Predicting the performance of pressure filtration processes by coupling computational fluid dynamics and discrete element methods
[Display omitted] •Development and testing of CFD-DEM model for the pressure filtration process.•Simulation results agree with filtration data collected for spherical beads and deionized water.•Model allows quantification of particle distribution, liquid property and pressure effects. To obtain a fu...
Gespeichert in:
Veröffentlicht in: | Chemical engineering science 2019-11, Vol.208, p.115162, Article 115162 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 115162 |
container_title | Chemical engineering science |
container_volume | 208 |
creator | Li, Boyang Dobosz, Kerianne M. Zhang, Haitao Schiffman, Jessica D. Saranteas, Kostas Henson, Michael A. |
description | [Display omitted]
•Development and testing of CFD-DEM model for the pressure filtration process.•Simulation results agree with filtration data collected for spherical beads and deionized water.•Model allows quantification of particle distribution, liquid property and pressure effects.
To obtain a fundamental understanding of the various factors affecting pressure filtration performance, we developed a coupled computational fluid dynamics (CFD) and discrete element method (DEM) model for simulating the effect of solvent flow through the solid particle cake. The model was validated using data collected by filtering mixtures of spherical glass beads and deionized water through a dead-end cell over a range of applied pressures. Numerical experiments were performed to study the effects of particle properties, liquid properties and operating conditions on filtration performance. The model predicted that the filtrate flow rate could be strongly affected by the mean size of the particles, the presence of small particles (i.e. fines) in the particle distribution, the viscosity of the liquid, and particle deformation leading to cake compression. Our study demonstrated that CFD-DEM modeling is a powerful approach for understanding cake filtration processes and predicting filtration performance. |
doi_str_mv | 10.1016/j.ces.2019.115162 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6774648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250919306529</els_id><sourcerecordid>2300598420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-c3d0ccf759f25718c52599cff657eea2f5929e4c534becfd690ac2b5ef274f813</originalsourceid><addsrcrecordid>eNp9UU1r3DAQFaWh2ab9Ab3p2Iu3kixZFoVCCekHBJpDchba8SirxbZcSQ7ssf-82m4o9NLTMDPvvfl4hLzjbMsZ7z4ctoB5Kxg3W84V78QLsuG9bhspmXpJNowx0wjFzCV5nfOhplpz9opctlxp0wq5Ib_uEg4BSpgfadkjXTD5mCY3A9Lo6ZIw5zUh9WEsyZUQ51qLdWzGTHdHCnFdxhMZ4rSs5Q_CjdSPaxjocJzdFCBTN9ckZEhYkOKIE86FTlj2cchvyIV3Y8a3z_GKPHy5ub_-1tz--Pr9-vNtA7JTpYF2YABeK-OF0rwHJZQx4H2nNKITXhlhUIJq5Q7BD51hDsROoRda-p63V-TTWXdZdxMOUFdIbrRLCpNLRxtdsP925rC3j_HJdlrLTvZV4P2zQIo_V8zFTvUkHEc3Y1yzFS1jyvRSsArlZyikmHNC_3cMZ_ZknT3Y-kN7ss6eraucj2cO1ic8BUw2Q8DqwxASQrFDDP9h_wbGuqUi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300598420</pqid></control><display><type>article</type><title>Predicting the performance of pressure filtration processes by coupling computational fluid dynamics and discrete element methods</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Boyang ; Dobosz, Kerianne M. ; Zhang, Haitao ; Schiffman, Jessica D. ; Saranteas, Kostas ; Henson, Michael A.</creator><creatorcontrib>Li, Boyang ; Dobosz, Kerianne M. ; Zhang, Haitao ; Schiffman, Jessica D. ; Saranteas, Kostas ; Henson, Michael A.</creatorcontrib><description>[Display omitted]
•Development and testing of CFD-DEM model for the pressure filtration process.•Simulation results agree with filtration data collected for spherical beads and deionized water.•Model allows quantification of particle distribution, liquid property and pressure effects.
