An ensemble of cryo-EM structures of TRiC reveal its conformational landscape and subunit specificity

TRiC/CCT assists the folding of ∼10% of cytosolic proteins through an ATP-driven conformational cycle and is essential in maintaining protein homeostasis. Here, we determined an ensemble of cryo-electron microscopy (cryo-EM) structures of yeast TRiC at various nucleotide concentrations, with 4 open-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-09, Vol.116 (39), p.19513-19522
Hauptverfasser: Jin, Mingliang, Han, Wenyu, Liu, Caixuan, Zang, Yunxiang, Li, Jiawei, Wang, Fangfang, Wang, Yanxing, Cong, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19522
container_issue 39
container_start_page 19513
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Jin, Mingliang
Han, Wenyu
Liu, Caixuan
Zang, Yunxiang
Li, Jiawei
Wang, Fangfang
Wang, Yanxing
Cong, Yao
description TRiC/CCT assists the folding of ∼10% of cytosolic proteins through an ATP-driven conformational cycle and is essential in maintaining protein homeostasis. Here, we determined an ensemble of cryo-electron microscopy (cryo-EM) structures of yeast TRiC at various nucleotide concentrations, with 4 open-state maps resolved at near-atomic resolutions, and a closed-state map at atomic resolution, revealing an extra layer of an unforeseen N-terminal allosteric network. We found that, during TRiC ring closure, the CCT7 subunit moves first, responding to nucleotide binding; CCT4 is the last to bind ATP, serving as an ATP sensor; and CCT8 remains ADP-bound and is hardly involved in the ATPase-cycle in our experimental conditions; overall, yeast TRiC consumes nucleotide in a 2-ring positively coordinated manner. Our results depict a thorough picture of the TRiC conformational landscape and its allosteric transitions from the open to closed states in more structural detail and offer insights into TRiC subunit specificity in ATP consumption and ring closure, and potentially in substrate processing.
doi_str_mv 10.1073/pnas.1903976116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6765261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26855193</jstor_id><sourcerecordid>26855193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-35d86b2becfe121d6219cf380169439f63de0389f676569d6bd772a3aa3e760c3</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpaTZpzz21CHrJxYk-bFm6FMKSpIWEQEnPQpbHrRZbciU5sP--MptuPy6jYeaZlxm9CL2j5IKSll_O3qQLqghXraBUvEAbShStRK3IS7QhhLWVrFl9gk5T2hFCVCPJa3TCaa2YpGKD4Mpj8AmmbgQcBmzjPlTX9zjluNi8REhr9fGr2-IIT2BG7HLCNvghxMlkF3wpjcb3yZoZcElwWrrFu4zTDNYNzrq8f4NeDWZM8Pb5PUPfbq4ft5-ru4fbL9uru8o2ROWKN70UHevADkAZ7QWjyg5cEipUzdUgeA-Ey5K0ohGqF13ftsxwYzi0glh-hj4ddOelm6C34HM0o56jm0zc62Cc_rfj3Q_9PTzpVZAJWgTOnwVi-LlAynpyycJYLoSwJM2YFKoERgr68T90F5ZYvmOllGobqXhdqMsDZWNIKcJwXIYSvVqoVwv1HwvLxIe_bzjyvz0rwPsDsEs5xGOfCdk0VHH-C7jYooo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299758934</pqid></control><display><type>article</type><title>An ensemble of cryo-EM structures of TRiC reveal its conformational landscape and subunit specificity</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jin, Mingliang ; Han, Wenyu ; Liu, Caixuan ; Zang, Yunxiang ; Li, Jiawei ; Wang, Fangfang ; Wang, Yanxing ; Cong, Yao</creator><creatorcontrib>Jin, Mingliang ; Han, Wenyu ; Liu, Caixuan ; Zang, Yunxiang ; Li, Jiawei ; Wang, Fangfang ; Wang, Yanxing ; Cong, Yao</creatorcontrib><description>TRiC/CCT assists the folding of ∼10% of cytosolic proteins through an ATP-driven conformational cycle and is essential in maintaining protein homeostasis. Here, we determined an ensemble of cryo-electron microscopy (cryo-EM) structures of yeast TRiC at various nucleotide concentrations, with 4 open-state maps resolved at near-atomic resolutions, and a closed-state map at atomic resolution, revealing an extra layer of an unforeseen N-terminal allosteric network. We found that, during TRiC ring closure, the CCT7 subunit moves first, responding to nucleotide binding; CCT4 is the last to bind ATP, serving as an ATP sensor; and CCT8 remains ADP-bound and is hardly involved in the ATPase-cycle in our experimental conditions; overall, yeast TRiC consumes nucleotide in a 2-ring positively coordinated manner. Our results depict a thorough picture of the TRiC conformational landscape and its allosteric transitions from the open to closed states in more structural detail and offer insights into TRiC subunit specificity in ATP consumption and ring closure, and potentially in substrate processing.