Persistent homology analysis of brain transcriptome data in autism

Persistent homology methods have found applications in the analysis of multiple types of biological data, particularly imaging data or data with a spatial and/or temporal component. However, few studies have assessed the use of persistent homology for the analysis of gene expression data. Here we ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2019-09, Vol.16 (158), p.20190531-20190531
Hauptverfasser: Shnier, Daniel, Voineagu, Mircea A, Voineagu, Irina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20190531
container_issue 158
container_start_page 20190531
container_title Journal of the Royal Society interface
container_volume 16
creator Shnier, Daniel
Voineagu, Mircea A
Voineagu, Irina
description Persistent homology methods have found applications in the analysis of multiple types of biological data, particularly imaging data or data with a spatial and/or temporal component. However, few studies have assessed the use of persistent homology for the analysis of gene expression data. Here we apply persistent homology methods to investigate the global properties of gene expression in post-mortem brain tissue (cerebral cortex) of individuals with autism spectrum disorders (ASD) and matched controls. We observe a significant difference in the geometry of inter-sample relationships between autism and healthy controls as measured by the sum of the death times of zero-dimensional components and the Euler characteristic. This observation is replicated across two distinct datasets, and we interpret it as evidence for an increased heterogeneity of gene expression in autism. We also assessed the topology of gene-level point clouds and did not observe significant differences between ASD and control transcriptomes, suggesting that the overall transcriptome organization is similar in ASD and healthy cerebral cortex. Overall, our study provides a novel framework for persistent homology analyses of gene expression data for genetically complex disorders.
doi_str_mv 10.1098/rsif.2019.0531
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6769309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2297128820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-517599127581ba14b0c96b08337dc5374119f5c0b5a86d3c97a3e90410587c133</originalsourceid><addsrcrecordid>eNpVkL1PwzAQxS0EoqWwMqKMLCk-O47jBQkqvqRKMMBsOY7TBiVxsR2k_vc4aqlgutPdu3dPP4QuAc8Bi-LG-aaeEwxijhmFIzQFnpGU5Tk5PvSFmKAz7z8xppwydoomFBgDnPEpun8z0cIH04dkbTvb2tU2Ub1qt3Ga2DopnWr6JDjVe-2aTbCdSSoVVBKnagiN787RSa1aby72dYY-Hh_eF8_p8vXpZXG3TDWjLKQMOBMCCGcFlAqyEmuRl7iglFdRwTMAUTONS6aKvKJacEWNwBlgVnANlM7Q7c53M5SdqXSM7FQrN67plNtKqxr5f9M3a7my3zLnuaBYRIPrvYGzX4PxQXaN16ZtVW_s4CUhggMpCoKjdL6Tame9d6Y-vAEsR_ByBC9H8HIEHw-u_oY7yH9J0x_8PH9t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2297128820</pqid></control><display><type>article</type><title>Persistent homology analysis of brain transcriptome data in autism</title><source>PubMed Central</source><creator>Shnier, Daniel ; Voineagu, Mircea A ; Voineagu, Irina</creator><creatorcontrib>Shnier, Daniel ; Voineagu, Mircea A ; Voineagu, Irina</creatorcontrib><description>Persistent homology methods have found applications in the analysis of multiple types of biological data, particularly imaging data or data with a spatial and/or temporal component. However, few studies have assessed the use of persistent homology for the analysis of gene expression data. Here we apply persistent homology methods to investigate the global properties of gene expression in post-mortem brain tissue (cerebral cortex) of individuals with autism spectrum disorders (ASD) and matched controls. We observe a significant difference in the geometry of inter-sample relationships between autism and healthy controls as measured by the sum of the death times of zero-dimensional components and the Euler characteristic. This observation is replicated across two distinct datasets, and we interpret it as evidence for an increased heterogeneity of gene expression in autism. We also assessed the topology of gene-level point clouds and did not observe significant differences between ASD and control transcriptomes, suggesting that the overall transcriptome organization is similar in ASD and healthy cerebral cortex. Overall, our study provides a novel framework for persistent homology analyses of gene expression data for genetically complex disorders.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2019.0531</identifier><identifier>PMID: 31551047</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Life Sciences–Mathematics interface</subject><ispartof>Journal of the Royal Society interface, 2019-09, Vol.16 (158), p.20190531-20190531</ispartof><rights>2019 The Authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-517599127581ba14b0c96b08337dc5374119f5c0b5a86d3c97a3e90410587c133</citedby><cites>FETCH-LOGICAL-c535t-517599127581ba14b0c96b08337dc5374119f5c0b5a86d3c97a3e90410587c133</cites><orcidid>0000-0003-4162-3872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769309/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769309/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31551047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shnier, Daniel</creatorcontrib><creatorcontrib>Voineagu, Mircea A</creatorcontrib><creatorcontrib>Voineagu, Irina</creatorcontrib><title>Persistent