To obtain a fundamental understanding of the various factors affecting pressure filtration performance, we developed a coupled computational fluid dynamics (CFD) and discrete element method (DEM) model for simulating the effect of solvent flow through the solid particle cake. The model was validated using data collected by filtering mixtures of spherical glass beads and deionized water through a dead-end cell over a range of applied pressures. Numerical experiments were performed to study the effects of particle properties, liquid properties and operating conditions on filtration performance. The model predicted that the filtrate flow rate could be strongly affected by the mean size of the particles, the presence of small particles (i.e. fines) in the particle distribution, the viscosity of the liquid, and particle deformation leading to cake compression. Our study demonstrated that CFD-DEM modeling is a powerful approach for understanding cake filtration processes and predicting filtration performance.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2019.115162</identifier><identifier>PMID: 31579324</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computational fluid dynamics ; Discrete element methods ; Particle technology ; Pressure filtration</subject><ispartof>Chemical engineering science, 2019-11, Vol.208, p.115162, Article 115162</ispartof><rights>2019 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-c3d0ccf759f25718c52599cff657eea2f5929e4c534becfd690ac2b5ef274f813</citedby><cites>FETCH-LOGICAL-c465t-c3d0ccf759f25718c52599cff657eea2f5929e4c534becfd690ac2b5ef274f813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0009250919306529$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Li, Boyang</creatorcontrib><creatorcontrib>Dobosz, Kerianne M.</creatorcontrib><creatorcontrib>Zhang, Haitao</creatorcontrib><creatorcontrib>Schiffman, Jessica D.</creatorcontrib><creatorcontrib>Saranteas, Kostas</creatorcontrib><creatorcontrib>Henson, Michael A.</creatorcontrib><title>Predicting the performance of pressure filtration processes by coupling computational fluid dynamics and discrete element methods</title><title>Chemical engineering science</title><description>[Display omitted]
•Development and testing of CFD-DEM model for the pressure filtration process.•Simulation results agree with filtration data collected for spherical beads and deionized water.•Model allows quantification of particle distribution, liquid property and pressure effects.
To obtain a fundamental understanding of the various factors affecting pressure filtration performance, we developed a coupled computational fluid dynamics (CFD) and discrete element method (DEM) model for simulating the effect of solvent flow through the solid particle cake. The model was validated using data collected by filtering mixtures of spherical glass beads and deionized water through a dead-end cell over a range of applied pressures. Numerical experiments were performed to study the effects of particle properties, liquid properties and operating conditions on filtration performance. The model predicted that the filtrate flow rate could be strongly affected by the mean size of the particles, the presence of small particles (i.e. fines) in the particle distribution, the viscosity of the liquid, and particle deformation leading to cake compression. Our study demonstrated that CFD-DEM modeling is a powerful approach for understanding cake filtration processes and predicting filtration performance.</description><subject>Computational fluid dynamics</subject><subject>Discrete element methods</subject><subject>Particle technology</subject><subject>Pressure filtration</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UU1r3DAQFaWh2ab9Ab3p2Iu3kixZFoVCCekHBJpDchba8SirxbZcSQ7ssf-82m4o9NLTMDPvvfl4hLzjbMsZ7z4ctoB5Kxg3W84V78QLsuG9bhspmXpJNowx0wjFzCV5nfOhplpz9opctlxp0wq5Ib_uEg4BSpgfadkjXTD5mCY3A9Lo6ZIw5zUh9WEsyZUQ51qLdWzGTHdHCnFdxhMZ4rSs5Q_CjdSPaxjocJzdFCBTN9ckZEhYkOKIE86FTlj2cchvyIV3Y8a3z_GKPHy5ub_-1tz--Pr9-vNtA7JTpYF2YABeK-OF0rwHJZQx4H2nNKITXhlhUIJq5Q7BD51hDsROoRda-p63V-TTWXdZdxMOUFdIbrRLCpNLRxtdsP925rC3j_HJdlrLTvZV4P2zQIo_V8zFTvUkHEc3Y1yzFS1jyvRSsArlZyikmHNC_3cMZ_ZknT3Y-kN7ss6eraucj2cO1ic8BUw2Q8DqwxASQrFDDP9h_wbGuqUi</recordid><startdate>20191123</startdate><enddate>20191123</enddate><creator>Li, Boyang</creator><creator>Dobosz, Kerianne M.