Partially inserted nascent chain unzips the lateral gate of the Sec translocon

The Sec translocon provides the lipid bilayer entry for ribosome‐bound nascent chains and thus facilitates membrane protein biogenesis. Despite the appreciated role of the native environment in the translocon:ribosome assembly, structural information on the complex in the lipid membrane is scarce. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2019-10, Vol.20 (10), p.e48191-n/a
Hauptverfasser: Kater, Lukas, Frieg, Benedikt, Berninghausen, Otto, Gohlke, Holger, Beckmann, Roland, Kedrov, Alexej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page e48191
container_title EMBO reports
container_volume 20
creator Kater, Lukas
Frieg, Benedikt
Berninghausen, Otto
Gohlke, Holger
Beckmann, Roland
Kedrov, Alexej
description The Sec translocon provides the lipid bilayer entry for ribosome‐bound nascent chains and thus facilitates membrane protein biogenesis. Despite the appreciated role of the native environment in the translocon:ribosome assembly, structural information on the complex in the lipid membrane is scarce. Here, we present a cryo‐electron microscopy‐based structure of bacterial translocon SecYEG in lipid nanodiscs and elucidate an early intermediate state upon insertion of the FtsQ anchor domain. Insertion of the short nascent chain causes initial displacements within the lateral gate of the translocon, where α‐helices 2b, 7, and 8 tilt within the membrane core to “unzip” the gate at the cytoplasmic side. Molecular dynamics simulations demonstrate that the conformational change is reversed in the absence of the ribosome, and suggest that the accessory α‐helices of SecE subunit modulate the lateral gate conformation. Site‐specific cross‐linking validates that the FtsQ nascent chain passes the lateral gate upon insertion. The structure and the biochemical data suggest that the partially inserted nascent chain remains highly flexible until it acquires the transmembrane topology. Synopsis Cryo‐electron microscopy and atomistic simulations of SecYEG in the lipid environment reveal an early stage of membrane protein insertion. The flexible nascent chain triggers a conformational change that pre‐opens the translocon. The complete structure of SecYEG translocon in the lipid bilayer is resolved. The bound ribosome:nascent chain opens the lateral gate of SecYEG at the cytoplasmic side. Nascent transmembrane domains remain flexible at the early insertion stage. SecY:SecE interactions may modulate the lateral gate dynamics. Graphical Abstract Cryo‐electron microscopy and atomistic simulations of SecYEG in the lipid environment reveal an early stage of membrane protein insertion. The flexible nascent chain triggers a conformational change that pre‐opens the translocon.
doi_str_mv 10.15252/embr.201948191
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6776908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268573703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5791-3551ce2cae383fed8dcbd6cac61155fd9d579b214dba48cd874af05d2342ac363</originalsourceid><addsrcrecordid>eNqFkctvVCEYxUmjsQ9duzMk3biZlsflAi6a1KY-kqpNH4k7wgXuDA0DI9xrM_71Mp1xrCbG1Ufg952cwwHgJUZHmBFGjt28y0cEYdkILPEO2MNNKycUc_FkcyYEf90F-6XcIYSY5OIZ2KWYcok43QOfL3UevA5hCX0sLg_OwqiLcXGAZqZ9hGP84RcFDjMHgx5c1gFO64Spf7i7dgYOWccSkknxOXja61Dci808ALfvzm_OPkwuvrz_eHZ6MTGMSzyhjGHjiNGOCto7K6zpbGu0aTFmrLfSVqwjuLGdboSxgje6R8wS2hBtaEsPwMladzF2c2dXdqsxtch-rvNSJe3Vny_Rz9Q0fVct561Eogq83gjk9G10ZVBzX1OHoKNLY1GEtIJxyhGt6OFf6F0ac6zxFKH1S6mk7crR8ZoyOZWSXb81g5F66EqtulLbrurGq8cZtvyvcirwZg3c--CW_9NT55_eXj1WR-vlUvfi1OXfrv9l6Ccc5rJh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300539366</pqid></control><display><type>article</type><title>Partially inserted nascent chain unzips the lateral gate of the Sec translocon</title><source>MEDLINE</source><source>Springer Nature OA Free Journals</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Kater, Lukas ; Frieg, Benedikt ; Berninghausen, Otto ; Gohlke, Holger ; Beckmann, Roland ; Kedrov, Alexej</creator><creatorcontrib>Kater, Lukas ; Frieg, Benedikt ; Berninghausen, Otto ; Gohlke, Holger ; Beckmann, Roland ; Kedrov, Alexej</creatorcontrib><description>The Sec translocon provides the lipid bilayer entry for ribosome‐bound nascent chains and thus facilitates membrane protein biogenesis. Despite the appreciated role of the native environment in the translocon:ribosome assembly, structural information on the complex in the lipid membrane is scarce. Here, we present a cryo‐electron microscopy‐based structure of bacterial translocon SecYEG in lipid nanodiscs and elucidate an early intermediate state upon insertion of the FtsQ anchor domain. Insertion