container_end_page 4
container_issue 10
container_start_page 79
container_title Blood cancer journal (New York)
container_volume 9
creator Patkar, Nikhil
Shaikh, Anam Fatima
Kakirde, Chinmayee
Nathany, Shrinidhi
Ramesh, Hridya
Bhanshe, Prasanna
Joshi, Swapnali
Chaudhary, Shruti
Kannan, Sadhana
Khizer, Syed Hasan
Chatterjee, Gaurav
Tembhare, Prashant
Shetty, Dhanalaxmi
Gokarn, Anant
Punatkar, Sachin
Bonda, Avinash
Nayak, Lingaraj
Jain, Hasmukh
Khattry, Navin
Bagal, Bhausaheb
Sengar, Manju
Gujral, Sumeet
Subramanian, Papagudi
description
doi_str_mv 10.1038/s41408-019-0244-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6773777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300179406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-f84a76a51e6e6683127890fd101d42e622d4ffa39ce619600b7ce7db44a2d7ca3</originalsourceid><addsrcrecordid>eNp1UsuOFCEUJUbjTNr5ADeGxI2bUqCoompjMpmMj2R8LHRNaLhVzUhBy6NN_5JfKZ1ux9FEEuCGe-45XDgIPaXkJSXt8CpxysnQEDo2hHHesAfonJEadO3QPbwXn6GLlG5JHV1PRzo-Rmct7UQ3dOIc_bzEPuzA4UXpjfXQOFDRWz83BqLdgcEzeMhW46RDBFyXCE5lSPiHzRu8gEolqrUDHCFZU5TDxqZ6Clh5g23CGztv3B5vIxirc-XEYcKhZB0WwNZjpUsGvOzBBWuwg_INFqtO9CVXLYM_fv5An6BHk3IJLk77Cn19c_3l6l1z8-nt-6vLm0ZzQXIzDVyJXnUUeuj7oaVMDCOZDCXUcAY9Y4ZPk2pHDfU5ekLWQoMwa84VM0KrdoVeH3m3Zb2A0eBzVE5uo11U3MugrPw74-1GzmEneyFaUecKvTgRxPC9QMpysUmDc8pDKEmylhAqRk76Cn3-D_Q2lOhre5KxcRQd4-RASI8oHUNKEaa7y1AiD2aQRzPIagZ5MEOVWKFn97u4q_j99RXAjoBUU36G-Ef6_6y_AOLtw0Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299752407</pqid></control><display><type>article</type><title>A novel machine-learning-derived genetic score correlates with measurable residual disease and is highly predictive of outcome in acute myeloid leukemia with mutated NPM1</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Patkar, Nikhil ; Shaikh, Anam Fatima ; Kakirde, Chinmayee ; Nathany, Shrinidhi ; Ramesh, Hridya ; Bhanshe, Prasanna ; Joshi, Swapnali ; Chaudhary, Shruti ; Kannan, Sadhana ; Khizer, Syed Hasan ; Chatterjee, Gaurav ; Tembhare, Prashant ; Shetty, Dhanalaxmi ; Gokarn, Anant ; Punatkar, Sachin ; Bonda, Avinash ; Nayak, Lingaraj ; Jain, Hasmukh ; Khattry, Navin ; Bagal, Bhausaheb ; Sengar, Manju ; Gujral, Sumeet ; Subramanian, Papagudi</creator><creatorcontrib>Patkar, Nikhil ; Shaikh, Anam Fatima ; Kakirde, Chinmayee ; Nathany, Shrinidhi ; Ramesh, Hridya ; Bhanshe, Prasanna ; Joshi, Swapnali ; Chaudhary, Shruti ; Kannan, Sadhana ; Khizer, Syed Hasan ; Chatterjee, Gaurav ; Tembhare, Prashant ; Shetty, Dhanalaxmi ; Gokarn, Anant ; Punatkar, Sachin ; Bonda, Avinash ; Nayak, Lingaraj ; Jain, Hasmukh ; Khattry, Navin ; Bagal, Bhausaheb ; Sengar, Manju ; Gujral, Sumeet ; Subramanian, Papagudi</creatorcontrib><identifier>ISSN: 2044-5385</identifier><identifier>EISSN: 2044-5385</identifier><identifier>DOI: 10.1038/s41408-019-0244-2</identifier><identifier>PMID: 31575857</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/23 ; 631/67/69 ; 692/308/575 ; Adolescent ; Adult ; Aged ; Aged, 80 and over ; Algorithms ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Correspondence ; Genes, Neoplasm ; Hematology ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Leukemia, Myeloid, Acute - genetics ; Leukemia, Myeloid, Acute - mortality ; Leukemia, Myeloid, Acute - pathology ; Machine Learning ; Middle Aged ; Mutation ; Neoplasm, Residual ; Nuclear Proteins - genetics ; Oncology ; Survival Rate ; Young Adult</subject><ispartof>Blood cancer journal (New York), 2019-10, Vol.9 (10), p.79-4, Article 79</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-f84a76a51e6e6683127890fd101d42e622d4ffa39ce619600b7ce7db44a2d7ca3</citedby><cites>FETCH-LOGICAL-c470t-f84a76a51e6e6683127890fd101d42e622d4ffa39ce619600b7ce7db44a2d7ca3</cites><orcidid>0000-0001-9234-2857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773777/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773777/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31575857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patkar, Nikhil</creatorcontrib><creatorcontrib>Shaikh, Anam Fatima</creatorcontrib><creatorcontrib>Kakirde, Chinmayee</creatorcontrib><creatorcontrib>Nathany, Shrinidhi</creatorcontrib><creatorcontrib>Ramesh, Hridya</creatorcontrib><creatorcontrib>Bhanshe, Prasanna</creatorcontrib><creatorcontrib>Joshi, Swapnali</creatorcontrib><creatorcontrib>Chaudhary, Shruti</creatorcontrib><creatorcontrib>Kannan, Sadhana</creatorcontrib><creatorcontrib>Khizer, Syed Hasan</creatorcontrib><creatorcontrib>Chatterjee, Gaurav</creatorcontrib><creatorcontrib>Tembhare, Prashant</creatorcontrib><creatorcontrib>Shetty, Dhanalaxmi</creatorcontrib><creatorcontrib>Gokarn, Anant</creatorcontrib><creatorcontrib>Punatkar, Sachin</creatorcontrib><creatorcontrib>Bonda, Avinash</creatorcontrib><creatorcontrib>Nayak, Lingaraj</creatorcontrib><creatorcontrib>Jain, Hasmukh</creatorcontrib><creatorcontrib>Khattry, Navin</creatorcontrib><creatorcontrib>Bagal, Bhausaheb</creatorcontrib><creatorcontrib>Sengar, Manju</creatorcontrib><creatorcontrib>Gujral, Sumeet</creatorcontrib><creatorcontrib>Subramanian, Papagudi</creatorcontrib><title>A novel machine-learning-derived genetic score correlates with measurable residual disease and is highly predictive of outcome in acute myeloid leukemia with mutated NPM1</title><title>Blood cancer journal (New York)</title><addtitle>Blood Cancer J</addtitle><addtitle>Blood Cancer J</addtitle><subject>45/23</subject><subject>631/67/69</subject><subject>692/308/575</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Correspondence</subject><subject>Genes, Neoplasm</subject><subject>Hematology</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Leukemia, Myeloid, Acute - genetics</subject><subject>Leukemia, Myeloid, Acute - mortality</subject><subject>Leukemia, Myeloid, Acute - pathology</subject><subject>Machine Learning</subject><subject>Middle Aged</subject><subject>Mutation</subject><subject>Neoplasm, Residual</subject><subject>Nuclear Proteins - genetics</subject><subject>Oncology</subject><subject>Survival Rate</subject><subject>Young Adult</subject><issn>2044-5385</issn><issn>2044-5385</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1UsuOFCEUJUbjTNr5ADeGxI2bUqCoompjMpmMj2R8LHRNaLhVzUhBy6NN_5JfKZ1ux9FEEuCGe-45XDgIPaXkJSXt8CpxysnQEDo2hHHesAfonJEadO3QPbwXn6GLlG5JHV1PRzo-Rmct7UQ3dOIc_bzEPuzA4UXpjfXQOFDRWz83BqLdgcEzeMhW46RDBFyXCE5lSPiHzRu8gEolqrUDHCFZU5TDxqZ6Clh5g23CGztv3B5vIxirc-XEYcKhZB0WwNZjpUsGvOzBBWuwg_INFqtO9CVXLYM_fv5An6BHk3IJLk77Cn19c_3l6l1z8-nt-6vLm0ZzQXIzDVyJXnUUeuj7oaVMDCOZDCXUcAY9Y4ZPk2pHDfU5ekLWQoMwa84VM0KrdoVeH3m3Zb2A0eBzVE5uo11U3MugrPw74-1GzmEneyFaUecKvTgRxPC9QMpysUmDc8pDKEmylhAqRk76Cn3-D_Q2lOhre5KxcRQd4-RASI8oHUNKEaa7y1AiD2aQRzPIagZ5MEOVWKFn97u4q_j99RXAjoBUU36G-Ef6_6y_AOLtw0Y</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Patkar, Nikhil</creator><creator>Shaikh, Anam