</creator><creator>Zhang, Haitao</creator><creator>Schiffman, Jessica D.</creator><creator>Saranteas, Kostas</creator><creator>Henson, Michael A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191123</creationdate><title>Predicting the performance of pressure filtration processes by coupling computational fluid dynamics and discrete element methods</title><author>Li, Boyang ; Dobosz, Kerianne M. ; Zhang, Haitao ; Schiffman, Jessica D. ; Saranteas, Kostas ; Henson, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-c3d0ccf759f25718c52599cff657eea2f5929e4c534becfd690ac2b5ef274f813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Discrete element methods</topic><topic>Particle technology</topic><topic>Pressure filtration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Boyang</creatorcontrib><creatorcontrib>Dobosz, Kerianne M.</creatorcontrib><creatorcontrib>Zhang, Haitao</creatorcontrib><creatorcontrib>Schiffman, Jessica D.</creatorcontrib><creatorcontrib>Saranteas, Kostas</creatorcontrib><creatorcontrib>Henson, Michael A.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Boyang</au><au>Dobosz, Kerianne M.</au><au>Zhang, Haitao</au><au>Schiffman, Jessica D.</au><au>Saranteas, Kostas</au><au>Henson, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the performance of pressure filtration processes by coupling computational fluid dynamics and discrete element methods</atitle><jtitle>Chemical engineering science</jtitle><date>2019-11-23</date><risdate>2019</risdate><volume>208</volume><spage>115162</spage><pages>115162-</pages><artnum>115162</artnum><issn>0009-2509</issn><eissn>1873-4405</eissn><abstract>[Display omitted]
•Development and testing of CFD-DEM model for the pressure filtration process.•Simulation results agree with filtration data collected for spherical beads and deionized water.•Model allows quantification of particle distribution, liquid property and pressure effects.
To obtain a fundamental understanding of the various factors affecting pressure filtration performance, we developed a coupled computational fluid dynamics (CFD) and discrete element method (DEM) model for simulating the effect of solvent flow through the solid particle cake. The model was validated using data collected by filtering mixtures of spherical glass beads and deionized water through a dead-end cell over a range of applied pressures. Numerical experiments were performed to study the effects of particle properties, liquid properties and operating conditions on filtration performance. The model predicted that the filtrate flow rate could be strongly affected by the mean size of the particles, the presence of small particles (i.e. fines) in the particle distribution, the viscosity of the liquid, and particle deformation leading to cake compression. Our study demonstrated that CFD-DEM modeling is a powerful approach for understanding cake filtration processes and predicting filtration performance.</abstract><pub>Elsevier Ltd</pub><pmid>31579324</pmid><doi>10.1016/j.ces.2019.115162</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2509 |
ispartof | Chemical engineering science, 2019-11, Vol.208, p.115162, Article 115162 |
issn | 0009-2509 1873-4405 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6774648 |
source | Elsevier ScienceDirect Journals |
subjects | Computational fluid dynamics Discrete element methods Particle technology Pressure filtration |
title | Predicting the performance of pressure filtration processes by coupling computational fluid dynamics and discrete element methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20performance%20of%20pressure%20filtration%20processes%20by%20coupling%20computational%20fluid%20dynamics%20and%20discrete%20element%20methods&rft.jtitle=Chemical%20engineering%20science&rft.au=Li,%20Boyang&rft.date=2019-11-23&rft.volume=208&rft.spage=115162&rft.pages=115162-&rft.artnum=115162&rft.issn=0009-2509&rft.eissn=1873-4405&rft_id=info:doi/10.1016/j.ces.2019.115162&rft_dat=%3Cproquest_pubme%3E2300598420%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300598420&rft_id=info:pmid/31579324&rft_els_id=S0009250919306529&rfr_iscdi=true |