Constitutive Models for the Prediction of the Hot Deformation Behavior of the 10%Cr Steel Alloy

The aim of this paper is to establish a reliable model that provides the best fit to the specific behavior of the flow stresses of the 10%Cr steel alloy at the time of hot deformation. Modified Johnson-Cook and strain-compensated Arrhenius-type (phenomenological models), in addition to two Artificia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2019-09, Vol.12 (18), p.2873
Hauptverfasser: Shokry, Abdallah, Gowid, Samer, Kharmanda, Ghias, Mahdi, Elsadig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page 2873
container_title Materials
container_volume 12
creator Shokry, Abdallah
Gowid, Samer
Kharmanda, Ghias
Mahdi, Elsadig
description The aim of this paper is to establish a reliable model that provides the best fit to the specific behavior of the flow stresses of the 10%Cr steel alloy at the time of hot deformation. Modified Johnson-Cook and strain-compensated Arrhenius-type (phenomenological models), in addition to two Artificial Neural Network (ANN) models were established with the view toward investigating their stress prediction performances. The ANN models were trained using Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM) algorithms. The prediction accuracy of the established models was evaluated using the following well-known statistical parameters: (a) correlation coefficient (R), (b) Average Absolute Relative Error (AARE), (c) Root Mean Squared Error (RMSE), and Relative Error (RE). The results showed that both of the modified Johnson-Cook and strain-compensated Arrhenius models could not competently predict the flow behavior. On the contrary, the results indicated that the two proposed ANN models precisely predicted the flow stress values and that the LM-trained ANN provided a superior performance over the SCG-trained model, as it yielded an RMSE of as low as 0.441 MPa.
doi_str_mv 10.3390/ma12182873
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6766015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548688444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-9d12a1b3bd4381e6a2557071575f0a570e2c21ddf933135bfd939325009801223</originalsourceid><addsrcrecordid>eNpdkVtLxDAQhYMouui--AOkIIII1dx6yYuw1isoCupzSNupG2mbNUkX9t8b3fWalwxzPk5mchDaJfiYMYFPOkUoyWmesTU0IkKkMRGcr_-qt9DYuVccDmOBFJtoixEuKKZshGRheue1H7yeQ3Rnamhd1Bgb-SlEDxZqXXlt-sg0n51r46NzCHqnPttnMFVzHfCVTvBBYaNHD9BGk7Y1ix200ajWwXh1b6Pny4un4jq-vb-6KSa3ccVx6mNRE6pIycqas5xAqmiSZDgjSZY0WIUSaEVJXTci7MCSsqkFE4wmGIscE0rZNjpd-s6GsoO6gt5b1cqZ1Z2yC2mUln-VXk_li5nLNEtTTJJgcLgysOZtAOdlp10Fbat6MIOTlOZp-MzlW_v_0Fcz2D6sJ2nC8zTPOeeBOlpSlTXOWWi-hyFYfkQnf6IL8N7v8b_Rr6DYO4AikaM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548688444</pqid></control><display><type>article</type><title>Constitutive Models for the Prediction of the Hot Deformation Behavior of the 10%Cr Steel Alloy</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Shokry, Abdallah ; Gowid, Samer ; Kharmanda, Ghias ; Mahdi, Elsadig</creator><creatorcontrib>Shokry, Abdallah ; Gowid, Samer ; Kharmanda, Ghias ; Mahdi, Elsadig</creatorcontrib><description>The aim of this paper is to establish a reliable model that provides the best fit to the specific behavior of the flow stresses of the 10%Cr steel alloy at the time of hot deformation. Modified Johnson-Cook and strain-compensated Arrhenius-type (phenomenological models), in addition to two Artificial Neural Network (ANN) models were established with the view toward investigating their stress prediction performances. The ANN models were trained using Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM) algorithms. The prediction accuracy of the established models was evaluated using the following well-known statistical parameters: (a) correlation coefficient (R), (b) Average Absolute Relative Error (AARE), (c) Root Mean Squared Error (RMSE), and Relative Error (RE). The results showed that both of the modified Johnson-Cook and strain-compensated Arrhenius models could not competently predict the flow behavior. On the contrary, the results indicated that the two proposed ANN models precisely predicted the flow stress values and that the LM-trained ANN provided a superior performance over the SCG-trained model, as it yielded an RMSE of as low as 0.441 MPa.