Fatima</creator><creator>Kakirde, Chinmayee</creator><creator>Nathany, Shrinidhi</creator><creator>Ramesh, Hridya</creator><creator>Bhanshe, Prasanna</creator><creator>Joshi, Swapnali</creator><creator>Chaudhary, Shruti</creator><creator>Kannan, Sadhana</creator><creator>Khizer, Syed Hasan</creator><creator>Chatterjee, Gaurav</creator><creator>Tembhare, Prashant</creator><creator>Shetty, Dhanalaxmi</creator><creator>Gokarn, Anant</creator><creator>Punatkar, Sachin</creator><creator>Bonda, Avinash</creator><creator>Nayak, Lingaraj</creator><creator>Jain, Hasmukh</creator><creator>Khattry, Navin</creator><creator>Bagal, Bhausaheb</creator><creator>Sengar, Manju</creator><creator>Gujral, Sumeet</creator><creator>Subramanian, Papagudi</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9234-2857</orcidid></search><sort><creationdate>20191001</creationdate><title>A novel machine-learning-derived genetic score correlates with measurable residual disease and is highly predictive of outcome in acute myeloid leukemia with mutated NPM1</title><author>Patkar, Nikhil ; Shaikh, Anam Fatima ; Kakirde, Chinmayee ; Nathany, Shrinidhi ; Ramesh, Hridya ; Bhanshe, Prasanna ; Joshi, Swapnali ; Chaudhary, Shruti ; Kannan, Sadhana ; Khizer, Syed Hasan ; Chatterjee, Gaurav ; Tembhare, Prashant ; Shetty, Dhanalaxmi ; Gokarn, Anant ; Punatkar, Sachin ; Bonda, Avinash ; Nayak, Lingaraj ; Jain, Hasmukh ; Khattry, Navin ; Bagal, Bhausaheb ; Sengar, Manju ; Gujral, Sumeet ; Subramanian, Papagudi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-f84a76a51e6e6683127890fd101d42e622d4ffa39ce619600b7ce7db44a2d7ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>45/23</topic><topic>631/67/69</topic><topic>692/308/575</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Correspondence</topic><topic>Genes, Neoplasm</topic><topic>Hematology</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Leukemia, Myeloid, Acute - genetics</topic><topic>Leukemia, Myeloid, Acute - mortality</topic><topic>Leukemia, Myeloid, Acute - pathology</topic><topic>Machine Learning</topic><topic>Middle Aged</topic><topic>Mutation</topic><topic>Neoplasm, Residual</topic><topic>Nuclear Proteins - genetics</topic><topic>Oncology</topic><topic>Survival Rate</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patkar, Nikhil</creatorcontrib><creatorcontrib>Shaikh, Anam Fatima</creatorcontrib><creatorcontrib>Kakirde, Chinmayee</creatorcontrib><creatorcontrib>Nathany, Shrinidhi</creatorcontrib><creatorcontrib>Ramesh, Hridya</creatorcontrib><creatorcontrib>Bhanshe, Prasanna</creatorcontrib><creatorcontrib>Joshi, Swapnali</creatorcontrib><creatorcontrib>Chaudhary, Shruti</creatorcontrib><creatorcontrib>Kannan, Sadhana</creatorcontrib><creatorcontrib>Khizer, Syed