Structure of the dynein-2 complex and its assembly with intraflagellar transport trains

Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery that is crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4-MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2019-09, Vol.26 (9), p.823-829
Hauptverfasser: Toropova, Katerina, Zalyte, Ruta, Mukhopadhyay, Aakash G., Mladenov, Miroslav, Carter, Andrew P., Roberts, Anthony J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 829
container_issue 9
container_start_page 823
container_title Nature structural & molecular biology
container_volume 26
creator Toropova, Katerina
Zalyte, Ruta
Mukhopadhyay, Aakash G.
Mladenov, Miroslav
Carter, Andrew P.
Roberts, Anthony J.
description Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery that is crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4-MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical copies of the dynein-2 heavy chain are contorted into different conformations by a WDR60−WDR34 heterodimer and a block of two RB and six LC8 light chains. One heavy chain is steered into a zig-zag conformation, which matches the periodicity of the anterograde IFT-B train. Contacts between adjacent dyneins along the train indicate a cooperative mode of assembly. Removal of the WDR60−WDR34−light chain subcomplex renders dynein-2 monomeric and relieves autoinhibition of its motility. Our results converge on a model in which an unusual stoichiometry of non-motor subunits controls dynein-2 assembly, asymmetry, and activity, giving mechanistic insight into the interaction of dynein-2 with IFT trains and the origin of diverse functions in the dynein family. Cryo-EM structure of the dynein-2 complex (involved in intraflagellar transport, IFT) reveals distinct conformations of the two DHC2 tails within the same assembly, suggesting the mechanisms of autoinhibition and of transport on anterograde IFT trains.
doi_str_mv 10.1038/s41594-019-0286-y
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6774794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A598641455</galeid><sourcerecordid>A598641455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-469dce9609380545c90f8f77a8d260a7fede45ea1da0649e10183a482c9196353</originalsourceid><addsrcrecordid>eNp1kstu1DAUhi0EoqXwAGyQJTawSLET27E3SFXFpVIlJApiabnOScZVYg-2A83b4zBlYBDIC9--85-LfoSeUnJKSSNfJUa5YhWhqiK1FNVyDx1TznillOT392fVHKFHKd0QUnPeNg_RUUMZp5KIY_TlKsfZ5jkCDj3OG8Dd4sH5qsY2TNsRbrHxHXY5YZMSTNfjgr-7vMHO52j60QwwjibicvFpG2JeT86nx-hBb8YET-72E_T57ZtP5--ryw_vLs7PLivLW5orJlRnQQmiGklKtVaRXvZta2RXC2LaHjpgHAztDBFMASVUNobJ2iqqRMObE_R6p7udrycoWmtZo95GN5m46GCcPvzxbqOH8E2LtmWtYkXgxZ1ADF9nSFlPLtm1KQ9hTrquJaW0JK8L-vwv9CbM0Zf2VooL9bOmPTWYEbTzfSh57Sqqz7iSgpXZr3Wf_oMqq4PJ2eChd-X9IODlQUBhMtzmwcwp6Yurj4cs3bE2hpQi9Pt5UKJX5-idc3Rxjl6do5cS8-zPQe4jflmlAPUOSOXLDxB_d_9_1R9phc1z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285699196</pqid></control><display><type>article</type><title>Structure of the dynein-2 complex and its assembly with intraflagellar transport trains</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Toropova, Katerina ; Zalyte, Ruta ; Mukhopadhyay, Aakash G. ; Mladenov, Miroslav ; Carter, Andrew P. ; Roberts, Anthony J.</creator><creatorcontrib>Toropova, Katerina ; Zalyte, Ruta ; Mukhopadhyay, Aakash G. ; Mladenov, Miroslav ; Carter, Andrew P. ; Roberts, Anthony J.</creatorcontrib><description>Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery that is crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4-MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical copies of the dynein-2 heavy chain are contorted into different conformations by a WDR60−WDR34 heterodimer and a block of two RB and six LC8 light chains. One heavy chain is steered into a zig-zag conformation, which matches the periodicity of the anterograde IFT-B train. Contacts between adjacent dyneins along the train indicate a cooperative mode of assembly. Removal of the WDR60−WDR34−light chain subcomplex renders dynein-2 monomeric and relieves autoinhibition of its motility. Our results converge on a model in which an unusual stoichiometry of non-motor subunits controls dynein-2 assembly, asymmetry, and activity, giving mechanistic insight into the interaction of dynein-2 with IFT trains and the origin of diverse functions in the dynein family. Cryo-EM structure of the dynein-2 complex (involved in intraflagellar transport, IFT) reveals distinct conformations of the two DHC2 tails within the same assembly, suggesting the mechanisms of autoinhibition and of transport on anterograde IFT trains.