NMDA But Not Non-NMDA Excitotoxicity is Mediated by Poly(ADP-Ribose) Polymerase
Poly(ADP-ribose) polymerase (PARP-1), a nuclear enzyme that facilitates DNA repair, may be instrumental in acute neuronal cell death in a variety of insults including, cerebral ischemia, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism, and CNS trauma. Excitotoxicity is thought to u...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2000-11, Vol.20 (21), p.8005-8011 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8011 |
---|---|
container_issue | 21 |
container_start_page | 8005 |
container_title | The Journal of neuroscience |
container_volume | 20 |
creator | Mandir, Allen S Poitras, Marc F Berliner, Adam R Herring, William J Guastella, Daniel B Feldman, Alicia Poirier, Guy G Wang, Zhao-Qi Dawson, Ted M Dawson, Valina L |
description | Poly(ADP-ribose) polymerase (PARP-1), a nuclear enzyme that facilitates DNA repair, may be instrumental in acute neuronal cell death in a variety of insults including, cerebral ischemia, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism, and CNS trauma. Excitotoxicity is thought to underlie these and other toxic models of neuronal death. Different glutamate agonists may trigger different downstream pathways toward neurotoxicity. We examine the role of PARP-1 in NMDA- and non-NMDA-mediated excitotoxicity. NMDA and non-NMDA agonists were stereotactically delivered into the striatum of mice lacking PARP-1 and control mice in acute (48 hr) and chronic (3 week) toxicity paradigms. Mice lacking PARP-1 are highly resistant to the excitoxicity induced by NMDA but are as equally susceptible to AMPA excitotoxicity as wild-type mice. Restoring PARP-1 protein in mice lacking PARP-1 by viral transfection restored susceptibility to NMDA, supporting the requirement of PARP-1 in NMDA neurotoxicity. Furthermore, Western blot analyses demonstrate that PARP-1 is activated after NMDA delivery but not after AMPA administration. Consistent with the theory that nitric oxide (NO) and peroxynitrite are prominent in NMDA-induced neurotoxicity, PARP-1 was not activated in mice lacking the gene for neuronal NO synthase after NMDA administration. These results suggest a selective role of PARP-1 in glutamate excitoxicity, and strategies of inhibiting PARP-1 in NMDA-mediated neurotoxicity may offer substantial acute and chronic neuroprotection. |
doi_str_mv | 10.1523/jneurosci.20-21-08005.2000 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6772735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17866961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-fa2d25ed064f8a8373f62fb97dfdbfd1072f8f26fb27b5f01c172d153d68a6633</originalsourceid><addsrcrecordid>eNpVkV1v0zAUhi0EYt3GX0ARFwwuvJ3jJHbKBVLpCgxt7TTYteXE9uopibc4Wdd_j_shPi6sYx0_57Hll5B3CKeYs_TsvjVD50PlThlQhhQKgDzuAV6QUSTGlGWAL8kImADKM5EdkMMQ7iMgAMVrcoAIOSDDEVnMr84nyZehT-Z-s1q6bcyeK9f73j-7WNeJC8mV0U71RiflOrn29frD5Pya3rjSB_Nx22hMp4I5Jq-sqoN5s69H5Pbr7Nf0O71cfLuYTi5plRV5T61imuVGA89soYpUpJYzW46Ftrq0GkEwW1jGbclEmVvACgXTmKeaF4rzND0in3feh6FsjK5M23eqlg-da1S3ll45-f9J65byzj9JLgQTaR4F7_eCzj8OJvSycaEyda1a44cgURScjzlG8NMOrOKfh87YP5cgyE0e8sd8dnuz-Dm9kAwkQ7nNQ27yiMNv_33m39F9ABE42QFLd7dcuc7I0Ki6jjjK1Wq1E2586W8Lw5YW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17866961</pqid></control><display><type>article</type><title>NMDA But Not Non-NMDA Excitotoxicity is Mediated by Poly(ADP-Ribose) Polymerase</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Mandir, Allen S ; Poitras, Marc F ; Berliner, Adam R ; Herring, William J ; Guastella, Daniel B ; Feldman, Alicia ; Poirier, Guy G ; Wang, Zhao-Qi ; Dawson, Ted M ; Dawson, Valina L</creator><creatorcontrib>Mandir, Allen S ; Poitras, Marc F ; Berliner, Adam R ; Herring, William J ; Guastella, Daniel B ; Feldman, Alicia ; Poirier, Guy G ; Wang, Zhao-Qi ; Dawson, Ted M ; Dawson, Valina L</creatorcontrib><description>Poly(ADP-ribose) polymerase (PARP-1), a nuclear enzyme that facilitates DNA repair, may be instrumental in acute neuronal cell death in a variety of insults including, cerebral ischemia, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism, and CNS trauma. Excitotoxicity is thought to underlie these and other toxic models of neuronal death. Different glutamate agonists may trigger different downstream pathways toward neurotoxicity. We examine the role of PARP-1 in NMDA- and non-NMDA-mediated excitotoxicity. NMDA and non-NMDA agonists were stereotactically