Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T2 mapping using a 20‐echo gradient‐echo acquisition

Background Adipose tissue (AT) can be classified into white and brown/beige subtypes. Chemical shift encoding‐based water–fat MRI‐techniques allowing simultaneous mapping of proton density fat fraction (PDFF) and T2* result in a lower PDFF and a shorter T2* in brown compared with white AT. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2019-08, Vol.50 (2), p.424-434
Hauptverfasser: Franz, Daniela, Diefenbach, Maximilian N., Treibel, Franziska, Weidlich, Dominik, Syväri, Jan, Ruschke, Stefan, Wu, Mingming, Holzapfel, Christina, Drabsch, Theresa, Baum, Thomas, Eggers, Holger, Rummeny, Ernst J., Hauner, Hans, Karampinos, Dimitrios C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 434
container_issue 2
container_start_page 424
container_title Journal of magnetic resonance imaging
container_volume 50
creator Franz, Daniela
Diefenbach, Maximilian N.
Treibel, Franziska
Weidlich, Dominik
Syväri, Jan
Ruschke, Stefan
Wu, Mingming
Holzapfel, Christina
Drabsch, Theresa
Baum, Thomas
Eggers, Holger
Rummeny, Ernst J.
Hauner, Hans
Karampinos, Dimitrios C.
description Background Adipose tissue (AT) can be classified into white and brown/beige subtypes. Chemical shift encoding‐based water–fat MRI‐techniques allowing simultaneous mapping of proton density fat fraction (PDFF) and T2* result in a lower PDFF and a shorter T2* in brown compared with white AT. However, AT T2* values vary widely in the literature and are primarily based on 6‐echo data. Increasing the number of echoes in a multiecho gradient‐echo acquisition is expected to increase the precision of AT T2* mapping. Purpose 1) To mitigate issues of current T2*‐measurement techniques through experimental design, and 2) to investigate gluteal and supraclavicular AT T2* and PDFF and their relationship using a 20‐echo gradient‐echo acquisition. Study Type Prospective. Subjects Twenty‐one healthy subjects. Field Strength/Sequence Assessment First, a ground truth signal evolution was simulated from a single‐T2* water–fat model. Second, a time‐interleaved 20‐echo gradient‐echo sequence with monopolar gradients of neck and abdomen/pelvis at 3 T was performed in vivo to determine supraclavicular and gluteal PDFF and T2*. Complex‐based water–fat separation was performed for the first 6 echoes and the full 20 echoes. AT depots were segmented. Statistical Tests Mann‐Whitney test, Wilcoxon signed‐rank test and simple linear regression analysis. Results Both PDFF and T2* differed significantly between supraclavicular and gluteal AT with 6 and 20 echoes (PDFF: P < 0.0001 each, T2*: P = 0.03 / P < 0.0001 for 6/20 echoes). 6‐echo T2* demonstrated higher standard deviations and broader ranges than 20‐echo T2*. Regression analyses revealed a strong relationship between PDFF and T2* values per AT compartment (R2 = 0.63 supraclavicular, R2 = 0.86 gluteal, P < 0.0001 each). Data Conclusion The present findings suggest that an increase in the number of sampled echoes beyond 6 does not affect AT PDFF quantification, whereas AT T2* is considerably affected. Thus, a 20‐echo gradient‐echo acquisition enables a multiparametric analysis of both AT PDFF and T2* and may therefore improve MR‐based differentiation between white and brown fat. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:424–434.
