Effects of Macronutrients on the In Vitro Production of ClpB, a Bacterial Mimetic Protein of α-MSH and Its Possible Role in Satiety Signaling
Gut microbiota can influence the feeding behavior of the host, but the underlying mechanisms are unknown. Recently, caseinolytic protease B (ClpB), a disaggregation chaperon protein of , was identified as a conformational mimetic of α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropept...
Gespeichert in:
Veröffentlicht in: | Nutrients 2019-09, Vol.11 (9), p.2115 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 2115 |
container_title | Nutrients |
container_volume | 11 |
creator | Dominique, Manon Breton, Jonathan Guérin, Charlène Bole-Feysot, Christine Lambert, Grégory Déchelotte, Pierre Fetissov, Sergueï |
description | Gut microbiota can influence the feeding behavior of the host, but the underlying mechanisms are unknown. Recently, caseinolytic protease B (ClpB), a disaggregation chaperon protein of
, was identified as a conformational mimetic of α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide. Importantly, ClpB was necessary for
to have an anorexigenic effect in mice, suggesting that it may participate in satiety signaling. To explore this further, we determined the short-term (2 h) effects of three macronutrients: protein (bovine serum albumin), carbohydrate (D-fructose) and fat (oleic acid), on the production of ClpB by
and analyzed whether ClpB can stimulate the secretion of the intestinal satiety hormone, peptide YY (PYY). Isocaloric amounts of all three macronutrients added to a continuous culture of
increased ClpB immunoreactivity. However, to increase the levels of ClpB mRNA and ClpB protein in bacteria and supernatants, supplementation with protein was required. A nanomolar concentration of recombinant
ClpB dose-dependently stimulated PYY secretion from the primary cell cultures of rat intestinal mucosa. Total proteins extracted from
but not from ClpB-deficient
strains also tended to increase PYY secretion. These data support a possible link between
ClpB and protein-induced satiety signaling in the gut. |
doi_str_mv | 10.3390/nu11092115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6769967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2286943502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-57b4aeb9c4c02fa646a6bdc16c26e548e4dbf1288f27bc2021933be7601c5cd73</originalsourceid><addsrcrecordid>eNqFkt1uFCEYhonR2GbtiRdgSDyxjaP8DTOcmLSb2t1kNzauekoYhtmlmYUVmCa9Ce_FG_GaZLq11p5Iwk8-Hl7g-14AXmL0jlKB3rsBYyQIxuUTcEhQRQrOGX36YH0AjmK8QmOrUMXpc3BAMRNY1OQQ_DjvOqNThL6DS6WDd0MK1rgx4mDaGDh38JtNwcPL4NtBJ5vjGZ72u7O3UMEzpZMJVvVwabcmWT1yydhb6NfPYrmaQeVaOM-Klz5G2_QGfvZ5yMhKJWvSDVzZtVO9desX4Fmn-miO7uYJ-Prx_Mt0Viw-Xcynp4tCs4qmoqwapkwjNNOIdIozrnjTasw14aZktWFt02FS1x2pGk0QwYLSxlQcYV3qtqIT8GGvuxuarWl1_nBQvdwFu1XhRnpl5b87zm7k2l9LXnEh-ChwvBfYPDo2O13IMYYI5XXu1zizb-4uC_77YGKSWxu16XvljB-iJBSXJBcK1f9HSc0Fo2VWn4DXj9ArP4Scxr0gK0lJRupkT-XSxhhMd_9YjORoIPnXQBl-9TAr9-gfu9DfwVHAEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315452522</pqid></control><display><type>article</type><title>Effects of Macronutrients on the In Vitro Production of ClpB, a Bacterial Mimetic Protein of α-MSH and Its Possible Role in Satiety Signaling</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Dominique, Manon ; Breton, Jonathan ; Guérin, Charlène ; Bole-Feysot, Christine ; Lambert, Grégory ; Déchelotte, Pierre ; Fetissov, Sergueï</creator><creatorcontrib>Dominique, Manon ; Breton, Jonathan ; Guérin, Charlène ; Bole-Feysot, Christine ; Lambert, Grégory ; Déchelotte, Pierre ; Fetissov, Sergueï</creatorcontrib><description>Gut microbiota can influence the feeding behavior of the host, but the underlying mechanisms are unknown. Recently, caseinolytic protease B (ClpB), a disaggregation chaperon protein of
, was identified as a conformational mimetic of α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide. Importantly, ClpB was necessary for