delivered into the striatum of mice lacking PARP-1 and control mice in acute (48 hr) and chronic (3 week) toxicity paradigms. Mice lacking PARP-1 are highly resistant to the excitoxicity induced by NMDA but are as equally susceptible to AMPA excitotoxicity as wild-type mice. Restoring PARP-1 protein in mice lacking PARP-1 by viral transfection restored susceptibility to NMDA, supporting the requirement of PARP-1 in NMDA neurotoxicity. Furthermore, Western blot analyses demonstrate that PARP-1 is activated after NMDA delivery but not after AMPA administration. Consistent with the theory that nitric oxide (NO) and peroxynitrite are prominent in NMDA-induced neurotoxicity, PARP-1 was not activated in mice lacking the gene for neuronal NO synthase after NMDA administration. These results suggest a selective role of PARP-1 in glutamate excitoxicity, and strategies of inhibiting PARP-1 in NMDA-mediated neurotoxicity may offer substantial acute and chronic neuroprotection.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.20-21-08005.2000</identifier><identifier>PMID: 11050121</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - administration & dosage ; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism ; Animals ; Blotting, Western ; Cell Death - physiology ; Cells, Cultured ; Corpus Striatum - drug effects ; Corpus Striatum - metabolism ; Corpus Striatum - pathology ; Corpus Striatum - secretion ; Male ; Mice ; Mice, Inbred Strains ; Mice, Knockout ; Microinjections ; N-Methyl-D-aspartic acid ; N-Methylaspartate - administration & dosage ; N-Methylaspartate - agonists ; N-Methylaspartate - metabolism ; Nitric Oxide Synthase - deficiency ; Nitric Oxide Synthase - genetics ; Nitric Oxide Synthase - metabolism ; Nitric Oxide Synthase Type I ; Poly Adenosine Diphosphate Ribose - biosynthesis ; poly(ADP-ribose) polymerase ; Poly(ADP-ribose) Polymerases - deficiency ; Poly(ADP-ribose) Polymerases - genetics ; Poly(ADP-ribose) Polymerases - metabolism ; Sindbis Virus - genetics ; Transfection</subject><ispartof>The Journal of neuroscience, 2000-11, Vol.20 (21), p.8005-8011</ispartof><rights>Copyright © 2000 Society for Neuroscience 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-fa2d25ed064f8a8373f62fb97dfdbfd1072f8f26fb27b5f01c172d153d68a6633</citedby><cites>FETCH-LOGICAL-c485t-fa2d25ed064f8a8373f62fb97dfdbfd1072f8f26fb27b5f01c172d153d68a6633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772735/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772735/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11050121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandir, Allen S</creatorcontrib><creatorcontrib>Poitras, Marc F</creatorcontrib><creatorcontrib>Berliner, Adam R</creatorcontrib><creatorcontrib>Herring, William J</creatorcontrib><creatorcontrib>Guastella, Daniel B</creatorcontrib><creatorcontrib>Feldman, Alicia</creatorcontrib><creatorcontrib>Poirier, Guy G</creatorcontrib><creatorcontrib>Wang, Zhao-Qi</creatorcontrib><creatorcontrib>Dawson, Ted M</creatorcontrib><creatorcontrib>Dawson, Valina L</creatorcontrib><title>NMDA But Not Non-NMDA Excitotoxicity is Mediated by Poly(ADP-Ribose) Polymerase</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Poly(ADP-ribose) polymerase (PARP-1), a nuclear enzyme that facilitates DNA repair, may be instrumental in acute neuronal cell death in a variety of insults including, cerebral ischemia, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism, and CNS trauma. Excitotoxicity is thought to underlie these and other toxic models of neuronal death. Different glutamate agonists may trigger different downstream pathways toward neurotoxicity. We examine the role of PARP-1 in NMDA- and non-NMDA-mediated excitotoxicity. NMDA and non-NMDA agonists were stereotactically delivered into the striatum of mice lacking PARP-1 and control mice in acute (48 hr) and chronic (3 week) toxicity paradigms. Mice lacking PARP-1 are highly resistant to the excitoxicity induced by NMDA but are as equally susceptible to AMPA excitotoxicity as wild-type mice. Restoring PARP-1 protein in mice lacking PARP-1 by viral transfection restored susceptibility to NMDA, supporting the requirement of PARP-1 in NMDA neurotoxicity. Furthermore, Western blot analyses demonstrate that PARP-1 is activated after NMDA delivery but not after AMPA administration. Consistent with the theory that nitric oxide (NO) and peroxynitrite are prominent in NMDA-induced neurotoxicity, PARP-1 was not activated in mice lacking the gene for neuronal NO synthase after NMDA administration. These results suggest a selective role of PARP-1 in glutamate excitoxicity, and strategies of inhibiting PARP-1 in NMDA-mediated neurotoxicity may offer substantial acute and chronic neuroprotection.