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-019-0286-y</identifier><identifier>PMID: 31451806</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/45/535/1258/1259 ; 631/57/343/2277 ; 631/80/128/1383 ; 631/80/128/1441 ; Assembly ; Asymmetry ; Atomic structure ; Axonal transport ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Cilia ; Conformation ; Cryoelectron Microscopy ; Dynein ; Dyneins - metabolism ; Dyneins - ultrastructure ; Gene mutations ; Humans ; Life Sciences ; Light ; Light chains ; Membrane Biology ; Molecular biology ; Molecular conformation ; Periodicity ; Protein Conformation ; Protein Multimerization ; Protein Structure ; Protein Transport ; Stoichiometry ; Symmetry ; Transport</subject><ispartof>Nature structural &amp; molecular biology, 2019-09, Vol.26 (9), p.823-829</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-469dce9609380545c90f8f77a8d260a7fede45ea1da0649e10183a482c9196353</citedby><cites>FETCH-LOGICAL-c571t-469dce9609380545c90f8f77a8d260a7fede45ea1da0649e10183a482c9196353</cites><orcidid>0000-0001-5277-6730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-019-0286-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-019-0286-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31451806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toropova, Katerina</creatorcontrib><creatorcontrib>Zalyte, Ruta</creatorcontrib><creatorcontrib>Mukhopadhyay, Aakash G.</creatorcontrib><creatorcontrib>Mladenov, Miroslav</creatorcontrib><creatorcontrib>Carter, Andrew P.</creatorcontrib><creatorcontrib>Roberts, Anthony J.</creatorcontrib><title>Structure of the dynein-2 complex and its assembly with intraflagellar transport trains</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery that is crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4-MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical copies of the dynein-2 heavy chain are contorted into different conformations by a WDR60−WDR34 heterodimer and a block of two RB and six LC8 light chains. One heavy chain is steered into a zig-zag conformation, which matches the periodicity of the anterograde IFT-B train. Contacts between adjacent dyneins along the train indicate a cooperative mode of assembly. Removal of the WDR60−WDR34−light chain subcomplex renders dynein-2 monomeric and relieves autoinhibition of its motility. Our results converge on a model in which an unusual stoichiometry of non-motor subunits controls dynein-2 assembly, asymmetry, and activity, giving mechanistic insight into the interaction of dynein-2 with IFT trains and the origin of diverse functions in the dynein family. Cryo-EM structure of the dynein-2 complex (involved in intraflagellar transport, IFT) reveals distinct conformations of the two DHC2 tails within the same assembly, suggesting the mechanisms of autoinhibition and of transport on anterograde IFT trains.</description><subject>631/45/535/1258/1259</subject><subject>631/57/343/2277</subject><subject>631/80/128/1383</subject><subject>631/80/128/1441</subject><subject>Assembly</subject><subject>Asymmetry</subject><subject>Atomic structure</subject><subject>Axonal transport</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Cilia</subject><subject>Conformation</subject><subject>Cryoelectron Microscopy</subject><subject>Dynein</subject><subject>Dyneins - metabolism</subject><subject>Dyneins - ultrastructure</subject><subject>Gene mutations</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Light chains</subject><subject>Membrane Biology</subject><subject>Molecular biology</subject><subject>Molecular conformation</subject><subject>Periodicity</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Protein Structure</subject><subject>Protein Transport</subject><subject>Stoichiometry</subject><subject>Symmetry</subject><subject>Transport</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kstu1DAUhi0EoqXwAGyQJTawSLET27E3SFXFpVIlJApiabnOScZVYg-2A83b4zBlYBDIC9--85-LfoSeUnJKSSNfJUa5YhWhqiK1FNVyDx1TznillOT392fVHKFHKd0QUnPeNg_RUUMZp5KIY_TlKsfZ5jkCDj3OG8Dd4sH5qsY2TNsRbrHxHXY5YZMSTNfjgr-7vMHO52j60QwwjibicvFpG2JeT86nx-hBb8YET-72E_T57ZtP5--ryw_vLs7PLivLW5orJlRnQQmiGklKtVaRXvZta2RXC2LaHjpgHAztDBFMASVUNobJ2iqqRMObE_R6p7udrycoWmtZo95GN5m46GCcPvzxbqOH8E2LtmWtYkXgxZ1ADF9nSFlPLtm1KQ9hTrquJaW0JK8L-vwv9CbM0Zf2VooL9bOmPTWYEbTzfSh57Sqqz7iSgpXZr3Wf_oMqq4PJ2eChd-X9IODlQUBhMtzmwcwp6Yurj4cs3bE2hpQi9Pt5UKJX5-idc3Rxjl6do5cS8-zPQe4jflmlAPUOSOXLDxB_d_9_1R9phc1z</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Toropova, Katerina</creator><creator>Zalyte, Ruta</creator><creator>Mukhopadhyay, Aakash G.</creator><creator>Mladenov, Miroslav</creator><creator>Carter, Andrew P.</creator><creator>Roberts, Anthony J.