Structure of the dynein-2 complex and its assembly with intraflagellar transport trains
Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery that is crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4-MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2019-09, Vol.26 (9), p.823-829 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 829 |
---|---|
container_issue | 9 |
container_start_page | 823 |
container_title | Nature structural & molecular biology |
container_volume | 26 |
creator | Toropova, Katerina Zalyte, Ruta Mukhopadhyay, Aakash G. Mladenov, Miroslav Carter, Andrew P. Roberts, Anthony J. |
description | Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery that is crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4-MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical copies of the dynein-2 heavy chain are contorted into different conformations by a WDR60−WDR34 heterodimer and a block of two RB and six LC8 light chains. One heavy chain is steered into a zig-zag conformation, which matches the periodicity of the anterograde IFT-B train. Contacts between adjacent dyneins along the train indicate a cooperative mode of assembly. Removal of the WDR60−WDR34−light chain subcomplex renders dynein-2 monomeric and relieves autoinhibition of its motility. Our results converge on a model in which an unusual stoichiometry of non-motor subunits controls dynein-2 assembly, asymmetry, and activity, giving mechanistic insight into the interaction of dynein-2 with IFT trains and the origin of diverse functions in the dynein family.
Cryo-EM structure of the dynein-2 complex (involved in intraflagellar transport, IFT) reveals distinct conformations of the two DHC2 tails within the same assembly, suggesting the mechanisms of autoinhibition and of transport on anterograde IFT trains. |
doi_str_mv | 10.1038/s41594-019-0286-y |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6774794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A598641455</galeid><sourcerecordid>A598641455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-469dce9609380545c90f8f77a8d260a7fede45ea1da0649e10183a482c9196353</originalsourceid><addsrcrecordid>eNp1kstu1DAUhi0EoqXwAGyQJTawSLET27E3SFXFpVIlJApiabnOScZVYg-2A83b4zBlYBDIC9--85-LfoSeUnJKSSNfJUa5YhWhqiK1FNVyDx1TznillOT392fVHKFHKd0QUnPeNg_RUUMZp5KIY_TlKsfZ5jkCDj3OG8Dd4sH5qsY2TNsRbrHxHXY5YZMSTNfjgr-7vMHO52j60QwwjibicvFpG2JeT86nx-hBb8YET-72E_T57ZtP5--ryw_vLs7PLivLW5orJlRnQQmiGklKtVaRXvZta2RXC2LaHjpgHAztDBFMASVUNobJ2iqqRMObE_R6p7udrycoWmtZo95GN5m46GCcPvzxbqOH8E2LtmWtYkXgxZ1ADF9nSFlPLtm1KQ9hTrquJaW0JK8L-vwv9CbM0Zf2VooL9bOmPTWYEbTzfSh57Sqqz7iSgpXZr3Wf_oMqq4PJ2eChd-X9IODlQUBhMtzmwcwp6Yurj4cs3bE2hpQi9Pt5UKJX5-idc3Rxjl6do5cS8-zPQe4jflmlAPUOSOXLDxB_d_9_1R9phc1z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285699196</pqid></control><display><type>article</type><title>Structure of the dynein-2 complex and its assembly with intraflagellar transport trains</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Toropova, Katerina ; Zalyte, Ruta ; Mukhopadhyay, Aakash G. ; Mladenov, Miroslav ; Carter, Andrew P. ; Roberts, Anthony J.</creator><creatorcontrib>Toropova, Katerina ; Zalyte, Ruta ; Mukhopadhyay, Aakash G. ; Mladenov, Miroslav ; Carter, Andrew P. ; Roberts, Anthony J.</creatorcontrib><description>Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery that is crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4-MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical copies of the dynein-2 heavy chain are contorted into different conformations by a WDR60−WDR34 heterodimer and a block of two RB and six LC8 light chains. One heavy chain is steered into a zig-zag conformation, which matches the periodicity of the anterograde IFT-B train. Contacts between adjacent dyneins along the train indicate a cooperative mode of assembly. Removal of the WDR60−WDR34−light chain subcomplex renders dynein-2 monomeric and relieves autoinhibition of its motility. Our results converge on a model in which an unusual stoichiometry of non-motor subunits controls dynein-2 assembly, asymmetry, and activity, giving mechanistic insight into the interaction of dynein-2 with IFT trains and the origin of diverse functions in the dynein family.