to have an anorexigenic effect in mice, suggesting that it may participate in satiety signaling. To explore this further, we determined the short-term (2 h) effects of three macronutrients: protein (bovine serum albumin), carbohydrate (D-fructose) and fat (oleic acid), on the production of ClpB by
and analyzed whether ClpB can stimulate the secretion of the intestinal satiety hormone, peptide YY (PYY). Isocaloric amounts of all three macronutrients added to a continuous culture of
increased ClpB immunoreactivity. However, to increase the levels of ClpB mRNA and ClpB protein in bacteria and supernatants, supplementation with protein was required. A nanomolar concentration of recombinant
ClpB dose-dependently stimulated PYY secretion from the primary cell cultures of rat intestinal mucosa. Total proteins extracted from
but not from ClpB-deficient
strains also tended to increase PYY secretion. These data support a possible link between
ClpB and protein-induced satiety signaling in the gut.</description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu11092115</identifier><identifier>PMID: 31491982</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Activation ; alpha-melanocyte-stimulating hormone ; Anaerobic conditions ; Animals ; Appetite ; Bacteria ; bovine serum albumin ; Carbohydrates ; cell culture ; Cells, Cultured ; ClpB protein ; Diet ; E coli ; Eating disorders ; Electrolytes ; Electrolytic cells ; Endopeptidase Clp - genetics ; Endopeptidase Clp - metabolism ; Escherichia coli ; Escherichia coli K12 - drug effects ; Escherichia coli K12 - enzymology ; Escherichia coli K12 - genetics ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fatty acids ; Feeding Behavior ; Food and Nutrition ; fructose ; Fructose - pharmacology ; Gastrointestinal Microbiome ; Gene Expression Regulation, Bacterial ; Gene Expression Regulation, Enzymologic ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Hormones ; Host-Pathogen Interactions ; Ingestion ; intestinal microorganisms ; intestinal mucosa ; Intestinal Mucosa - metabolism ; Intestinal Mucosa - microbiology ; Life Sciences ; Male ; Meals ; messenger RNA ; Metabolism ; Metabolites ; mice ; Microbiota ; Nutrients ; Obesity ; oleic acid ; Oleic Acid - pharmacology ; peptide YY ; Peptide YY - metabolism ; Peptides ; Physiological effects ; Physiology ; proteinases ; Proteins ; Psychopathology ; rats ; Rats, Sprague-Dawley ; Satiety ; Satiety Response ; Secretion ; Secretions ; Serum Albumin, Bovine - pharmacology ; Signal Transduction ; Stationary phase ; Weight control</subject><ispartof>Nutrients, 2019-09, Vol.11 (9), p.2115</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-57b4aeb9c4c02fa646a6bdc16c26e548e4dbf1288f27bc2021933be7601c5cd73</citedby><cites>FETCH-LOGICAL-c473t-57b4aeb9c4c02fa646a6bdc16c26e548e4dbf1288f27bc2021933be7601c5cd73</cites><orcidid>0000-0002-2491-4945 ; 0000-0001-5359-5210 ; 0000-0002-3840-3935 ; 0000-0001-5224-6166 ; 0000-0002-5932-3061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769967/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769967/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31491982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-02368236$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dominique, Manon</creatorcontrib><creatorcontrib>Breton, Jonathan</creatorcontrib><creatorcontrib>Guérin, Charlène</creatorcontrib><creatorcontrib>Bole-Feysot, Christine</creatorcontrib><creatorcontrib>Lambert, Grégory</creatorcontrib><creatorcontrib>Déchelotte, Pierre</creatorcontrib><creatorcontrib>Fetissov, Sergueï</creatorcontrib><title>Effects of Macronutrients on the In Vitro Production of ClpB, a Bacterial Mimetic Protein of α-MSH and Its Possible Role in Satiety Signaling</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description>Gut microbiota can influence the feeding behavior of the host, but the underlying mechanisms are unknown. Recently, caseinolytic protease B (ClpB), a disaggregation chaperon protein of