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5277-6730</orcidid></search><sort><creationdate>20190901</creationdate><title>Structure of the dynein-2 complex and its assembly with intraflagellar transport trains</title><author>Toropova, Katerina ; Zalyte, Ruta ; Mukhopadhyay, Aakash G. ; Mladenov, Miroslav ; Carter, Andrew P. ; Roberts, Anthony J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-469dce9609380545c90f8f77a8d260a7fede45ea1da0649e10183a482c9196353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/45/535/1258/1259</topic><topic>631/57/343/2277</topic><topic>631/80/128/1383</topic><topic>631/80/128/1441</topic><topic>Assembly</topic><topic>Asymmetry</topic><topic>Atomic structure</topic><topic>Axonal transport</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Cilia</topic><topic>Conformation</topic><topic>Cryoelectron Microscopy</topic><topic>Dynein</topic><topic>Dyneins - metabolism</topic><topic>Dyneins - ultrastructure</topic><topic>Gene mutations</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Light chains</topic><topic>Membrane Biology</topic><topic>Molecular biology</topic><topic>Molecular conformation</topic><topic>Periodicity</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Protein Structure</topic><topic>Protein Transport</topic><topic>Stoichiometry</topic><topic>Symmetry</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toropova, Katerina</creatorcontrib><creatorcontrib>Zalyte, Ruta</creatorcontrib><creatorcontrib>Mukhopadhyay, Aakash G.</creatorcontrib><creatorcontrib>Mladenov, Miroslav</creatorcontrib><creatorcontrib>Carter, Andrew P.</creatorcontrib><creatorcontrib>Roberts, Anthony J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toropova, Katerina</au><au>Zalyte, Ruta</au><au>Mukhopadhyay, Aakash G.</au><au>Mladenov, Miroslav</au><au>Carter, Andrew P.</au><au>Roberts, Anthony J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the dynein-2 complex and its assembly with intraflagellar transport trains</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>26</volume><issue>9</issue><spage>823</spage><epage>829</epage><pages>823-829</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery that is crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4-MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical copies of the dynein-2 heavy chain are contorted into different conformations by a WDR60−WDR34 heterodimer and a block of two RB and six LC8 light chains. One heavy chain is steered into a zig-zag conformation, which matches the periodicity of the anterograde IFT-B train. Contacts between adjacent dyneins along the train indicate a cooperative mode of assembly. Removal of the WDR60−WDR34−light chain subcomplex renders dynein-2 monomeric and relieves autoinhibition of its motility. Our results converge on a model in which an unusual stoichiometry of non-motor subunits controls dynein-2 assembly, asymmetry, and activity, giving mechanistic insight into the interaction of dynein-2 with IFT trains and the origin of diverse functions in the dynein family. Cryo-EM structure of the dynein-2 complex (involved in intraflagellar transport, IFT) reveals distinct conformations of the two DHC2 tails within the same assembly, suggesting the mechanisms of autoinhibition and of transport on anterograde IFT trains.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31451806</pmid><doi>10.1038/s41594-019-0286-y</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5277-6730</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2019-09, Vol.26 (9), p.823-829
issn 1545-9993
1545-9985
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6774794
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 631/45/535/1258/1259
631/57/343/2277
631/80/128/1383
631/80/128/1441
Assembly
Asymmetry
Atomic structure
Axonal transport
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Cilia
Conformation
Cryoelectron Microscopy
Dynein
Dyneins - metabolism
Dyneins - ultrastructure
Gene mutations
Humans
Life Sciences
Light
Light chains
Membrane Biology
Molecular biology
Molecular conformation
Periodicity
Protein Conformation
Protein Multimerization
Protein Structure
Protein Transport
Stoichiometry
Symmetry
Transport
title Structure of the dynein-2 complex and its assembly with intraflagellar transport trains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A08%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20dynein-2%20complex%20and%20its%20assembly%20with%20intraflagellar%20transport%20trains&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Toropova,%20Katerina&rft.date=2019-09-01&rft.volume=26&rft.issue=9&rft.spage=823&rft.epage=829&rft.pages=823-829&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-019-0286-y&rft_dat=%3Cgale_pubme%3EA598641455%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285699196&rft_id=info:pmid/31451806&rft_galeid=A598641455&rfr_iscdi=true