Cryo-EM structure of the dynein-2 complex (involved in intraflagellar transport, IFT) reveals distinct conformations of the two DHC2 tails within the same assembly, suggesting the mechanisms of autoinhibition and of transport on anterograde IFT trains.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-019-0286-y</identifier><identifier>PMID: 31451806</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/45/535/1258/1259 ; 631/57/343/2277 ; 631/80/128/1383 ; 631/80/128/1441 ; Assembly ; Asymmetry ; Atomic structure ; Axonal transport ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Cilia ; Conformation ; Cryoelectron Microscopy ; Dynein ; Dyneins - metabolism ; Dyneins - ultrastructure ; Gene mutations ; Humans ; Life Sciences ; Light ; Light chains ; Membrane Biology ; Molecular biology ; Molecular conformation ; Periodicity ; Protein Conformation ; Protein Multimerization ; Protein Structure ; Protein Transport ; Stoichiometry ; Symmetry ; Transport</subject><ispartof>Nature structural & molecular biology, 2019-09, Vol.26 (9), p.823-829</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-469dce9609380545c90f8f77a8d260a7fede45ea1da0649e10183a482c9196353</citedby><cites>FETCH-LOGICAL-c571t-469dce9609380545c90f8f77a8d260a7fede45ea1da0649e10183a482c9196353</cites><orcidid>0000-0001-5277-6730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-019-0286-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-019-0286-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31451806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toropova, Katerina</creatorcontrib><creatorcontrib>Zalyte, Ruta</creatorcontrib><creatorcontrib>Mukhopadhyay, Aakash G.</creatorcontrib><creatorcontrib>Mladenov, Miroslav</creatorcontrib><creatorcontrib>Carter, Andrew P.</creatorcontrib><creatorcontrib>Roberts, Anthony J.</creatorcontrib><title>Structure of the dynein-2 complex and its assembly with intraflagellar transport trains</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery that is crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4-MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical copies of the dynein-2 heavy chain are contorted into different conformations by a WDR60−WDR34 heterodimer and a block of two RB and six LC8 light chains. One heavy chain is steered into a zig-zag conformation, which matches the periodicity of the anterograde IFT-B train. Contacts between adjacent dyneins along the train indicate a cooperative mode of assembly. Removal of the WDR60−WDR34−light chain subcomplex renders dynein-2 monomeric and relieves autoinhibition of its motility. Our results converge on a model in which an unusual stoichiometry of non-motor subunits controls dynein-2 assembly, asymmetry, and activity, giving mechanistic insight into the interaction of dynein-2 with IFT trains and the origin of diverse functions in the dynein family.
Cryo-EM structure of the dynein-2 complex (involved in intraflagellar transport, IFT) reveals distinct conformations of the two DHC2 tails within the same assembly, suggesting the mechanisms of autoinhibition and of transport on anterograde IFT trains.</description><subject>631/45/535/1258/1259</subject><subject>631/57/343/2277</subject><subject>631/80/128/1383</subject><subject>631/80/128/1441</subject><subject>Assembly</subject><subject>Asymmetry</subject><subject>Atomic structure</subject><subject>Axonal transport</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Cilia</subject><subject>Conformation</subject><subject>Cryoelectron Microscopy</subject><subject>Dynein</subject><subject>Dyneins - metabolism</subject><subject>Dyneins - ultrastructure</subject><subject>Gene mutations</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Light chains</subject><subject>Membrane Biology</subject><subject>Molecular biology</subject><subject>Molecular conformation</subject><subject>Periodicity</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Protein Structure</subject><subject>Protein Transport</subject><subject>Stoichiometry</subject><subject>Symmetry</subject><subject>Transport</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kstu1DAUhi0EoqXwAGyQJTawSLET27E3SFXFpVIlJApiabnOScZVYg-2A83b4zBlYBDIC9--85-LfoSeUnJKSSNfJUa5YhWhqiK1FNVyDx1TznillOT392fVHKFHKd0QUnPeNg_RUUMZp5KIY_TlKsfZ5jkCDj3OG8Dd4sH5qsY2TNsRbrHxHXY5YZMSTNfjgr-7vMHO52j60QwwjibicvFpG2JeT86nx-hBb8YET-72E_T57ZtP5--ryw_vLs7PLivLW5orJlRnQQmiGklKtVaRXvZta2RXC2LaHjpgHAztDBFMASVUNobJ2iqqRMObE_R6p7udrycoWmtZo95GN5m46GCcPvzxbqOH8E2LtmWtYkXgxZ1ADF9nSFlPLtm1KQ9hTrquJaW0JK8L-vwv9CbM0Zf2VooL9bOmPTWYEbTzfSh57Sqqz7iSgpXZr3Wf_oMqq4PJ2eChd-X9IODlQUBhMtzmwcwp6Yurj4cs3bE2hpQi9Pt5UKJX5-idc3Rxjl6do5cS8-zPQe4jflmlAPUOSOXLDxB_d_9_1R9phc1z</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Toropova, Katerina</creator><creator>Zalyte, Ruta</creator><creator>Mukhopadhyay, Aakash G.</creator><creator>Mladenov, Miroslav</creator><creator>Carter, Andrew P.