of the short nascent chain causes initial displacements within the lateral gate of the translocon, where α‐helices 2b, 7, and 8 tilt within the membrane core to “unzip” the gate at the cytoplasmic side. Molecular dynamics simulations demonstrate that the conformational change is reversed in the absence of the ribosome, and suggest that the accessory α‐helices of SecE subunit modulate the lateral gate conformation. Site‐specific cross‐linking validates that the FtsQ nascent chain passes the lateral gate upon insertion. The structure and the biochemical data suggest that the partially inserted nascent chain remains highly flexible until it acquires the transmembrane topology. Synopsis Cryo‐electron microscopy and atomistic simulations of SecYEG in the lipid environment reveal an early stage of membrane protein insertion. The flexible nascent chain triggers a conformational change that pre‐opens the translocon. The complete structure of SecYEG translocon in the lipid bilayer is resolved. The bound ribosome:nascent chain opens the lateral gate of SecYEG at the cytoplasmic side. Nascent transmembrane domains remain flexible at the early insertion stage. SecY:SecE interactions may modulate the lateral gate dynamics. Graphical Abstract Cryo‐electron microscopy and atomistic simulations of SecYEG in the lipid environment reveal an early stage of membrane protein insertion. The flexible nascent chain triggers a conformational change that pre‐opens the translocon.</description><identifier>ISSN: 1469-221X</identifier><identifier>ISSN: 1469-3178</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.201948191</identifier><identifier>PMID: 31379073</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Chains ; Cryoelectron Microscopy ; Domains ; Electron microscopy ; EMBO20 ; EMBO40 ; Escherichia coli - metabolism ; Fluorescent Dyes - metabolism ; Helices ; Insertion ; Lateral displacement ; Lipid bilayers ; Lipid Bilayers - metabolism ; Lipids ; membrane protein insertion ; Membrane proteins ; Membranes ; Microscopy ; Molecular conformation ; Molecular dynamics ; Molecular Dynamics Simulation ; nanodisc ; native environment ; Peptides - metabolism ; Protein Conformation ; Proteins ; reconstitution ; ribosome ; Ribosomes - metabolism ; SEC Translocation Channels - chemistry ; SEC Translocation Channels - metabolism ; SEC Translocation Channels - ultrastructure ; Topology ; Transmembrane domains</subject><ispartof>EMBO reports, 2019-10, Vol.20 (10), p.e48191-n/a</ispartof><rights>The Author(s) 2019</rights><rights>2019 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2019 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2019 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5791-3551ce2cae383fed8dcbd6cac61155fd9d579b214dba48cd874af05d2342ac363</citedby><cites>FETCH-LOGICAL-c5791-3551ce2cae383fed8dcbd6cac61155fd9d579b214dba48cd874af05d2342ac363</cites><orcidid>0000-0002-7877-0262 ; 0000-0003-4291-3898 ; 0000-0001-8613-1447 ; 0000-0001-9117-752X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776908/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776908/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,1432,27922,27923,41118,42187,45572,45573,46407,46831,51574,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31379073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kater, Lukas</creatorcontrib><creatorcontrib>Frieg, Benedikt</creatorcontrib><creatorcontrib>Berninghausen, Otto</creatorcontrib><creatorcontrib>Gohlke, Holger</creatorcontrib><creatorcontrib>Beckmann, Roland</creatorcontrib><creatorcontrib>Kedrov, Alexej</creatorcontrib><title>Partially inserted nascent chain unzips the lateral gate of the Sec translocon</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>The Sec translocon provides the lipid bilayer entry for ribosome‐bound nascent chains and thus facilitates membrane protein biogenesis. Despite the appreciated role of the native environment in the translocon:ribosome assembly, structural information on the complex in the lipid membrane is scarce. Here, we present a cryo‐electron microscopy‐based structure of bacterial translocon SecYEG in lipid nanodiscs and elucidate an early intermediate state upon insertion of the FtsQ anchor domain. Insertion of the short nascent chain causes initial displacements within the lateral gate of the translocon, where α‐helices 2b, 7, and 8 tilt within the membrane core to “unzip” the gate at the cytoplasmic side. Molecular dynamics simulations demonstrate that the conformational change is reversed in the absence of the ribosome, and suggest that the accessory α‐helices of SecE subunit modulate the lateral gate conformation. Site‐specific cross‐linking