Hasan</creatorcontrib><creatorcontrib>Chatterjee, Gaurav</creatorcontrib><creatorcontrib>Tembhare, Prashant</creatorcontrib><creatorcontrib>Shetty, Dhanalaxmi</creatorcontrib><creatorcontrib>Gokarn, Anant</creatorcontrib><creatorcontrib>Punatkar, Sachin</creatorcontrib><creatorcontrib>Bonda, Avinash</creatorcontrib><creatorcontrib>Nayak, Lingaraj</creatorcontrib><creatorcontrib>Jain, Hasmukh</creatorcontrib><creatorcontrib>Khattry, Navin</creatorcontrib><creatorcontrib>Bagal, Bhausaheb</creatorcontrib><creatorcontrib>Sengar, Manju</creatorcontrib><creatorcontrib>Gujral, Sumeet</creatorcontrib><creatorcontrib>Subramanian, Papagudi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood cancer journal (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patkar, Nikhil</au><au>Shaikh, Anam Fatima</au><au>Kakirde, Chinmayee</au><au>Nathany, Shrinidhi</au><au>Ramesh, Hridya</au><au>Bhanshe, Prasanna</au><au>Joshi, Swapnali</au><au>Chaudhary, Shruti</au><au>Kannan, Sadhana</au><au>Khizer, Syed Hasan</au><au>Chatterjee, Gaurav</au><au>Tembhare, Prashant</au><au>Shetty, Dhanalaxmi</au><au>Gokarn, Anant</au><au>Punatkar, Sachin</au><au>Bonda, Avinash</au><au>Nayak, Lingaraj</au><au>Jain, Hasmukh</au><au>Khattry, Navin</au><au>Bagal, Bhausaheb</au><au>Sengar, Manju</au><au>Gujral, Sumeet</au><au>Subramanian, Papagudi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel machine-learning-derived genetic score correlates with measurable residual disease and is highly predictive of outcome in acute myeloid leukemia with mutated NPM1</atitle><jtitle>Blood cancer journal (New York)</jtitle><stitle>Blood Cancer J</stitle><addtitle>Blood Cancer J</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>9</volume><issue>10</issue><spage>79</spage><epage>4</epage><pages>79-4</pages><artnum>79</artnum><issn>2044-5385</issn><eissn>2044-5385</eissn><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31575857</pmid><doi>10.1038/s41408-019-0244-2</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9234-2857</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2044-5385
ispartof Blood cancer journal (New York), 2019-10, Vol.9 (10), p.79-4, Article 79
issn 2044-5385
2044-5385
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6773777
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA Free Journals
subjects 45/23
631/67/69
692/308/575
Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Biomedical and Life Sciences
Biomedicine
Cancer Research
Correspondence
Genes, Neoplasm
Hematology
High-Throughput Nucleotide Sequencing - methods
Humans
Leukemia, Myeloid, Acute - genetics
Leukemia, Myeloid, Acute - mortality
Leukemia, Myeloid, Acute - pathology
Machine Learning
Middle Aged
Mutation
Neoplasm, Residual
Nuclear Proteins - genetics
Oncology
Survival Rate
Young Adult
title A novel machine-learning-derived genetic score correlates with measurable residual disease and is highly predictive of outcome in acute myeloid leukemia with mutated NPM1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20machine-learning-derived%20genetic%20score%20correlates%20with%20measurable%20residual%20disease%20and%20is%20highly%20predictive%20of%20outcome%20in%20acute%20myeloid%20leukemia%20with%20mutated%20NPM1&rft.jtitle=Blood%20cancer%20journal%20(New%20York)&rft.au=Patkar,%20Nikhil&rft.date=2019-10-01&rft.volume=9&rft.issue=10&rft.spage=79&rft.epage=4&rft.pages=79-4&rft.artnum=79&rft.issn=2044-5385&rft.eissn=2044-5385&rft_id=info:doi/10.1038/s41408-019-0244-2&rft_dat=%3Cproquest_pubme%3E2300179406%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299752407&rft_id=info:pmid/31575857&rfr_iscdi=true