Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T2 mapping using a 20‐echo gradient‐echo acquisition
Background Adipose tissue (AT) can be classified into white and brown/beige subtypes. Chemical shift encoding‐based water–fat MRI‐techniques allowing simultaneous mapping of proton density fat fraction (PDFF) and T2* result in a lower PDFF and a shorter T2* in brown compared with white AT. However,...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance imaging 2019-08, Vol.50 (2), p.424-434 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 434 |
---|---|
container_issue | 2 |
container_start_page | 424 |
container_title | Journal of magnetic resonance imaging |
container_volume | 50 |
creator | Franz, Daniela Diefenbach, Maximilian N. Treibel, Franziska Weidlich, Dominik Syväri, Jan Ruschke, Stefan Wu, Mingming Holzapfel, Christina Drabsch, Theresa Baum, Thomas Eggers, Holger Rummeny, Ernst J. Hauner, Hans Karampinos, Dimitrios C. |
description | Background
Adipose tissue (AT) can be classified into white and brown/beige subtypes. Chemical shift encoding‐based water–fat MRI‐techniques allowing simultaneous mapping of proton density fat fraction (PDFF) and T2* result in a lower PDFF and a shorter T2* in brown compared with white AT. However, AT T2* values vary widely in the literature and are primarily based on 6‐echo data. Increasing the number of echoes in a multiecho gradient‐echo acquisition is expected to increase the precision of AT T2* mapping.
Purpose
1) To mitigate issues of current T2*‐measurement techniques through experimental design, and 2) to investigate gluteal and supraclavicular AT T2* and PDFF and their relationship using a 20‐echo gradient‐echo acquisition.
Study Type
Prospective.
Subjects
Twenty‐one healthy subjects.
Field Strength/Sequence Assessment
First, a ground truth signal evolution was simulated from a single‐T2* water–fat model. Second, a time‐interleaved 20‐echo gradient‐echo sequence with monopolar gradients of neck and abdomen/pelvis at 3 T was performed in vivo to determine supraclavicular and gluteal PDFF and T2*. Complex‐based water–fat separation was performed for the first 6 echoes and the full 20 echoes. AT depots were segmented.
Statistical Tests
Mann‐Whitney test, Wilcoxon signed‐rank test and simple linear regression analysis.
Results
Both PDFF and T2* differed significantly between supraclavicular and gluteal AT with 6 and 20 echoes (PDFF: P < 0.0001 each, T2*: P = 0.03 / P < 0.0001 for 6/20 echoes). 6‐echo T2* demonstrated higher standard deviations and broader ranges than 20‐echo T2*. Regression analyses revealed a strong relationship between PDFF and T2* values per AT compartment (R2 = 0.63 supraclavicular, R2 = 0.86 gluteal, P < 0.0001 each).
Data Conclusion
The present findings suggest that an increase in the number of sampled echoes beyond 6 does not affect AT PDFF quantification, whereas AT T2* is considerably affected. Thus, a 20‐echo gradient‐echo acquisition enables a multiparametric analysis of both AT PDFF and T2* and may therefore improve MR‐based differentiation between white and brown fat.
Level of Evidence: 2
Technical Efficacy: Stage 2
J. Magn. Reson. Imaging 2019;50:424–434. |