homology analysis of brain transcriptome data in autism</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>Persistent homology methods have found applications in the analysis of multiple types of biological data, particularly imaging data or data with a spatial and/or temporal component. However, few studies have assessed the use of persistent homology for the analysis of gene expression data. Here we apply persistent homology methods to investigate the global properties of gene expression in post-mortem brain tissue (cerebral cortex) of individuals with autism spectrum disorders (ASD) and matched controls. We observe a significant difference in the geometry of inter-sample relationships between autism and healthy controls as measured by the sum of the death times of zero-dimensional components and the Euler characteristic. This observation is replicated across two distinct datasets, and we interpret it as evidence for an increased heterogeneity of gene expression in autism. We also assessed the topology of gene-level point clouds and did not observe significant differences between ASD and control transcriptomes, suggesting that the overall transcriptome organization is similar in ASD and healthy cerebral cortex. Overall, our study provides a novel framework for persistent homology analyses of gene expression data for genetically complex disorders.</description><subject>Life Sciences–Mathematics interface</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkL1PwzAQxS0EoqWwMqKMLCk-O47jBQkqvqRKMMBsOY7TBiVxsR2k_vc4aqlgutPdu3dPP4QuAc8Bi-LG-aaeEwxijhmFIzQFnpGU5Tk5PvSFmKAz7z8xppwydoomFBgDnPEpun8z0cIH04dkbTvb2tU2Ub1qt3Ga2DopnWr6JDjVe-2aTbCdSSoVVBKnagiN787RSa1aby72dYY-Hh_eF8_p8vXpZXG3TDWjLKQMOBMCCGcFlAqyEmuRl7iglFdRwTMAUTONS6aKvKJacEWNwBlgVnANlM7Q7c53M5SdqXSM7FQrN67plNtKqxr5f9M3a7my3zLnuaBYRIPrvYGzX4PxQXaN16ZtVW_s4CUhggMpCoKjdL6Tame9d6Y-vAEsR_ByBC9H8HIEHw-u_oY7yH9J0x_8PH9t</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Shnier, Daniel</creator><creator>Voineagu, Mircea A</creator><creator>Voineagu, Irina</creator><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4162-3872</orcidid></search><sort><creationdate>20190901</creationdate><title>Persistent homology analysis of brain transcriptome data in autism</title><author>Shnier, Daniel ; Voineagu, Mircea A ; Voineagu, Irina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-517599127581ba14b0c96b08337dc5374119f5c0b5a86d3c97a3e90410587c133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Life Sciences–Mathematics interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shnier, Daniel</creatorcontrib><creatorcontrib>Voineagu, Mircea A</creatorcontrib><creatorcontrib>Voineagu, Irina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shnier, Daniel</au><au>Voineagu, Mircea A</au><au>Voineagu, Irina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistent homology analysis of brain transcriptome data in autism</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>16</volume><issue>158</issue><spage>20190531</spage><epage>20190531</epage><pages>20190531-20190531</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Persistent homology methods have found applications in the analysis of multiple types of biological data, particularly imaging data or data with a spatial and/or temporal component. However, few studies have assessed the use of persistent homology for the analysis of gene expression data. Here we apply persistent homology methods to investigate the global properties of gene expression in post-mortem brain tissue (cerebral cortex) of individuals with autism spectrum disorders (ASD) and matched controls. We observe a significant difference in the geometry of inter-sample relationships between autism and healthy controls as measured by the sum of the death times of zero-dimensional components and the Euler characteristic. This observation is replicated across two distinct datasets, and we interpret it as evidence for an increased heterogeneity of gene expression in autism. We also assessed the topology of gene-level point clouds and did not observe significant differences between ASD and control transcriptomes, suggesting that the overall transcriptome organization is similar in ASD and healthy cerebral cortex. Overall, our study provides a novel framework for persistent homology analyses of gene expression data for genetically complex disorders.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>31551047</pmid><doi>10.1098/rsif.2019.0531</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4162-3872</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2019-09, Vol.16 (158), p.20190531-20190531
issn 1742-5689
1742-5662
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6769309
source PubMed Central
subjects Life Sciences–Mathematics interface
title Persistent homology analysis of brain transcriptome data in autism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistent%20homology%20analysis%20of%20brain%20transcriptome%20data%20in%20autism&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Shnier,%20Daniel&rft.date=2019-09-01&rft.volume=16&rft.issue=158&rft.spage=20190531&rft.epage=20190531&rft.pages=20190531-20190531&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2019.0531&rft_dat=%3Cproquest_pubme%3E2297128820%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2297128820&rft_id=info:pmid/31551047&rfr_iscdi=true