=592-599&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-019-0385-z&rft_dat=%3Cproquest_pubme%3E2200783543%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206000661&rft_id=info:pmid/30926968&rfr_iscdi=true