doi_str_mv | 10.1002/jmri.26661 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6767392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179436411</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2641-7a6679ac3ee24010ff15f08b488895f214fb4b2ef4026cb01b064bcc38bc818d3</originalsourceid><addsrcrecordid>eNpdkc9uFSEUxomxsX904xOQuHEzFQ4Mw2xMTOutNW00pq4Jw8AtN8wwhaGmuz5CE9_QJ3FubzXRDRxyvvzOx_kQek3JMSUE3m2G5I9BCEGfoQNaA1RQS_F8qUnNKipJs48Oc94QQtqW1y_QPiNCcpBwgH6eeudssuPs9ezHNc5lStoEfetNCTphl-KA16HMVgesez_FbPHscy4WdzrbHscRZz-UMOvRxpLx19PVCuuxx1eABz1NW2rJ21NjIL_uH6y5jnidFtgy9s9bm5vis599HF-iPadDtq-e7iP0ffXx6uRTdfHl7Pzkw0U1geC0arQQTasNsxY4ocQ5WjsiOy6lbGsHlLuOd2AdJyBMR2hHBO-MYbIzksqeHaH3O-5UusH2ZnGTdFBT8oNOdypqr_7tjP5areOtEo1oWAsL4O0TIMWbYvOsBp-NDWG3CQW0aTlbvNJF-uY_6SaWNC7fUwC1IIyBaBcV3al--GDv_jqhRG2DVtug1WPQ6vPlt_PHiv0GsKShXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256033269</pqid></control><display><type>article</type><title>Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T2 mapping using a 20‐echo gradient‐echo acquisition</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Franz, Daniela ; Diefenbach, Maximilian N. ; Treibel, Franziska ; Weidlich, Dominik ; Syväri, Jan ; Ruschke, Stefan ; Wu, Mingming ; Holzapfel, Christina ; Drabsch, Theresa ; Baum, Thomas ; Eggers, Holger ; Rummeny, Ernst J. ; Hauner, Hans ; Karampinos, Dimitrios C.</creator><creatorcontrib>Franz, Daniela ; Diefenbach, Maximilian N. ; Treibel, Franziska ; Weidlich, Dominik ; Syväri, Jan ; Ruschke, Stefan ; Wu, Mingming ; Holzapfel, Christina ; Drabsch, Theresa ; Baum, Thomas ; Eggers, Holger ; Rummeny, Ernst J. ; Hauner, Hans ; Karampinos, Dimitrios C.</creatorcontrib><description>Background
Adipose tissue (AT) can be classified into white and brown/beige subtypes. Chemical shift encoding‐based water–fat MRI‐techniques allowing simultaneous mapping of proton density fat fraction (PDFF) and T2* result in a lower PDFF and a shorter T2* in brown compared with white AT. However, AT T2* values vary widely in the literature and are primarily based on 6‐echo data. Increasing the number of echoes in a multiecho gradient‐echo acquisition is expected to increase the precision of AT T2* mapping.
Purpose
1) To mitigate issues of current T2*‐measurement techniques through experimental design, and 2) to investigate gluteal and supraclavicular AT T2* and PDFF and their relationship using a 20‐echo gradient‐echo acquisition.
Study Type
Prospective.
Subjects
Twenty‐one healthy subjects.
Field Strength/Sequence Assessment
First, a ground truth signal evolution was simulated from a single‐T2* water–fat model. Second, a time‐interleaved 20‐echo gradient‐echo sequence with monopolar gradients of neck and abdomen/pelvis at 3 T was performed in vivo to determine supraclavicular and gluteal PDFF and T2*. Complex‐based water–fat separation was performed for the first 6 echoes and the full 20 echoes. AT depots were segmented.
Statistical Tests
Mann‐Whitney test, Wilcoxon signed‐rank test and simple linear regression analysis.
Results
Both PDFF and T2* differed significantly between supraclavicular and gluteal AT with 6 and 20 echoes (PDFF: P < 0.0001 each, T2*: P = 0.03 / P < 0.0001 for 6/20 echoes). 6‐echo T2* demonstrated higher standard deviations and broader ranges than 20‐echo T2*. Regression analyses revealed a strong relationship between PDFF and T2* values per AT compartment (R2 = 0.63 supraclavicular, R2 = 0.86 gluteal, P < 0.0001 each).
Data Conclusion
The present findings suggest that an increase in the number of sampled echoes beyond 6 does not affect AT PDFF quantification, whereas AT T2* is considerably affected. Thus, a 20‐echo gradient‐echo acquisition enables a multiparametric analysis of both AT PDFF and T2* and may therefore improve MR‐based differentiation between white and brown fat.