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12182873</identifier><identifier>PMID: 31492023</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Aluminum alloys ; Artificial intelligence ; Artificial neural networks ; Chromium steels ; Constitutive models ; Correlation coefficients ; Datasets ; Deformation ; High temperature ; Magnesium alloys ; Mathematical models ; Metal forming ; Model accuracy ; Neural networks ; Neurons ; Root-mean-square errors ; Software ; Steel alloys ; Strain ; Strain hardening ; Yield strength</subject><ispartof>Materials, 2019-09, Vol.12 (18), p.2873</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-9d12a1b3bd4381e6a2557071575f0a570e2c21ddf933135bfd939325009801223</citedby><cites>FETCH-LOGICAL-c406t-9d12a1b3bd4381e6a2557071575f0a570e2c21ddf933135bfd939325009801223</cites><orcidid>0000-0001-8053-0164 ; 0000-0002-8344-9270 ; 0000-0001-9206-288X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766015/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766015/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31492023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shokry, Abdallah</creatorcontrib><creatorcontrib>Gowid, Samer</creatorcontrib><creatorcontrib>Kharmanda, Ghias</creatorcontrib><creatorcontrib>Mahdi, Elsadig</creatorcontrib><title>Constitutive Models for the Prediction of the Hot Deformation Behavior of the 10%Cr Steel Alloy</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The aim of this paper is to establish a reliable model that provides the best fit to the specific behavior of the flow stresses of the 10%Cr steel alloy at the time of hot deformation. Modified Johnson-Cook and strain-compensated Arrhenius-type (phenomenological models), in addition to two Artificial Neural Network (ANN) models were established with the view toward investigating their stress prediction performances. The ANN models were trained using Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM) algorithms. The prediction accuracy of the established models was evaluated using the following well-known statistical parameters: (a) correlation coefficient (R), (b) Average Absolute Relative Error (AARE), (c) Root Mean Squared Error (RMSE), and Relative Error (RE). The results showed that both of the modified Johnson-Cook and strain-compensated Arrhenius models could not competently predict the flow behavior. On the contrary, the results indicated that the two proposed ANN models precisely predicted the flow stress values and that the LM-trained ANN provided a superior performance over the SCG-trained model, as it yielded an RMSE of as low as 0.441 MPa.</description><subject>Algorithms</subject><subject>Aluminum alloys</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Chromium steels</subject><subject>Constitutive models</subject><subject>Correlation coefficients</subject><subject>Datasets</subject><subject>Deformation</subject><subject>High temperature</subject><subject>Magnesium alloys</subject><subject>Mathematical models</subject><subject>Metal forming</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Root-mean-square errors</subject><subject>Software</subject><subject>Steel alloys</subject><subject>Strain</subject><subject>Strain hardening</subject><subject>Yield strength</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVtLxDAQhYMouui--AOkIIII1dx6yYuw1isoCupzSNupG2mbNUkX9t8b3fWalwxzPk5mchDaJfiYMYFPOkUoyWmesTU0IkKkMRGcr_-qt9DYuVccDmOBFJtoixEuKKZshGRheue1H7yeQ3Rnamhd1Bgb-SlEDxZqXXlt-sg0n51r46NzCHqnPttnMFVzHfCVTvBBYaNHD9BGk7Y1ix200ajWwXh1b6Pny4un4jq-vb-6KSa3ccVx6mNRE6pIycqas5xAqmiSZDgjSZY0WIUSaEVJXTci7MCSsqkFE4wmGIscE0rZNjpd-s6GsoO6gt5b1cqZ1Z2yC2mUln-VXk_li5nLNEtTTJJgcLgysOZtAOdlp10Fbat6MIOTlOZp-MzlW_v_0Fcz2D6sJ2nC8zTPOeeBOlpSlTXOWWi-hyFYfkQnf6IL8N7v8b_Rr6DYO4AikaM</recordid><startdate>20190905</startdate><enddate>20190905</enddate><creator>Shokry, Abdallah</creator><creator>Gowid, Samer</creator><creator>Kharmanda, Ghias</creator><creator>Mahdi, Elsadig</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8053-0164</orcidid><orcidid>https://orcid.org/0000-0002-8344-9270</orcidid><orcidid>https://orcid.org/0000-0001-9206-288X</orcidid></search><sort><creationdate>20190905</creationdate><title>Constitutive