validates that the FtsQ nascent chain passes the lateral gate upon insertion. The structure and the biochemical data suggest that the partially inserted nascent chain remains highly flexible until it acquires the transmembrane topology. Synopsis Cryo‐electron microscopy and atomistic simulations of SecYEG in the lipid environment reveal an early stage of membrane protein insertion. The flexible nascent chain triggers a conformational change that pre‐opens the translocon. The complete structure of SecYEG translocon in the lipid bilayer is resolved. The bound ribosome:nascent chain opens the lateral gate of SecYEG at the cytoplasmic side. Nascent transmembrane domains remain flexible at the early insertion stage. SecY:SecE interactions may modulate the lateral gate dynamics. Graphical Abstract Cryo‐electron microscopy and atomistic simulations of SecYEG in the lipid environment reveal an early stage of membrane protein insertion. The flexible nascent chain triggers a conformational change that pre‐opens the translocon.</description><subject>Chains</subject><subject>Cryoelectron Microscopy</subject><subject>Domains</subject><subject>Electron microscopy</subject><subject>EMBO20</subject><subject>EMBO40</subject><subject>Escherichia coli - metabolism</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Helices</subject><subject>Insertion</subject><subject>Lateral displacement</subject><subject>Lipid bilayers</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipids</subject><subject>membrane protein insertion</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Molecular conformation</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>nanodisc</subject><subject>native environment</subject><subject>Peptides - metabolism</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>reconstitution</subject><subject>ribosome</subject><subject>Ribosomes - metabolism</subject><subject>SEC Translocation Channels - chemistry</subject><subject>SEC Translocation Channels - metabolism</subject><subject>SEC Translocation Channels - ultrastructure</subject><subject>Topology</subject><subject>Transmembrane domains</subject><issn>1469-221X</issn><issn>1469-3178</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctvVCEYxUmjsQ9duzMk3biZlsflAi6a1KY-kqpNH4k7wgXuDA0DI9xrM_71Mp1xrCbG1Ufg952cwwHgJUZHmBFGjt28y0cEYdkILPEO2MNNKycUc_FkcyYEf90F-6XcIYSY5OIZ2KWYcok43QOfL3UevA5hCX0sLg_OwqiLcXGAZqZ9hGP84RcFDjMHgx5c1gFO64Spf7i7dgYOWccSkknxOXja61Dci808ALfvzm_OPkwuvrz_eHZ6MTGMSzyhjGHjiNGOCto7K6zpbGu0aTFmrLfSVqwjuLGdboSxgje6R8wS2hBtaEsPwMladzF2c2dXdqsxtch-rvNSJe3Vny_Rz9Q0fVct561Eogq83gjk9G10ZVBzX1OHoKNLY1GEtIJxyhGt6OFf6F0ac6zxFKH1S6mk7crR8ZoyOZWSXb81g5F66EqtulLbrurGq8cZtvyvcirwZg3c--CW_9NT55_eXj1WR-vlUvfi1OXfrv9l6Ccc5rJh</recordid><startdate>20191004</startdate><enddate>20191004</enddate><creator>Kater, Lukas</creator><creator>Frieg, Benedikt</creator><creator>Berninghausen, Otto</creator><creator>Gohlke, Holger</creator><creator>Beckmann, Roland</creator><creator>Kedrov, Alexej</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7877-0262</orcidid><orcidid>https://orcid.org/0000-0003-4291-3898</orcidid><orcidid>https://orcid.org/0000-0001-8613-1447</orcidid><orcidid>https://orcid.org/0000-0001-9117-752X</orcidid></search><sort><creationdate>20191004</creationdate><title>Partially inserted nascent chain unzips the lateral gate of the Sec translocon</title><author>Kater, Lukas ; Frieg, Benedikt ; Berninghausen, Otto ; Gohlke, Holger ; Beckmann, Roland ; Kedrov, Alexej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5791-3551ce2cae383fed8dcbd6cac61155fd9d579b214dba48cd874af05d2342ac363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chains</topic><topic>Cryoelectron Microscopy</topic><topic>Domains</topic><topic>Electron microscopy</topic><topic>EMBO20</topic><topic>EMBO40</topic><topic>Escherichia coli - metabolism</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Helices</topic><topic>Insertion</topic><topic>Lateral displacement</topic><topic>Lipid bilayers</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipids</topic><topic>membrane protein insertion</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Molecular conformation</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>nanodisc</topic><topic>native environment</topic><topic>Peptides - metabolism</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>reconstitution</topic><topic>ribosome</topic><topic>Ribosomes - metabolism</topic><topic>SEC Translocation Channels - chemistry</topic><topic>SEC Translocation Channels - metabolism</topic><topic>SEC Translocation Channels - ultrastructure</topic><topic>Topology</topic><topic>Transmembrane