</description><subject>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - administration & dosage</subject><subject>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism</subject><subject>Animals</subject><subject>Blotting, Western</subject><subject>Cell Death - physiology</subject><subject>Cells, Cultured</subject><subject>Corpus Striatum - drug effects</subject><subject>Corpus Striatum - metabolism</subject><subject>Corpus Striatum - pathology</subject><subject>Corpus Striatum - secretion</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred Strains</subject><subject>Mice, Knockout</subject><subject>Microinjections</subject><subject>N-Methyl-D-aspartic acid</subject><subject>N-Methylaspartate - administration & dosage</subject><subject>N-Methylaspartate - agonists</subject><subject>N-Methylaspartate - metabolism</subject><subject>Nitric Oxide Synthase - deficiency</subject><subject>Nitric Oxide Synthase - genetics</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Nitric Oxide Synthase Type I</subject><subject>Poly Adenosine Diphosphate Ribose - biosynthesis</subject><subject>poly(ADP-ribose) polymerase</subject><subject>Poly(ADP-ribose) Polymerases - deficiency</subject><subject>Poly(ADP-ribose) Polymerases - genetics</subject><subject>Poly(ADP-ribose) Polymerases - metabolism</subject><subject>Sindbis Virus - genetics</subject><subject>Transfection</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkV1v0zAUhi0EYt3GX0ARFwwuvJ3jJHbKBVLpCgxt7TTYteXE9uopibc4Wdd_j_shPi6sYx0_57Hll5B3CKeYs_TsvjVD50PlThlQhhQKgDzuAV6QUSTGlGWAL8kImADKM5EdkMMQ7iMgAMVrcoAIOSDDEVnMr84nyZehT-Z-s1q6bcyeK9f73j-7WNeJC8mV0U71RiflOrn29frD5Pya3rjSB_Nx22hMp4I5Jq-sqoN5s69H5Pbr7Nf0O71cfLuYTi5plRV5T61imuVGA89soYpUpJYzW46Ftrq0GkEwW1jGbclEmVvACgXTmKeaF4rzND0in3feh6FsjK5M23eqlg-da1S3ll45-f9J65byzj9JLgQTaR4F7_eCzj8OJvSycaEyda1a44cgURScjzlG8NMOrOKfh87YP5cgyE0e8sd8dnuz-Dm9kAwkQ7nNQ27yiMNv_33m39F9ABE42QFLd7dcuc7I0Ki6jjjK1Wq1E2586W8Lw5YW</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Mandir, Allen S</creator><creator>Poitras, Marc F</creator><creator>Berliner, Adam R</creator><creator>Herring, William J</creator><creator>Guastella, Daniel B</creator><creator>Feldman, Alicia</creator><creator>Poirier, Guy G</creator><creator>Wang, Zhao-Qi</creator><creator>Dawson, Ted M</creator><creator>Dawson, Valina L</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20001101</creationdate><title>NMDA But Not Non-NMDA Excitotoxicity is Mediated by Poly(ADP-Ribose) Polymerase</title><author>Mandir, Allen S ; Poitras, Marc F ; Berliner, Adam R ; Herring, William J ; Guastella, Daniel B ; Feldman, Alicia ; Poirier, Guy G ; Wang, Zhao-Qi ; Dawson, Ted M ; Dawson, Valina L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-fa2d25ed064f8a8373f62fb97dfdbfd1072f8f26fb27b5f01c172d153d68a6633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - administration & dosage</topic><topic>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism</topic><topic>Animals</topic><topic>Blotting, Western</topic><topic>Cell Death - physiology</topic><topic>Cells, Cultured</topic><topic>Corpus Striatum - drug effects</topic><topic>Corpus Striatum - metabolism</topic><topic>Corpus Striatum - pathology</topic><topic>Corpus Striatum - secretion</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred Strains</topic><topic>Mice, Knockout</topic><topic>Microinjections</topic><topic>N-Methyl-D-aspartic acid</topic><topic>N-Methylaspartate - administration & dosage</topic><topic>N-Methylaspartate - agonists</topic><topic>N-Methylaspartate - metabolism</topic><topic>Nitric Oxide Synthase - deficiency</topic><topic>Nitric Oxide Synthase - genetics</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Nitric Oxide Synthase Type I</topic><topic>Poly Adenosine Diphosphate Ribose - biosynthesis</topic><topic>poly(ADP-ribose) polymerase</topic><topic>Poly(ADP-ribose) Polymerases - deficiency</topic><topic>Poly(ADP-ribose) Polymerases - genetics</topic><topic>Poly(ADP-ribose) Polymerases - metabolism</topic><topic>Sindbis Virus - genetics</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandir, Allen