Models for the Prediction of the Hot Deformation Behavior of the 10%Cr Steel Alloy</title><author>Shokry, Abdallah ; Gowid, Samer ; Kharmanda, Ghias ; Mahdi, Elsadig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-9d12a1b3bd4381e6a2557071575f0a570e2c21ddf933135bfd939325009801223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Aluminum alloys</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Chromium steels</topic><topic>Constitutive models</topic><topic>Correlation coefficients</topic><topic>Datasets</topic><topic>Deformation</topic><topic>High temperature</topic><topic>Magnesium alloys</topic><topic>Mathematical models</topic><topic>Metal forming</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Root-mean-square errors</topic><topic>Software</topic><topic>Steel alloys</topic><topic>Strain</topic><topic>Strain hardening</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shokry, Abdallah</creatorcontrib><creatorcontrib>Gowid, Samer</creatorcontrib><creatorcontrib>Kharmanda, Ghias</creatorcontrib><creatorcontrib>Mahdi, Elsadig</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shokry, Abdallah</au><au>Gowid, Samer</au><au>Kharmanda, Ghias</au><au>Mahdi, Elsadig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constitutive Models for the Prediction of the Hot Deformation Behavior of the 10%Cr Steel Alloy</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-09-05</date><risdate>2019</risdate><volume>12</volume><issue>18</issue><spage>2873</spage><pages>2873-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The aim of this paper is to establish a reliable model that provides the best fit to the specific behavior of the flow stresses of the 10%Cr steel alloy at the time of hot deformation. Modified Johnson-Cook and strain-compensated Arrhenius-type (phenomenological models), in addition to two Artificial Neural Network (ANN) models were established with the view toward investigating their stress prediction performances. The ANN models were trained using Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM) algorithms. The prediction accuracy of the established models was evaluated using the following well-known statistical parameters: (a) correlation coefficient (R), (b) Average Absolute Relative Error (AARE), (c) Root Mean Squared Error (RMSE), and Relative Error (RE). The results showed that both of the modified Johnson-Cook and strain-compensated Arrhenius models could not competently predict the flow behavior. On the contrary, the results indicated that the two proposed ANN models precisely predicted the flow stress values and that the LM-trained ANN provided a superior performance over the SCG-trained model, as it yielded an RMSE of as low as 0.441 MPa.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31492023</pmid><doi>10.3390/ma12182873</doi><orcidid>https://orcid.org/0000-0001-8053-0164</orcidid><orcidid>https://orcid.org/0000-0002-8344-9270</orcidid><orcidid>https://orcid.org/0000-0001-9206-288X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2019-09, Vol.12 (18), p.2873
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6766015
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Algorithms
Aluminum alloys
Artificial intelligence
Artificial neural networks
Chromium steels
Constitutive models
Correlation coefficients
Datasets
Deformation
High temperature
Magnesium alloys
Mathematical models
Metal forming
Model accuracy
Neural networks
Neurons
Root-mean-square errors
Software
Steel alloys
Strain
Strain hardening
Yield strength
title Constitutive Models for the Prediction of the Hot Deformation Behavior of the 10%Cr Steel Alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constitutive%20Models%20for%20the%20Prediction%20of%20the%20Hot%20Deformation%20Behavior%20of%20the%2010%25Cr%20Steel%20Alloy&rft.jtitle=Materials&rft.au=Shokry,%20Abdallah&rft.date=2019-09-05&rft.volume=12&rft.issue=18&rft.spage=2873&rft.pages=2873-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12182873&rft_dat=%3Cproquest_pubme%3E2548688444%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548688444&rft_id=info:pmid/31492023&rfr_iscdi=true