Level of Evidence: 2
Technical Efficacy: Stage 2
J. Magn. Reson. Imaging 2019;50:424–434.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.26661</identifier><identifier>PMID: 30684282</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adipose tissue ; brown fat ; Chemical equilibrium ; Clavicle ; Computer simulation ; Design of experiments ; Echoes ; Experimental design ; fat spectrum ; Field strength ; Ground truth ; In vivo methods and tests ; Magnetic resonance imaging ; Mapping ; Measurement techniques ; MRI ; Organic chemistry ; Original Research ; PDFF mapping ; Pelvis ; Proton density (concentration) ; Rank tests ; Regression analysis ; Statistical analysis ; Statistical tests ; T2 mapping ; white fat</subject><ispartof>Journal of magnetic resonance imaging, 2019-08, Vol.50 (2), p.424-434</ispartof><rights>2019 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2019 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9658-6541 ; 0000-0003-4922-3662 ; 0000-0002-5581-885X ; 0000-0002-7598-8485 ; 0000-0002-4574-5212 ; 0000-0001-7842-2682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.26661$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.26661$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,1432,27922,27923,45572,45573,46407,46831</link.rule.ids></links><search><creatorcontrib>Franz, Daniela</creatorcontrib><creatorcontrib>Diefenbach, Maximilian N.</creatorcontrib><creatorcontrib>Treibel, Franziska</creatorcontrib><creatorcontrib>Weidlich, Dominik</creatorcontrib><creatorcontrib>Syväri, Jan</creatorcontrib><creatorcontrib>Ruschke, Stefan</creatorcontrib><creatorcontrib>Wu, Mingming</creatorcontrib><creatorcontrib>Holzapfel, Christina</creatorcontrib><creatorcontrib>Drabsch, Theresa</creatorcontrib><creatorcontrib>Baum, Thomas</creatorcontrib><creatorcontrib>Eggers, Holger</creatorcontrib><creatorcontrib>Rummeny, Ernst J.</creatorcontrib><creatorcontrib>Hauner, Hans</creatorcontrib><creatorcontrib>Karampinos, Dimitrios C.</creatorcontrib><title>Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T2 mapping using a 20‐echo gradient‐echo acquisition</title><title>Journal of magnetic resonance imaging</title><description>Background
Adipose tissue (AT) can be classified into white and brown/beige subtypes. Chemical shift encoding‐based water–fat MRI‐techniques allowing simultaneous mapping of proton density fat fraction (PDFF) and T2* result in a lower PDFF and a shorter T2* in brown compared with white AT. However, AT T2* values vary widely in the literature and are primarily based on 6‐echo data. Increasing the number of echoes in a multiecho gradient‐echo acquisition is expected to increase the precision of AT T2* mapping.
Purpose
1) To mitigate issues of current T2*‐measurement techniques through experimental design, and 2) to investigate gluteal and supraclavicular AT T2* and PDFF and their relationship using a 20‐echo gradient‐echo acquisition.
Study Type
Prospective.
Subjects
Twenty‐one healthy subjects.
Field Strength/Sequence Assessment
First, a ground truth signal evolution was simulated from a single‐T2* water–fat model. Second, a time‐interleaved 20‐echo gradient‐echo sequence with monopolar gradients of neck and abdomen/pelvis at 3 T was performed in vivo to determine supraclavicular and gluteal PDFF and T2*. Complex‐based water–fat separation was performed for the first 6 echoes and the full 20 echoes. AT depots were segmented.
Statistical Tests
Mann‐Whitney test, Wilcoxon signed‐rank test and simple linear regression analysis.
Results
Both PDFF and T2* differed significantly between supraclavicular and gluteal AT with 6 and 20 echoes (PDFF: P < 0.0001 each, T2*: P = 0.03 / P < 0.0001 for 6/20 echoes). 6‐echo T2* demonstrated higher standard deviations and broader ranges than 20‐echo T2*. Regression analyses revealed a strong relationship between PDFF and T2* values per AT compartment (R2 = 0.63 supraclavicular, R2 = 0.86 gluteal, P < 0.0001 each).
Data Conclusion
The present findings suggest that an increase in the number of sampled echoes beyond 6 does not affect AT PDFF quantification, whereas AT T2* is considerably affected. Thus, a 20‐echo gradient‐echo acquisition enables a multiparametric analysis of both AT PDFF and T2* and may therefore improve MR‐based differentiation between white and brown fat.