doi_str_mv 10.1002/jmri.26661
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6767392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179436411</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2641-7a6679ac3ee24010ff15f08b488895f214fb4b2ef4026cb01b064bcc38bc818d3</originalsourceid><addsrcrecordid>eNpdkc9uFSEUxomxsX904xOQuHEzFQ4Mw2xMTOutNW00pq4Jw8AtN8wwhaGmuz5CE9_QJ3FubzXRDRxyvvzOx_kQek3JMSUE3m2G5I9BCEGfoQNaA1RQS_F8qUnNKipJs48Oc94QQtqW1y_QPiNCcpBwgH6eeudssuPs9ezHNc5lStoEfetNCTphl-KA16HMVgesez_FbPHscy4WdzrbHscRZz-UMOvRxpLx19PVCuuxx1eABz1NW2rJ21NjIL_uH6y5jnidFtgy9s9bm5vis599HF-iPadDtq-e7iP0ffXx6uRTdfHl7Pzkw0U1geC0arQQTasNsxY4ocQ5WjsiOy6lbGsHlLuOd2AdJyBMR2hHBO-MYbIzksqeHaH3O-5UusH2ZnGTdFBT8oNOdypqr_7tjP5areOtEo1oWAsL4O0TIMWbYvOsBp-NDWG3CQW0aTlbvNJF-uY_6SaWNC7fUwC1IIyBaBcV3al--GDv_jqhRG2DVtug1WPQ6vPlt_PHiv0GsKShXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256033269</pqid></control><display><type>article</type><title>Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T2 mapping using a 20‐echo gradient‐echo acquisition</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Franz, Daniela ; Diefenbach, Maximilian N. ; Treibel, Franziska ; Weidlich, Dominik ; Syväri, Jan ; Ruschke, Stefan ; Wu, Mingming ; Holzapfel, Christina ; Drabsch, Theresa ; Baum, Thomas ; Eggers, Holger ; Rummeny, Ernst J. ; Hauner, Hans ; Karampinos, Dimitrios C.</creator><creatorcontrib>Franz, Daniela ; Diefenbach, Maximilian N. ; Treibel, Franziska ; Weidlich, Dominik ; Syväri, Jan ; Ruschke, Stefan ; Wu, Mingming ; Holzapfel, Christina ; Drabsch, Theresa ; Baum, Thomas ; Eggers, Holger ; Rummeny, Ernst J. ; Hauner, Hans ; Karampinos, Dimitrios C.</creatorcontrib><description>Background Adipose tissue (AT) can be classified into white and brown/beige subtypes. Chemical shift encoding‐based water–fat MRI‐techniques allowing simultaneous mapping of proton density fat fraction (PDFF) and T2* result in a lower PDFF and a shorter T2* in brown compared with white AT. However, AT T2* values vary widely in the literature and are primarily based on 6‐echo data. Increasing the number of echoes in a multiecho gradient‐echo acquisition is expected to increase the precision of AT T2* mapping. Purpose 1) To mitigate issues of current T2*‐measurement techniques through experimental design, and 2) to investigate gluteal and supraclavicular AT T2* and PDFF and their relationship using a 20‐echo gradient‐echo acquisition. Study Type Prospective. Subjects Twenty‐one healthy subjects. Field Strength/Sequence Assessment First, a ground truth signal evolution was simulated from a single‐T2* water–fat model. Second, a time‐interleaved 20‐echo gradient‐echo sequence with monopolar gradients of neck and abdomen/pelvis at 3 T was performed in vivo to determine supraclavicular and gluteal PDFF and T2*. Complex‐based water–fat separation was performed for the first 6 echoes and the full 20 echoes. AT depots were segmented. Statistical Tests Mann‐Whitney test, Wilcoxon signed‐rank test and simple linear regression analysis. Results Both PDFF and T2* differed significantly between supraclavicular and gluteal AT with 6 and 20 echoes (PDFF: P &lt; 0.0001 each, T2*: P = 0.03 / P &lt; 0.0001 for 6/20 echoes). 6‐echo T2* demonstrated higher standard deviations and broader ranges than 20‐echo T2*. Regression analyses revealed a strong relationship between PDFF and T2* values per AT compartment (R2 = 0.63 supraclavicular, R2 = 0.86 gluteal, P &lt; 0.0001 each). Data Conclusion The present findings suggest that an increase in the number of sampled echoes beyond 6 does not affect AT PDFF quantification, whereas AT T2* is considerably affected. Thus, a 20‐echo gradient‐echo acquisition enables a multiparametric analysis of both AT PDFF and T2* and may therefore improve MR‐based differentiation between white and brown fat. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:424–434.