domains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kater, Lukas</creatorcontrib><creatorcontrib>Frieg, Benedikt</creatorcontrib><creatorcontrib>Berninghausen, Otto</creatorcontrib><creatorcontrib>Gohlke, Holger</creatorcontrib><creatorcontrib>Beckmann, Roland</creatorcontrib><creatorcontrib>Kedrov, Alexej</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kater, Lukas</au><au>Frieg, Benedikt</au><au>Berninghausen, Otto</au><au>Gohlke, Holger</au><au>Beckmann, Roland</au><au>Kedrov, Alexej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partially inserted nascent chain unzips the lateral gate of the Sec translocon</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2019-10-04</date><risdate>2019</risdate><volume>20</volume><issue>10</issue><spage>e48191</spage><epage>n/a</epage><pages>e48191-n/a</pages><issn>1469-221X</issn><issn>1469-3178</issn><eissn>1469-3178</eissn><abstract>The Sec translocon provides the lipid bilayer entry for ribosome‐bound nascent chains and thus facilitates membrane protein biogenesis. Despite the appreciated role of the native environment in the translocon:ribosome assembly, structural information on the complex in the lipid membrane is scarce. Here, we present a cryo‐electron microscopy‐based structure of bacterial translocon SecYEG in lipid nanodiscs and elucidate an early intermediate state upon insertion of the FtsQ anchor domain. Insertion of the short nascent chain causes initial displacements within the lateral gate of the translocon, where α‐helices 2b, 7, and 8 tilt within the membrane core to “unzip” the gate at the cytoplasmic side. Molecular dynamics simulations demonstrate that the conformational change is reversed in the absence of the ribosome, and suggest that the accessory α‐helices of SecE subunit modulate the lateral gate conformation. Site‐specific cross‐linking validates that the FtsQ nascent chain passes the lateral gate upon insertion. The structure and the biochemical data suggest that the partially inserted nascent chain remains highly flexible until it acquires the transmembrane topology. Synopsis Cryo‐electron microscopy and atomistic simulations of SecYEG in the lipid environment reveal an early stage of membrane protein insertion. The flexible nascent chain triggers a conformational change that pre‐opens the translocon. The complete structure of SecYEG translocon in the lipid bilayer is resolved. The bound ribosome:nascent chain opens the lateral gate of SecYEG at the cytoplasmic side. Nascent transmembrane domains remain flexible at the early insertion stage. SecY:SecE interactions may modulate the lateral gate dynamics. Graphical Abstract Cryo‐electron microscopy and atomistic simulations of SecYEG in the lipid environment reveal an early stage of membrane protein insertion. The flexible nascent chain triggers a conformational change that pre‐opens the translocon.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31379073</pmid><doi>10.15252/embr.201948191</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7877-0262</orcidid><orcidid>https://orcid.org/0000-0003-4291-3898</orcidid><orcidid>https://orcid.org/0000-0001-8613-1447</orcidid><orcidid>https://orcid.org/0000-0001-9117-752X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2019-10, Vol.20 (10), p.e48191-n/a
issn 1469-221X
1469-3178
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6776908
source MEDLINE; Springer Nature OA Free Journals; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central
subjects Chains
Cryoelectron Microscopy
Domains
Electron microscopy
EMBO20
EMBO40
Escherichia coli - metabolism
Fluorescent Dyes - metabolism
Helices
Insertion
Lateral displacement
Lipid bilayers
Lipid Bilayers - metabolism
Lipids
membrane protein insertion
Membrane proteins
Membranes
Microscopy
Molecular conformation
Molecular dynamics
Molecular Dynamics Simulation
nanodisc
native environment
Peptides - metabolism
Protein Conformation
Proteins
reconstitution
ribosome
Ribosomes - metabolism
SEC Translocation Channels - chemistry
SEC Translocation Channels - metabolism
SEC Translocation Channels - ultrastructure
Topology
Transmembrane domains
title Partially inserted nascent chain unzips the lateral gate of the Sec translocon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partially%20inserted%20nascent%20chain%20unzips%20the%20lateral%20gate%20of%20the%20Sec%20translocon&rft.jtitle=EMBO%20reports&rft.au=Kater,%20Lukas&rft.date=2019-10-04&rft.volume=20&rft.issue=10&rft.spage=e48191&rft.epage=n/a&rft.pages=e48191-n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.201948191&rft_dat=%3Cproquest_pubme%3E2268573703%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300539366&rft_id=info:pmid/31379073&rfr_iscdi=true