Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides
Nickel iron oxide is considered a benchmark nonprecious catalyst for the oxygen evolution reaction (OER). However, the nature of the active site in nickel iron oxide is heavily debated. Here we report direct spectroscopic evidence for the different active sites in Fe‐free and Fe‐containing Ni oxides...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2019-07, Vol.58 (30), p.10295-10299 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10299 |
---|---|
container_issue | 30 |
container_start_page | 10295 |
container_title | Angewandte Chemie International Edition |
container_volume | 58 |
creator | Lee, Seunghwa Banjac, Karla Lingenfelder, Magalí Hu, Xile |
description | Nickel iron oxide is considered a benchmark nonprecious catalyst for the oxygen evolution reaction (OER). However, the nature of the active site in nickel iron oxide is heavily debated. Here we report direct spectroscopic evidence for the different active sites in Fe‐free and Fe‐containing Ni oxides. Ultrathin layered double hydroxides (LDHs) were used as defined samples of metal oxide catalysts, and 18O‐labeling experiments in combination with in situ Raman spectroscopy were employed to probe the role of lattice oxygen as well as an active oxygen species, NiOO−, in the catalysts. Our data show that lattice oxygen is involved in the OER for Ni and NiCo LDHs, but not for NiFe and NiCoFe LDHs. Moreover, NiOO− is a precursor to oxygen for Ni and NiCo LDHs, but not for NiFe and NiCoFe LDHs. These data indicate that bulk Ni sites in Ni and NiCo oxides are active and evolve oxygen via a NiOO− precursor. Fe incorporation not only dramatically increases the activity, but also changes the nature of the active sites.
On active duty: In situ Raman spectroscopic analysis of 18O‐labeled ultrathin layered double hydroxide has provided evidence for the different active sites of Fe‐free and Fe‐doped Ni oxides for the oxygen evolution reaction. Whereas lattice oxygen atoms are the active sites in Fe‐free Ni‐containing oxides, highly reactive surface sites lead to the dramatically increased catalytic activity of Fe‐doped Ni oxides. |
doi_str_mv | 10.1002/anie.201903200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6771717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232065216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5050-17882a5f588b555ab64ed0fb15fe3aad71f111812ebf07774e44aa87eab2eac53</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS0EoqWwZYkssWEzwY_x2NkgVSVApKiReKwtz8x16jIZB3smJH-A380tScNjg2zJV_d-PrpHh5DnnE04Y-K16wNMBONTJgVjD8g5V4IXUmv5EOtSykIbxc_Ik5xvkTeGVY_JmeScVWUlz8mP5W6_gp7OcxziBujC1dCFfkVnuw2ksIZ-yPQjbMF19G3wHhJ2sOGaIcSefgoDZOpjosMN0KPWbBu78df4xOG9Ds1X6Kjr2_tynrC93IUW8lPyyLsuw7Pje0G-vJt9vvpQLJbv51eXi6JRTLGCa2OEU14ZUyulXF2V0DJfc-VBOtdq7jnnhguoPdNal1CWzhkNrha4ipIX5M1BdzPWa2gbNJNcZzfo1KW9jS7Yvyd9uLGruLWV1hwPCrw6CqT4bYQ82HXIDXSd6yGO2QqBOVSYQYXoy3_Q2zimHu0hpUw1FRgCUpMD1aSYcwJ_WoYzexexvYvYniLGDy_-tHDC7zNFYHoAvocO9v-Rs5fX89lv8Z9xfLUh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258692106</pqid></control><display><type>article</type><title>Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Seunghwa ; Banjac, Karla ; Lingenfelder, Magalí ; Hu, Xile</creator><creatorcontrib>Lee, Seunghwa ; Banjac, Karla ; Lingenfelder, Magalí ; Hu, Xile</creatorcontrib><description>Nickel iron oxide is considered a benchmark nonprecious catalyst for the oxygen evolution reaction (OER). However, the nature of the active site in nickel iron oxide is heavily debated. Here we report direct spectroscopic evidence for the different active sites in Fe‐free and Fe‐containing Ni oxides. Ultrathin layered double hydroxides (LDHs) were used as defined samples of metal oxide catalysts, and 18O‐labeling experiments in combination with in situ Raman spectroscopy were employed to probe the role of lattice oxygen as well as an active oxygen species, NiOO−, in the catalysts. Our data show that lattice oxygen is involved in the OER for Ni and NiCo LDHs, but not for NiFe and NiCoFe LDHs. Moreover, NiOO− is a precursor to oxygen for Ni and NiCo LDHs, but not for NiFe and NiCoFe LDHs. These data indicate that bulk Ni sites in Ni and NiCo oxides are active and evolve oxygen via a NiOO− precursor. Fe incorporation not only dramatically increases the activity, but also changes the nature of the active sites.