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.26661</identifier><identifier>PMID: 30684282</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adipose tissue ; brown fat ; Chemical equilibrium ; Clavicle ; Computer simulation ; Design of experiments ; Echoes ; Experimental design ; fat spectrum ; Field strength ; Ground truth ; In vivo methods and tests ; Magnetic resonance imaging ; Mapping ; Measurement techniques ; MRI ; Organic chemistry ; Original Research ; PDFF mapping ; Pelvis ; Proton density (concentration) ; Rank tests ; Regression analysis ; Statistical analysis ; Statistical tests ; T2 mapping ; white fat</subject><ispartof>Journal of magnetic resonance imaging, 2019-08, Vol.50 (2), p.424-434</ispartof><rights>2019 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2019 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9658-6541 ; 0000-0003-4922-3662 ; 0000-0002-5581-885X ; 0000-0002-7598-8485 ; 0000-0002-4574-5212 ; 0000-0001-7842-2682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.26661$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.26661$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,1432,27922,27923,45572,45573,46407,46831</link.rule.ids></links><search><creatorcontrib>Franz, Daniela</creatorcontrib><creatorcontrib>Diefenbach, Maximilian N.</creatorcontrib><creatorcontrib>Treibel, Franziska</creatorcontrib><creatorcontrib>Weidlich, Dominik</creatorcontrib><creatorcontrib>Syväri, Jan</creatorcontrib><creatorcontrib>Ruschke, Stefan</creatorcontrib><creatorcontrib>Wu, Mingming</creatorcontrib><creatorcontrib>Holzapfel, Christina</creatorcontrib><creatorcontrib>Drabsch, Theresa</creatorcontrib><creatorcontrib>Baum, Thomas</creatorcontrib><creatorcontrib>Eggers, Holger</creatorcontrib><creatorcontrib>Rummeny, Ernst J.</creatorcontrib><creatorcontrib>Hauner, Hans</creatorcontrib><creatorcontrib>Karampinos, Dimitrios C.</creatorcontrib><title>Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T2 mapping using a 20‐echo gradient‐echo acquisition</title><title>Journal of magnetic resonance imaging</title><description>Background Adipose tissue (AT) can be classified into white and brown/beige subtypes. Chemical shift encoding‐based water–fat MRI‐techniques allowing simultaneous mapping of proton density fat fraction (PDFF) and T2* result in a lower PDFF and a shorter T2* in brown compared with white AT. However, AT T2* values vary widely in the literature and are primarily based on 6‐echo data. Increasing the number of echoes in a multiecho gradient‐echo acquisition is expected to increase the precision of AT T2* mapping. Purpose 1) To mitigate issues of current T2*‐measurement techniques through experimental design, and 2) to investigate gluteal and supraclavicular AT T2* and PDFF and their relationship using a 20‐echo gradient‐echo acquisition. Study Type Prospective. Subjects Twenty‐one healthy subjects. Field Strength/Sequence Assessment First, a ground truth signal evolution was simulated from a single‐T2* water–fat model. Second, a time‐interleaved 20‐echo gradient‐echo sequence with monopolar gradients of neck and abdomen/pelvis at 3 T was performed in vivo to determine supraclavicular and gluteal PDFF and T2*. Complex‐based water–fat separation was performed for the first 6 echoes and the full 20 echoes. AT depots were segmented. Statistical Tests Mann‐Whitney test, Wilcoxon signed‐rank test and simple linear regression analysis. Results Both PDFF and T2* differed significantly between supraclavicular and gluteal AT with 6 and 20 echoes (PDFF: P &lt; 0.0001 each, T2*: P = 0.03 / P &lt; 0.0001 for 6/20 echoes). 6‐echo T2* demonstrated higher standard deviations and broader ranges than 20‐echo T2*. Regression analyses revealed a strong relationship between PDFF and T2* values per AT compartment (R2 = 0.63 supraclavicular, R2 = 0.86 gluteal, P &lt; 0.0001 each). Data Conclusion The present findings suggest that an increase in the number of sampled echoes beyond 6 does not affect AT PDFF quantification, whereas AT T2* is considerably affected. Thus, a 20‐echo gradient‐echo acquisition enables a multiparametric analysis of both AT PDFF and T2* and may therefore improve MR‐based differentiation between white and brown fat. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:424–434.