</creator><creator>Roberts, Anthony J.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5277-6730</orcidid></search><sort><creationdate>20190901</creationdate><title>Structure of the dynein-2 complex and its assembly with intraflagellar transport trains</title><author>Toropova, Katerina ; Zalyte, Ruta ; Mukhopadhyay, Aakash G. ; Mladenov, Miroslav ; Carter, Andrew P. ; Roberts, Anthony J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-469dce9609380545c90f8f77a8d260a7fede45ea1da0649e10183a482c9196353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/45/535/1258/1259</topic><topic>631/57/343/2277</topic><topic>631/80/128/1383</topic><topic>631/80/128/1441</topic><topic>Assembly</topic><topic>Asymmetry</topic><topic>Atomic structure</topic><topic>Axonal transport</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Cilia</topic><topic>Conformation</topic><topic>Cryoelectron Microscopy</topic><topic>Dynein</topic><topic>Dyneins - metabolism</topic><topic>Dyneins - ultrastructure</topic><topic>Gene mutations</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Light chains</topic><topic>Membrane Biology</topic><topic>Molecular biology</topic><topic>Molecular conformation</topic><topic>Periodicity</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Protein Structure</topic><topic>Protein Transport</topic><topic>Stoichiometry</topic><topic>Symmetry</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toropova, Katerina</creatorcontrib><creatorcontrib>Zalyte, Ruta</creatorcontrib><creatorcontrib>Mukhopadhyay, Aakash G.</creatorcontrib><creatorcontrib>Mladenov, Miroslav</creatorcontrib><creatorcontrib>Carter, Andrew P.</creatorcontrib><creatorcontrib>Roberts, Anthony J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toropova, Katerina</au><au>Zalyte, Ruta</au><au>Mukhopadhyay, Aakash G.</au><au>Mladenov, Miroslav</au><au>Carter, Andrew P.</au><au>Roberts, Anthony J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the dynein-2 complex and its assembly with intraflagellar transport trains</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>26</volume><issue>9</issue><spage>823</spage><epage>829</epage><pages>823-829</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery that is crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4-MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical copies of the dynein-2 heavy chain are contorted into different conformations by a WDR60−WDR34 heterodimer and a block of two RB and six LC8 light chains. One heavy chain is steered into a zig-zag conformation, which matches the periodicity of the anterograde IFT-B train. Contacts between adjacent dyneins along the train indicate a cooperative mode of assembly. Removal of the WDR60−WDR34−light chain subcomplex renders dynein-2 monomeric and relieves autoinhibition of its motility. Our results converge on a model in which an unusual stoichiometry of non-motor subunits controls dynein-2 assembly, asymmetry, and activity, giving mechanistic insight into the interaction of dynein-2 with IFT trains and the origin of diverse functions in the dynein family.
Cryo-EM structure of the dynein-2 complex (involved in intraflagellar transport, IFT) reveals distinct conformations of the two DHC2 tails within the same assembly, suggesting the mechanisms of autoinhibition and of transport on anterograde IFT trains.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31451806</pmid><doi>10.1038/s41594-019-0286-y</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5277-6730</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2019-09, Vol.26 (9), p.823-829 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6774794 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/45/535/1258/1259 631/57/343/2277 631/80/128/1383 631/80/128/1441 Assembly Asymmetry Atomic structure Axonal transport Biochemistry Biological Microscopy Biomedical and Life Sciences Cilia Conformation Cryoelectron Microscopy Dynein Dyneins - metabolism Dyneins - ultrastructure Gene mutations Humans Life Sciences Light Light chains Membrane Biology Molecular biology Molecular conformation Periodicity Protein Conformation Protein Multimerization Protein Structure Protein Transport Stoichiometry Symmetry Transport |
title | Structure of the dynein-2 complex and its assembly with intraflagellar transport trains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A08%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20dynein-2%20complex%20and%20its%20assembly%20with%20intraflagellar%20transport%20trains&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Toropova,%20Katerina&rft.date=2019-09-01&rft.volume=26&rft.issue=9&rft.spage=823&rft.epage=829&rft.pages=823-829&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-019-0286-y&rft_dat=%3Cgale_pubme%3EA598641455%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285699196&rft_id=info:pmid/31451806&rft_galeid=A598641455&rfr_iscdi=true |