Level of Evidence: 2
Technical Efficacy: Stage 2
J. Magn. Reson. Imaging 2019;50:424–434.</description><subject>Adipose tissue</subject><subject>brown fat</subject><subject>Chemical equilibrium</subject><subject>Clavicle</subject><subject>Computer simulation</subject><subject>Design of experiments</subject><subject>Echoes</subject><subject>Experimental design</subject><subject>fat spectrum</subject><subject>Field strength</subject><subject>Ground truth</subject><subject>In vivo methods and tests</subject><subject>Magnetic resonance imaging</subject><subject>Mapping</subject><subject>Measurement techniques</subject><subject>MRI</subject><subject>Organic chemistry</subject><subject>Original Research</subject><subject>PDFF mapping</subject><subject>Pelvis</subject><subject>Proton density (concentration)</subject><subject>Rank tests</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>T2 mapping</subject><subject>white fat</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpdkc9uFSEUxomxsX904xOQuHEzFQ4Mw2xMTOutNW00pq4Jw8AtN8wwhaGmuz5CE9_QJ3FubzXRDRxyvvzOx_kQek3JMSUE3m2G5I9BCEGfoQNaA1RQS_F8qUnNKipJs48Oc94QQtqW1y_QPiNCcpBwgH6eeudssuPs9ezHNc5lStoEfetNCTphl-KA16HMVgesez_FbPHscy4WdzrbHscRZz-UMOvRxpLx19PVCuuxx1eABz1NW2rJ21NjIL_uH6y5jnidFtgy9s9bm5vis599HF-iPadDtq-e7iP0ffXx6uRTdfHl7Pzkw0U1geC0arQQTasNsxY4ocQ5WjsiOy6lbGsHlLuOd2AdJyBMR2hHBO-MYbIzksqeHaH3O-5UusH2ZnGTdFBT8oNOdypqr_7tjP5areOtEo1oWAsL4O0TIMWbYvOsBp-NDWG3CQW0aTlbvNJF-uY_6SaWNC7fUwC1IIyBaBcV3al--GDv_jqhRG2DVtug1WPQ6vPlt_PHiv0GsKShXg</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Franz, Daniela</creator><creator>Diefenbach, Maximilian N.</creator><creator>Treibel, Franziska</creator><creator>Weidlich, Dominik</creator><creator>Syväri, Jan</creator><creator>Ruschke, Stefan</creator><creator>Wu, Mingming</creator><creator>Holzapfel, Christina</creator><creator>Drabsch, Theresa</creator><creator>Baum, Thomas</creator><creator>Eggers, Holger</creator><creator>Rummeny, Ernst J.</creator><creator>Hauner, Hans</creator><creator>Karampinos, Dimitrios C.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9658-6541</orcidid><orcidid>https://orcid.org/0000-0003-4922-3662</orcidid><orcidid>https://orcid.org/0000-0002-5581-885X</orcidid><orcidid>https://orcid.org/0000-0002-7598-8485</orcidid><orcidid>https://orcid.org/0000-0002-4574-5212</orcidid><orcidid>https://orcid.org/0000-0001-7842-2682</orcidid></search><sort><creationdate>201908</creationdate><title>Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T2 mapping using a 20‐echo gradient‐echo acquisition</title><author>Franz, Daniela ; Diefenbach, Maximilian N. ; Treibel, Franziska ; Weidlich, Dominik ; Syväri, Jan ; Ruschke, Stefan ; Wu, Mingming ; Holzapfel, Christina ; Drabsch, Theresa ; Baum, Thomas ; Eggers, Holger ; Rummeny, Ernst J. ; Hauner, Hans ; Karampinos, Dimitrios C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2641-7a6679ac3ee24010ff15f08b488895f214fb4b2ef4026cb01b064bcc38bc818d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adipose tissue</topic><topic>brown fat</topic><topic>Chemical equilibrium</topic><topic>Clavicle</topic><topic>Computer simulation</topic><topic>Design of experiments</topic><topic>Echoes</topic><topic>Experimental design</topic><topic>fat spectrum</topic><topic>Field strength</topic><topic>Ground truth</topic><topic>In vivo methods and tests</topic><topic>Magnetic resonance imaging</topic><topic>Mapping</topic><topic>Measurement techniques</topic><topic>MRI</topic><topic>Organic chemistry</topic><topic>Original Research</topic><topic>PDFF mapping</topic><topic>Pelvis</topic><topic>Proton density (concentration)</topic><topic>Rank tests</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>T2 mapping</topic><topic>white fat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franz, Daniela</creatorcontrib><creatorcontrib>Diefenbach, Maximilian N.</creatorcontrib><creatorcontrib>Treibel, Franziska</creatorcontrib><creatorcontrib>Weidlich, Dominik</creatorcontrib><creatorcontrib>Syväri, Jan</creatorcontrib><creatorcontrib>Ruschke, Stefan</creatorcontrib><creatorcontrib>Wu, Mingming</creatorcontrib><creatorcontrib>Holzapfel, Christina</creatorcontrib><creatorcontrib>Drabsch, Theresa</creatorcontrib><creatorcontrib>Baum, Thomas</creatorcontrib><creatorcontrib>Eggers, Holger</creatorcontrib><creatorcontrib>Rummeny, Ernst J.</creatorcontrib><creatorcontrib>Hauner, Hans</creatorcontrib><creatorcontrib>Karampinos, Dimitrios C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franz, Daniela</au><au>Diefenbach, Maximilian N.</au><au>Treibel, Franziska</au><au>Weidlich, Dominik</au><au>Syväri, Jan</au><au>Ruschke, Stefan</au><au>Wu, Mingming</au><au>Holzapfel, Christina</au><au>Drabsch, Theresa</au><au>Baum, Thomas</au><au>Eggers, Holger</au><au>Rummeny, Ernst J.</au><au>Hauner, Hans</au><au>Karampinos, Dimitrios C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T2 mapping using a 20‐echo gradient‐echo acquisition</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><date>2019-08</date><risdate>2019</risdate><volume>50</volume><issue>2</issue><spage>424</spage><epage>434</epage><pages>424-434</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background
Adipose tissue (AT) can be classified into white and brown/beige subtypes. Chemical shift encoding‐based water–fat MRI‐techniques allowing simultaneous mapping of proton density fat fraction (PDFF) and T2* result in a lower PDFF and a shorter T2* in brown compared with white AT. However, AT T2* values vary widely in the literature and are primarily based on 6‐echo data. Increasing the number of echoes in a multiecho gradient‐echo acquisition is expected to increase the precision of AT T2* mapping.