</description><subject>Adipose tissue</subject><subject>brown fat</subject><subject>Chemical equilibrium</subject><subject>Clavicle</subject><subject>Computer simulation</subject><subject>Design of experiments</subject><subject>Echoes</subject><subject>Experimental design</subject><subject>fat spectrum</subject><subject>Field strength</subject><subject>Ground truth</subject><subject>In vivo methods and tests</subject><subject>Magnetic resonance imaging</subject><subject>Mapping</subject><subject>Measurement techniques</subject><subject>MRI</subject><subject>Organic chemistry</subject><subject>Original Research</subject><subject>PDFF mapping</subject><subject>Pelvis</subject><subject>Proton density (concentration)</subject><subject>Rank tests</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>T2 mapping</subject><subject>white fat</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpdkc9uFSEUxomxsX904xOQuHEzFQ4Mw2xMTOutNW00pq4Jw8AtN8wwhaGmuz5CE9_QJ3FubzXRDRxyvvzOx_kQek3JMSUE3m2G5I9BCEGfoQNaA1RQS_F8qUnNKipJs48Oc94QQtqW1y_QPiNCcpBwgH6eeudssuPs9ezHNc5lStoEfetNCTphl-KA16HMVgesez_FbPHscy4WdzrbHscRZz-UMOvRxpLx19PVCuuxx1eABz1NW2rJ21NjIL_uH6y5jnidFtgy9s9bm5vis599HF-iPadDtq-e7iP0ffXx6uRTdfHl7Pzkw0U1geC0arQQTasNsxY4ocQ5WjsiOy6lbGsHlLuOd2AdJyBMR2hHBO-MYbIzksqeHaH3O-5UusH2ZnGTdFBT8oNOdypqr_7tjP5areOtEo1oWAsL4O0TIMWbYvOsBp-NDWG3CQW0aTlbvNJF-uY_6SaWNC7fUwC1IIyBaBcV3al--GDv_jqhRG2DVtug1WPQ6vPlt_PHiv0GsKShXg</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Franz, Daniela</creator><creator>Diefenbach, Maximilian N.</creator><creator>Treibel, Franziska</creator><creator>Weidlich, Dominik</creator><creator>Syväri, Jan</creator><creator>Ruschke, Stefan</creator><creator>Wu, Mingming</creator><creator>Holzapfel, Christina</creator><creator>Drabsch, Theresa</creator><creator>Baum, Thomas</creator><creator>Eggers, Holger</creator><creator>Rummeny, Ernst J.</creator><creator>Hauner, Hans</creator><creator>Karampinos, Dimitrios C.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9658-6541</orcidid><orcidid>https://orcid.org/0000-0003-4922-3662</orcidid><orcidid>https://orcid.org/0000-0002-5581-885X</orcidid><orcidid>https://orcid.org/0000-0002-7598-8485</orcidid><orcidid>https://orcid.org/0000-0002-4574-5212</orcidid><orcidid>https://orcid.org/0000-0001-7842-2682</orcidid></search><sort><creationdate>201908</creationdate><title>Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T2 mapping using a 20‐echo gradient‐echo acquisition</title><author>Franz, Daniela ; Diefenbach, Maximilian N. ; Treibel, Franziska ; Weidlich, Dominik ; Syväri, Jan ; Ruschke, Stefan ; Wu, Mingming ; Holzapfel, Christina ; Drabsch, Theresa ; Baum, Thomas ; Eggers, Holger ; Rummeny, Ernst J. ; Hauner, Hans ; Karampinos, Dimitrios C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2641-7a6679ac3ee24010ff15f08b488895f214fb4b2ef4026cb01b064bcc38bc818d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adipose tissue</topic><topic>brown fat</topic><topic>Chemical equilibrium</topic><topic>Clavicle</topic><topic>Computer simulation</topic><topic>Design of experiments</topic><topic>Echoes</topic><topic>Experimental design</topic><topic>fat spectrum</topic><topic>Field strength</topic><topic>Ground truth</topic><topic>In vivo methods and tests</topic><topic>Magnetic resonance imaging</topic><topic>Mapping</topic><topic>Measurement techniques</topic><topic>MRI</topic><topic>Organic chemistry</topic><topic>Original Research</topic><topic>PDFF mapping</topic><topic>Pelvis</topic><topic>Proton density (concentration)</topic><topic>Rank tests</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>T2 mapping</topic><topic>white fat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franz, Daniela</creatorcontrib><creatorcontrib>Diefenbach, Maximilian N.</creatorcontrib><creatorcontrib>Treibel, Franziska</creatorcontrib><creatorcontrib>Weidlich, Dominik</creatorcontrib><creatorcontrib>Syväri, Jan</creatorcontrib><creatorcontrib>Ruschke, Stefan</creatorcontrib><creatorcontrib>Wu, Mingming</creatorcontrib><creatorcontrib>Holzapfel, Christina</creatorcontrib><creatorcontrib>Drabsch, Theresa</creatorcontrib><creatorcontrib>Baum, Thomas</creatorcontrib><creatorcontrib>Eggers, Holger</creatorcontrib><creatorcontrib>Rummeny, Ernst J.</creatorcontrib><creatorcontrib>Hauner, Hans</creatorcontrib><creatorcontrib>Karampinos, Dimitrios C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franz, Daniela</au><au>Diefenbach, Maximilian N.</au><au>Treibel, Franziska</au><au>Weidlich, Dominik</au><au>Syväri, Jan</au><au>Ruschke, Stefan</au><au>Wu, Mingming</au><au>Holzapfel, Christina</au><au>Drabsch, Theresa</au><au>Baum, Thomas</au><au>Eggers, Holger</au><au>Rummeny, Ernst J.</au><au>Hauner, Hans</au><au>Karampinos, Dimitrios C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T2 mapping using a 20‐echo gradient‐echo acquisition</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><date>2019-08</date><risdate>2019</risdate><volume>50</volume><issue>2</issue><spage>424</spage><epage>434</epage><pages>424-434</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background Adipose tissue (AT) can be classified into white and brown/beige subtypes. Chemical shift encoding‐based water–fat MRI‐techniques allowing simultaneous mapping of proton density fat fraction (PDFF) and T2* result in a lower PDFF and a shorter T2* in brown compared with white AT. However, AT T2* values vary widely in the literature and are primarily based on 6‐echo data. Increasing the number of echoes in a multiecho gradient‐echo acquisition is expected to increase the precision of AT T2* mapping. Purpose 1) To mitigate issues of current T2*‐measurement techniques through experimental design, and 2) to investigate gluteal and supraclavicular AT T2* and PDFF and their relationship using a 20‐echo gradient‐echo acquisition. Study Type Prospective. Subjects Twenty‐one healthy subjects. Field Strength/Sequence Assessment First, a ground truth signal evolution was simulated from a single‐T2* water–fat model. Second, a time‐interleaved 20‐echo gradient‐echo sequence with monopolar gradients of neck and abdomen/pelvis at 3 T was performed in vivo to determine supraclavicular and gluteal PDFF and T2*. Complex‐based water–fat separation was performed for the first 6 echoes and the full 20 echoes. AT depots were segmented. Statistical Tests Mann‐Whitney test, Wilcoxon signed‐rank test and simple linear regression analysis. Results Both PDFF and T2* differed significantly between supraclavicular and gluteal AT with 6 and 20 echoes (PDFF: P &lt; 0.0001 each, T2*: P = 0.03 / P &lt; 0.0001 for 6/20 echoes). 6‐echo T2* demonstrated higher standard deviations and broader ranges than 20‐echo T2*. Regression analyses revealed a strong relationship between PDFF and T2* values per AT compartment (R2 = 0.63 supraclavicular, R2 = 0.86 gluteal, P &lt; 0.0001 each). Data Conclusion The present findings suggest that an increase in the number of sampled echoes beyond 6 does not affect AT PDFF quantification, whereas AT T2* is considerably affected. Thus, a 20‐echo gradient‐echo acquisition enables a multiparametric analysis of both AT PDFF and T2* and may therefore improve MR‐based differentiation between white and brown fat. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:424–434.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30684282</pmid><doi>10.1002/jmri.26661</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9658-6541</orcidid><orcidid>https://orcid.org/0000-0003-4922-3662</orcidid><orcidid>https://orcid.org/0000-0002-5581-885X</orcidid><orcidid>https://orcid.org/0000-0002-7598-8485</orcidid><orcidid>https://orcid.org/0000-0002-4574-5212</orcidid><orcidid>https://orcid.org/0000-0001-7842-2682</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2019-08, Vol.50 (2), p.424-434
issn 1053-1807
1522-2586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6767392
source Wiley Free Content; Wiley Online Library All Journals
subjects Adipose tissue
brown fat
Chemical equilibrium
Clavicle
Computer simulation
Design of experiments
Echoes
Experimental design
fat spectrum
Field strength
Ground truth
In vivo methods and tests
Magnetic resonance imaging
Mapping
Measurement techniques
MRI
Organic chemistry
Original Research
PDFF mapping
Pelvis
Proton density (concentration)
Rank tests
Regression analysis
Statistical analysis
Statistical tests
T2 mapping
white fat
title Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T2 mapping using a 20‐echo gradient‐echo acquisition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentiating%20supraclavicular%20from%20gluteal%20adipose%20tissue%20based%20on%20simultaneous%20PDFF%20and%20T2%20mapping%20using%20a%2020%E2%80%90echo%20gradient%E2%80%90echo%20acquisition&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Franz,%20Daniela&rft.date=2019-08&rft.volume=50&rft.issue=2&rft.spage=424&rft.epage=434&rft.pages=424-434&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.26661&rft_dat=%3Cproquest_pubme%3E2179436411%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2256033269&rft_id=info:pmid/30684282&rfr_iscdi=true