On active duty: In situ Raman spectroscopic analysis of 18O‐labeled ultrathin layered double hydroxide has provided evidence for the different active sites of Fe‐free and Fe‐doped Ni oxides for the oxygen evolution reaction. Whereas lattice oxygen atoms are the active sites in Fe‐free Ni‐containing oxides, highly reactive surface sites lead to the dramatically increased catalytic activity of Fe‐doped Ni oxides.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201903200</identifier><identifier>PMID: 31106463</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>active site ; Catalysis ; Catalysts ; Communication ; Communications ; electrocatalysis ; Hydroxides ; Intermetallic compounds ; Iron compounds ; Iron oxides ; Labeling ; Nickel ; Nickel compounds ; Nickel ferrites ; nickel oxides ; Oxides ; Oxygen ; oxygen evolution reaction ; Oxygen evolution reactions ; Oxygen isotopes ; Precursors ; Raman spectroscopy</subject><ispartof>Angewandte Chemie International Edition, 2019-07, Vol.58 (30), p.10295-10299</ispartof><rights>2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5050-17882a5f588b555ab64ed0fb15fe3aad71f111812ebf07774e44aa87eab2eac53</citedby><cites>FETCH-LOGICAL-c5050-17882a5f588b555ab64ed0fb15fe3aad71f111812ebf07774e44aa87eab2eac53</cites><orcidid>0000-0003-1362-8879 ; 0000-0001-8335-1196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201903200$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201903200$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31106463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Seunghwa</creatorcontrib><creatorcontrib>Banjac, Karla</creatorcontrib><creatorcontrib>Lingenfelder, Magalí</creatorcontrib><creatorcontrib>Hu, Xile</creatorcontrib><title>Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Nickel iron oxide is considered a benchmark nonprecious catalyst for the oxygen evolution reaction (OER). However, the nature of the active site in nickel iron oxide is heavily debated. Here we report direct spectroscopic evidence for the different active sites in Fe‐free and Fe‐containing Ni oxides. Ultrathin layered double hydroxides (LDHs) were used as defined samples of metal oxide catalysts, and 18O‐labeling experiments in combination with in situ Raman spectroscopy were employed to probe the role of lattice oxygen as well as an active oxygen species, NiOO−, in the catalysts. Our data show that lattice oxygen is involved in the OER for Ni and NiCo LDHs, but not for NiFe and NiCoFe LDHs. Moreover, NiOO− is a precursor to oxygen for Ni and NiCo LDHs, but not for NiFe and NiCoFe LDHs. These data indicate that bulk Ni sites in Ni and NiCo oxides are active and evolve oxygen via a NiOO− precursor. Fe incorporation not only dramatically increases the activity, but also changes the nature of the active sites.
On active duty: In situ Raman spectroscopic analysis of 18O‐labeled ultrathin layered double hydroxide has provided evidence for the different active sites of Fe‐free and Fe‐doped Ni oxides for the oxygen evolution reaction. Whereas lattice oxygen atoms are the active sites in Fe‐free Ni‐containing oxides, highly reactive surface sites lead to the dramatically increased catalytic activity of Fe‐doped Ni oxides.</description><subject>active site</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Communication</subject><subject>Communications</subject><subject>electrocatalysis</subject><subject>Hydroxides</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>Iron oxides</subject><subject>Labeling</subject><subject>Nickel</subject><subject>Nickel compounds</subject><subject>Nickel ferrites</subject><subject>nickel oxides</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen isotopes</subject><subject>Precursors</subject><subject>Raman spectroscopy</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkUtvEzEUhS0EoqWwZYkssWEzwY_x2NkgVSVApKiReKwtz8x16jIZB3smJH-A380tScNjg2zJV_d-PrpHh5DnnE04Y-K16wNMBONTJgVjD8g5V4IXUmv5EOtSykIbxc_Ik5xvkTeGVY_JmeScVWUlz8mP5W6_gp7OcxziBujC1dCFfkVnuw2ksIZ-yPQjbMF19G3wHhJ2sOGaIcSefgoDZOpjosMN0KPWbBu78df4xOG9Ds1X6Kjr2_tynrC93IUW8lPyyLsuw7Pje0G-vJt9vvpQLJbv51eXi6JRTLGCa2OEU14ZUyulXF2V0DJfc-VBOtdq7jnnhguoPdNal1CWzhkNrha4ipIX5M1BdzPWa2gbNJNcZzfo1KW9jS7Yvyd9uLGruLWV1hwPCrw6CqT4bYQ82HXIDXSd6yGO2QqBOVSYQYXoy3_Q2zimHu0hpUw1FRgCUpMD1aSYcwJ_WoYzexexvYvYniLGDy_-tHDC7zNFYHoAvocO9v-Rs5fX89lv8Z9xfLUh</recordid><startdate>20190722</startdate><enddate>20190722</enddate><creator>Lee, Seunghwa</creator><creator>Banjac, Karla</creator><creator>Lingenfelder, Magalí</creator><creator>Hu, Xile</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1362-8879</orcidid><orcidid>https://orcid.org/0000-0001-8335-1196</orcidid></search><sort><creationdate>20190722</creationdate><title>Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides</title><author>Lee, Seunghwa ; Banjac, Karla ; Lingenfelder, Magalí ; Hu, Xile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5050-17882a5f588b555ab64ed0fb15fe3aad71f111812ebf07774e44aa87eab2eac53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>active site</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Communication</topic><topic>Communications</topic><topic>electrocatalysis</topic><topic>Hydroxides</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>Iron oxides</topic><topic>Labeling</topic><topic>Nickel</topic><topic>Nickel compounds</topic><topic>Nickel ferrites</topic><topic>nickel oxides</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen isotopes</topic><topic>Precursors</topic><topic>Raman spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seunghwa</creatorcontrib><creatorcontrib>Banjac, Karla</creatorcontrib><creatorcontrib>Lingenfelder, Magalí</creatorcontrib><creatorcontrib>Hu, Xile</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seunghwa</au><au>Banjac, Karla</au><au>Lingenfelder, Magalí</au><au>Hu, Xile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2019-07-22</date><risdate>2019</risdate><volume>58</volume><issue>30</issue><spage>10295</spage><epage>10299</epage><pages>10295-10299</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Nickel iron oxide is considered a benchmark nonprecious catalyst for the oxygen evolution reaction (OER). However, the nature of the active site in nickel iron oxide is heavily debated. Here we report direct spectroscopic evidence for the different active sites in Fe‐free and Fe‐containing Ni oxides. Ultrathin layered double hydroxides (LDHs) were used as defined samples of metal oxide catalysts, and 18O‐labeling experiments in combination with in situ Raman spectroscopy were employed to probe the role of lattice oxygen as well as an active oxygen species, NiOO−, in the catalysts. Our data show that lattice oxygen is involved in the OER for Ni and NiCo LDHs, but not for NiFe and NiCoFe LDHs. Moreover, NiOO− is a precursor to oxygen for Ni and NiCo LDHs, but not for NiFe and NiCoFe LDHs. These data indicate that bulk Ni sites in Ni and NiCo oxides are active and evolve oxygen via a NiOO− precursor. Fe incorporation not only dramatically increases the activity, but also changes the nature of the active sites.
On active duty: In situ Raman spectroscopic analysis of 18O‐labeled ultrathin layered double hydroxide has provided evidence for the different active sites of Fe‐free and Fe‐doped Ni oxides for the oxygen evolution reaction. Whereas lattice oxygen atoms are the active sites in Fe‐free Ni‐containing oxides, highly reactive surface sites lead to the dramatically increased catalytic activity of Fe‐doped Ni oxides.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31106463</pmid><doi>10.1002/anie.201903200</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-1362-8879</orcidid><orcidid>https://orcid.org/0000-0001-8335-1196</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2019-07, Vol.58 (30), p.10295-10299 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6771717 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | active site Catalysis Catalysts Communication Communications electrocatalysis Hydroxides Intermetallic compounds Iron compounds Iron oxides Labeling Nickel Nickel compounds Nickel ferrites nickel oxides Oxides Oxygen oxygen evolution reaction Oxygen evolution reactions Oxygen isotopes Precursors Raman spectroscopy |
title | Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Isotope%20Labeling%20Experiments%20Reveal%20Different%20Reaction%20Sites%20for%20the%20Oxygen%20Evolution%20Reaction%20on%20Nickel%20and%20Nickel%20Iron%20Oxides&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Lee,%20Seunghwa&rft.date=2019-07-22&rft.volume=58&rft.issue=30&rft.spage=10295&rft.epage=10299&rft.pages=10295-10299&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201903200&rft_dat=%3Cproquest_pubme%3E2232065216%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258692106&rft_id=info:pmid/31106463&rfr_iscdi=true |