, was identified as a conformational mimetic of α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide. Importantly, ClpB was necessary for
to have an anorexigenic effect in mice, suggesting that it may participate in satiety signaling. To explore this further, we determined the short-term (2 h) effects of three macronutrients: protein (bovine serum albumin), carbohydrate (D-fructose) and fat (oleic acid), on the production of ClpB by
and analyzed whether ClpB can stimulate the secretion of the intestinal satiety hormone, peptide YY (PYY). Isocaloric amounts of all three macronutrients added to a continuous culture of
increased ClpB immunoreactivity. However, to increase the levels of ClpB mRNA and ClpB protein in bacteria and supernatants, supplementation with protein was required. A nanomolar concentration of recombinant
ClpB dose-dependently stimulated PYY secretion from the primary cell cultures of rat intestinal mucosa. Total proteins extracted from
but not from ClpB-deficient
strains also tended to increase PYY secretion. These data support a possible link between
ClpB and protein-induced satiety signaling in the gut.</description><subject>Activation</subject><subject>alpha-melanocyte-stimulating hormone</subject><subject>Anaerobic conditions</subject><subject>Animals</subject><subject>Appetite</subject><subject>Bacteria</subject><subject>bovine serum albumin</subject><subject>Carbohydrates</subject><subject>cell culture</subject><subject>Cells, Cultured</subject><subject>ClpB protein</subject><subject>Diet</subject><subject>E coli</subject><subject>Eating disorders</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Endopeptidase Clp - genetics</subject><subject>Endopeptidase Clp - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli K12 - drug effects</subject><subject>Escherichia coli K12 - enzymology</subject><subject>Escherichia coli K12 - genetics</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fatty acids</subject><subject>Feeding Behavior</subject><subject>Food and Nutrition</subject><subject>fructose</subject><subject>Fructose - pharmacology</subject><subject>Gastrointestinal Microbiome</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Hormones</subject><subject>Host-Pathogen Interactions</subject><subject>Ingestion</subject><subject>intestinal microorganisms</subject><subject>intestinal mucosa</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Intestinal Mucosa - microbiology</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Meals</subject><subject>messenger RNA</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>mice</subject><subject>Microbiota</subject><subject>Nutrients</subject><subject>Obesity</subject><subject>oleic acid</subject><subject>Oleic Acid - pharmacology</subject><subject>peptide YY</subject><subject>Peptide YY - metabolism</subject><subject>Peptides</subject><subject>Physiological effects</subject><subject>Physiology</subject><subject>proteinases</subject><subject>Proteins</subject><subject>Psychopathology</subject><subject>rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Satiety</subject><subject>Satiety Response</subject><subject>Secretion</subject><subject>Secretions</subject><subject>Serum Albumin, Bovine - pharmacology</subject><subject>Signal Transduction</subject><subject>Stationary phase</subject><subject>Weight control</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkt1uFCEYhonR2GbtiRdgSDyxjaP8DTOcmLSb2t1kNzauekoYhtmlmYUVmCa9Ce_FG_GaZLq11p5Iwk8-Hl7g-14AXmL0jlKB3rsBYyQIxuUTcEhQRQrOGX36YH0AjmK8QmOrUMXpc3BAMRNY1OQQ_DjvOqNThL6DS6WDd0MK1rgx4mDaGDh38JtNwcPL4NtBJ5vjGZ72u7O3UMEzpZMJVvVwabcmWT1yydhb6NfPYrmaQeVaOM-Klz5G2_QGfvZ5yMhKJWvSDVzZtVO9desX4Fmn-miO7uYJ-Prx_Mt0Viw-Xcynp4tCs4qmoqwapkwjNNOIdIozrnjTasw14aZktWFt02FS1x2pGk0QwYLSxlQcYV3qtqIT8GGvuxuarWl1_nBQvdwFu1XhRnpl5b87zm7k2l9LXnEh-ChwvBfYPDo2O13IMYYI5XXu1zizb-4uC_77YGKSWxu16XvljB-iJBSXJBcK1f9HSc0Fo2VWn4DXj9ArP4Scxr0gK0lJRupkT-XSxhhMd_9YjORoIPnXQBl-9TAr9-gfu9DfwVHAEw</recordid><startdate>20190905</startdate><enddate>20190905</enddate><creator>Dominique, Manon</creator><creator>Breton, Jonathan</creator><creator>Guérin, Charlène</creator><creator>Bole-Feysot, Christine</creator><creator>Lambert, Grégory</creator><creator>Déchelotte, Pierre</creator><creator>Fetissov, Sergueï</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2491-4945</orcidid><orcidid>https://orcid.org/0000-0001-5359-5210</orcidid><orcidid>https://orcid.org/0000-0002-3840-3935</orcidid><orcidid>https://orcid.org/0000-0001-5224-6166</orcidid><orcidid>https://orcid.org/0000-0002-5932-3061</orcidid></search><sort><creationdate>20190905</creationdate><title>Effects of Macronutrients on the In Vitro Production of ClpB, a Bacterial Mimetic Protein of α-MSH and Its Possible Role in Satiety Signaling</title><author>Dominique, Manon ; Breton, Jonathan ; Guérin, Charlène ; Bole-Feysot, Christine ; Lambert, Grégory ; Déchelotte, Pierre ; Fetissov, Sergueï</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-57b4aeb9c4c02fa646a6bdc16c26e548e4dbf1288f27bc2021933be7601c5cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>alpha-melanocyte-stimulating hormone</topic><topic>Anaerobic conditions</topic><topic>Animals</topic><topic>Appetite</topic><topic>Bacteria</topic><topic>bovine serum albumin</topic><topic>Carbohydrates</topic><topic>cell culture</topic><topic>Cells, Cultured</topic><topic>ClpB protein</topic><topic>Diet</topic><topic>E coli</topic><topic>Eating disorders</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Endopeptidase Clp - genetics</topic><topic>Endopeptidase Clp - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli K12 - drug effects</topic><topic>Escherichia coli K12 - enzymology</topic><topic>Escherichia coli K12 - genetics</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fatty acids</topic><topic>Feeding Behavior</topic><topic>Food and Nutrition</topic><topic>fructose</topic><topic>Fructose - pharmacology</topic><topic>Gastrointestinal Microbiome</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Hormones</topic><topic>Host-Pathogen Interactions</topic><topic>Ingestion</topic><topic>intestinal microorganisms</topic><topic>intestinal mucosa</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Intestinal Mucosa - microbiology</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Meals</topic><topic>messenger RNA</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>mice</topic><topic>Microbiota</topic><topic>Nutrients</topic><topic>Obesity</topic><topic>oleic acid</topic><topic>Oleic Acid - pharmacology</topic><topic>peptide YY</topic><topic>Peptide YY - metabolism</topic><topic>Peptides</topic><topic>Physiological effects</topic><topic>Physiology</topic><topic>proteinases</topic><topic>Proteins</topic><topic>Psychopathology</topic><topic>rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Satiety</topic><topic>Satiety Response</topic><topic>Secretion</topic><topic>Secretions</topic><topic>Serum Albumin, Bovine - pharmacology</topic><topic>Signal Transduction</topic><topic>Stationary phase</topic><topic>Weight control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dominique, Manon</creatorcontrib><creatorcontrib>Breton, Jonathan</creatorcontrib><creatorcontrib>Guérin, Charlène</creatorcontrib><creatorcontrib>Bole-Feysot, Christine</creatorcontrib><creatorcontrib>Lambert, Grégory</creatorcontrib><creatorcontrib>Déchelotte, Pierre</creatorcontrib><creatorcontrib>Fetissov, Sergueï</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dominique, Manon</au><au>Breton, Jonathan</au><au>Guérin, Charlène</au><au>Bole-Feysot, Christine</au><au>Lambert, Grégory</au><au>Déchelotte, Pierre</au><au>Fetissov, Sergueï</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Macronutrients on the In Vitro Production of ClpB, a Bacterial Mimetic Protein of α-MSH and Its Possible Role in Satiety Signaling</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2019-09-05</date><risdate>2019</risdate><volume>11</volume><issue>9</issue><spage>2115</spage><pages>2115-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract>Gut microbiota can influence the feeding behavior of the host, but the underlying mechanisms are unknown. Recently, caseinolytic protease B (ClpB), a disaggregation chaperon protein of