S</creatorcontrib><creatorcontrib>Poitras, Marc F</creatorcontrib><creatorcontrib>Berliner, Adam R</creatorcontrib><creatorcontrib>Herring, William J</creatorcontrib><creatorcontrib>Guastella, Daniel B</creatorcontrib><creatorcontrib>Feldman, Alicia</creatorcontrib><creatorcontrib>Poirier, Guy G</creatorcontrib><creatorcontrib>Wang, Zhao-Qi</creatorcontrib><creatorcontrib>Dawson, Ted M</creatorcontrib><creatorcontrib>Dawson, Valina L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandir, Allen S</au><au>Poitras, Marc F</au><au>Berliner, Adam R</au><au>Herring, William J</au><au>Guastella, Daniel B</au><au>Feldman, Alicia</au><au>Poirier, Guy G</au><au>Wang, Zhao-Qi</au><au>Dawson, Ted M</au><au>Dawson, Valina L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NMDA But Not Non-NMDA Excitotoxicity is Mediated by Poly(ADP-Ribose) Polymerase</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2000-11-01</date><risdate>2000</risdate><volume>20</volume><issue>21</issue><spage>8005</spage><epage>8011</epage><pages>8005-8011</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Poly(ADP-ribose) polymerase (PARP-1), a nuclear enzyme that facilitates DNA repair, may be instrumental in acute neuronal cell death in a variety of insults including, cerebral ischemia, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism, and CNS trauma. Excitotoxicity is thought to underlie these and other toxic models of neuronal death. Different glutamate agonists may trigger different downstream pathways toward neurotoxicity. We examine the role of PARP-1 in NMDA- and non-NMDA-mediated excitotoxicity. NMDA and non-NMDA agonists were stereotactically delivered into the striatum of mice lacking PARP-1 and control mice in acute (48 hr) and chronic (3 week) toxicity paradigms. Mice lacking PARP-1 are highly resistant to the excitoxicity induced by NMDA but are as equally susceptible to AMPA excitotoxicity as wild-type mice. Restoring PARP-1 protein in mice lacking PARP-1 by viral transfection restored susceptibility to NMDA, supporting the requirement of PARP-1 in NMDA neurotoxicity. Furthermore, Western blot analyses demonstrate that PARP-1 is activated after NMDA delivery but not after AMPA administration. Consistent with the theory that nitric oxide (NO) and peroxynitrite are prominent in NMDA-induced neurotoxicity, PARP-1 was not activated in mice lacking the gene for neuronal NO synthase after NMDA administration. These results suggest a selective role of PARP-1 in glutamate excitoxicity, and strategies of inhibiting PARP-1 in NMDA-mediated neurotoxicity may offer substantial acute and chronic neuroprotection.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>11050121</pmid><doi>10.1523/jneurosci.20-21-08005.2000</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2000-11, Vol.20 (21), p.8005-8011 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6772735 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - administration & dosage alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism Animals Blotting, Western Cell Death - physiology Cells, Cultured Corpus Striatum - drug effects Corpus Striatum - metabolism Corpus Striatum - pathology Corpus Striatum - secretion Male Mice Mice, Inbred Strains Mice, Knockout Microinjections N-Methyl-D-aspartic acid N-Methylaspartate - administration & dosage N-Methylaspartate - agonists N-Methylaspartate - metabolism Nitric Oxide Synthase - deficiency Nitric Oxide Synthase - genetics Nitric Oxide Synthase - metabolism Nitric Oxide Synthase Type I Poly Adenosine Diphosphate Ribose - biosynthesis poly(ADP-ribose) polymerase Poly(ADP-ribose) Polymerases - deficiency Poly(ADP-ribose) Polymerases - genetics Poly(ADP-ribose) Polymerases - metabolism Sindbis Virus - genetics Transfection |
title | NMDA But Not Non-NMDA Excitotoxicity is Mediated by Poly(ADP-Ribose) Polymerase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T06%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NMDA%20But%20Not%20Non-NMDA%20Excitotoxicity%20is%20Mediated%20by%20Poly(ADP-Ribose)%20Polymerase&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Mandir,%20Allen%20S&rft.date=2000-11-01&rft.volume=20&rft.issue=21&rft.spage=8005&rft.epage=8011&rft.pages=8005-8011&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.20-21-08005.2000&rft_dat=%3Cproquest_pubme%3E17866961%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17866961&rft_id=info:pmid/11050121&rfr_iscdi=true |