Purpose
1) To mitigate issues of current T2*‐measurement techniques through experimental design, and 2) to investigate gluteal and supraclavicular AT T2* and PDFF and their relationship using a 20‐echo gradient‐echo acquisition.
Study Type
Prospective.
Subjects
Twenty‐one healthy subjects.
Field Strength/Sequence Assessment
First, a ground truth signal evolution was simulated from a single‐T2* water–fat model. Second, a time‐interleaved 20‐echo gradient‐echo sequence with monopolar gradients of neck and abdomen/pelvis at 3 T was performed in vivo to determine supraclavicular and gluteal PDFF and T2*. Complex‐based water–fat separation was performed for the first 6 echoes and the full 20 echoes. AT depots were segmented.
Statistical Tests
Mann‐Whitney test, Wilcoxon signed‐rank test and simple linear regression analysis.
Results
Both PDFF and T2* differed significantly between supraclavicular and gluteal AT with 6 and 20 echoes (PDFF: P < 0.0001 each, T2*: P = 0.03 / P < 0.0001 for 6/20 echoes). 6‐echo T2* demonstrated higher standard deviations and broader ranges than 20‐echo T2*. Regression analyses revealed a strong relationship between PDFF and T2* values per AT compartment (R2 = 0.63 supraclavicular, R2 = 0.86 gluteal, P < 0.0001 each).
Data Conclusion
The present findings suggest that an increase in the number of sampled echoes beyond 6 does not affect AT PDFF quantification, whereas AT T2* is considerably affected. Thus, a 20‐echo gradient‐echo acquisition enables a multiparametric analysis of both AT PDFF and T2* and may therefore improve MR‐based differentiation between white and brown fat.
Level of Evidence: 2
Technical Efficacy: Stage 2
J. Magn. Reson. Imaging 2019;50:424–434.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30684282</pmid><doi>10.1002/jmri.26661</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9658-6541</orcidid><orcidid>https://orcid.org/0000-0003-4922-3662</orcidid><orcidid>https://orcid.org/0000-0002-5581-885X</orcidid><orcidid>https://orcid.org/0000-0002-7598-8485</orcidid><orcidid>https://orcid.org/0000-0002-4574-5212</orcidid><orcidid>https://orcid.org/0000-0001-7842-2682</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2019-08, Vol.50 (2), p.424-434 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6767392 |
source | Wiley Free Content; Wiley Online Library All Journals |
subjects | Adipose tissue brown fat Chemical equilibrium Clavicle Computer simulation Design of experiments Echoes Experimental design fat spectrum Field strength Ground truth In vivo methods and tests Magnetic resonance imaging Mapping Measurement techniques MRI Organic chemistry Original Research PDFF mapping Pelvis Proton density (concentration) Rank tests Regression analysis Statistical analysis Statistical tests T2 mapping white fat |
title | Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T2 mapping using a 20‐echo gradient‐echo acquisition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentiating%20supraclavicular%20from%20gluteal%20adipose%20tissue%20based%20on%20simultaneous%20PDFF%20and%20T2%20mapping%20using%20a%2020%E2%80%90echo%20gradient%E2%80%90echo%20acquisition&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Franz,%20Daniela&rft.date=2019-08&rft.volume=50&rft.issue=2&rft.spage=424&rft.epage=434&rft.pages=424-434&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.26661&rft_dat=%3Cproquest_pubme%3E2179436411%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2256033269&rft_id=info:pmid/30684282&rfr_iscdi=true |