, was identified as a conformational mimetic of α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide. Importantly, ClpB was necessary for
to have an anorexigenic effect in mice, suggesting that it may participate in satiety signaling. To explore this further, we determined the short-term (2 h) effects of three macronutrients: protein (bovine serum albumin), carbohydrate (D-fructose) and fat (oleic acid), on the production of ClpB by
and analyzed whether ClpB can stimulate the secretion of the intestinal satiety hormone, peptide YY (PYY). Isocaloric amounts of all three macronutrients added to a continuous culture of
increased ClpB immunoreactivity. However, to increase the levels of ClpB mRNA and ClpB protein in bacteria and supernatants, supplementation with protein was required. A nanomolar concentration of recombinant
ClpB dose-dependently stimulated PYY secretion from the primary cell cultures of rat intestinal mucosa. Total proteins extracted from
but not from ClpB-deficient
strains also tended to increase PYY secretion. These data support a possible link between
ClpB and protein-induced satiety signaling in the gut.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31491982</pmid><doi>10.3390/nu11092115</doi><orcidid>https://orcid.org/0000-0002-2491-4945</orcidid><orcidid>https://orcid.org/0000-0001-5359-5210</orcidid><orcidid>https://orcid.org/0000-0002-3840-3935</orcidid><orcidid>https://orcid.org/0000-0001-5224-6166</orcidid><orcidid>https://orcid.org/0000-0002-5932-3061</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6643 |
ispartof | Nutrients, 2019-09, Vol.11 (9), p.2115 |
issn | 2072-6643 2072-6643 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6769967 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Activation alpha-melanocyte-stimulating hormone Anaerobic conditions Animals Appetite Bacteria bovine serum albumin Carbohydrates cell culture Cells, Cultured ClpB protein Diet E coli Eating disorders Electrolytes Electrolytic cells Endopeptidase Clp - genetics Endopeptidase Clp - metabolism Escherichia coli Escherichia coli K12 - drug effects Escherichia coli K12 - enzymology Escherichia coli K12 - genetics Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Fatty acids Feeding Behavior Food and Nutrition fructose Fructose - pharmacology Gastrointestinal Microbiome Gene Expression Regulation, Bacterial Gene Expression Regulation, Enzymologic Heat-Shock Proteins - genetics Heat-Shock Proteins - metabolism Hormones Host-Pathogen Interactions Ingestion intestinal microorganisms intestinal mucosa Intestinal Mucosa - metabolism Intestinal Mucosa - microbiology Life Sciences Male Meals messenger RNA Metabolism Metabolites mice Microbiota Nutrients Obesity oleic acid Oleic Acid - pharmacology peptide YY Peptide YY - metabolism Peptides Physiological effects Physiology proteinases Proteins Psychopathology rats Rats, Sprague-Dawley Satiety Satiety Response Secretion Secretions Serum Albumin, Bovine - pharmacology Signal Transduction Stationary phase Weight control |
title | Effects of Macronutrients on the In Vitro Production of ClpB, a Bacterial Mimetic Protein of α-MSH and Its Possible Role in Satiety Signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Macronutrients%20on%20the%20In%20Vitro%20Production%20of%20ClpB,%20a%20Bacterial%20Mimetic%20Protein%20of%20%CE%B1-MSH%20and%20Its%20Possible%20Role%20in%20Satiety%20Signaling&rft.jtitle=Nutrients&rft.au=Dominique,%20Manon&rft.date=2019-09-05&rft.volume=11&rft.issue=9&rft.spage=2115&rft.pages=2115-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu11092115&rft_dat=%3Cproquest_pubme%3E2286943502%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315452522&rft_id=info:pmid/31491982&rfr_iscdi=true |