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1903976116</identifier><identifier>PMID: 31492816</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine diphosphate ; Adenosine triphosphatase ; Adenosine Triphosphatases - metabolism ; Adenosine triphosphate ; Allosteric properties ; ATP ; Biological Sciences ; Chaperonin Containing TCP-1 - metabolism ; Chaperonin Containing TCP-1 - physiology ; Chaperonin Containing TCP-1 - ultrastructure ; Chaperonins - metabolism ; Cryoelectron Microscopy - methods ; Electron microscopy ; Homeostasis ; Models, Molecular ; Molecular Conformation ; Nucleotides ; PNAS Plus ; Protein Folding ; Protein Subunits - metabolism ; Proteins ; Proteostasis ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Structure-Activity Relationship ; Substrate Specificity - physiology ; Substrates ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-09, Vol.116 (39), p.19513-19522</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Sep 24, 2019</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-35d86b2becfe121d6219cf380169439f63de0389f676569d6bd772a3aa3e760c3</citedby><cites>FETCH-LOGICAL-c509t-35d86b2becfe121d6219cf380169439f63de0389f676569d6bd772a3aa3e760c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26855193$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26855193$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31492816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Mingliang</creatorcontrib><creatorcontrib>Han, Wenyu</creatorcontrib><creatorcontrib>Liu, Caixuan</creatorcontrib><creatorcontrib>Zang, Yunxiang</creatorcontrib><creatorcontrib>Li, Jiawei</creatorcontrib><creatorcontrib>Wang, Fangfang</creatorcontrib><creatorcontrib>Wang, Yanxing</creatorcontrib><creatorcontrib>Cong, Yao</creatorcontrib><title>An ensemble of cryo-EM structures of TRiC reveal its conformational landscape and subunit specificity</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>TRiC/CCT assists the folding of ∼10% of cytosolic proteins through an ATP-driven conformational cycle and is essential in maintaining protein homeostasis. Here, we determined an ensemble of cryo-electron microscopy (cryo-EM) structures of yeast TRiC at various nucleotide concentrations, with 4 open-state maps resolved at near-atomic resolutions, and a closed-state map at atomic resolution, revealing an extra layer of an unforeseen N-terminal allosteric network. We found that, during TRiC ring closure, the CCT7 subunit moves first, responding to nucleotide binding; CCT4 is the last to bind ATP, serving as an ATP sensor; and CCT8 remains ADP-bound and is hardly involved in the ATPase-cycle in our experimental conditions; overall, yeast TRiC consumes nucleotide in a 2-ring positively coordinated manner. Our results depict a thorough picture of the TRiC conformational landscape and its allosteric transitions from the open to closed states in more structural detail and offer insights into TRiC subunit specificity in ATP consumption and ring closure, and potentially in substrate processing.</description><subject>Adenosine diphosphate</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine triphosphate</subject><subject>Allosteric properties</subject><subject>ATP</subject><subject>Biological Sciences</subject><subject>Chaperonin Containing TCP-1 - metabolism</subject><subject>Chaperonin Containing TCP-1 - physiology</subject><subject>Chaperonin Containing TCP-1 - ultrastructure</subject><subject>Chaperonins - metabolism</subject><subject>Cryoelectron Microscopy - methods</subject><subject>Electron microscopy</subject><subject>Homeostasis</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Nucleotides</subject><subject>PNAS Plus</subject><subject>Protein Folding</subject><subject>Protein Subunits - metabolism</subject><subject>Proteins</subject><subject>Proteostasis</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity - physiology</subject><subject>Substrates</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1r3DAQhkVpaTZpzz21CHrJxYk-bFm6FMKSpIWEQEnPQpbHrRZbciU5sP--MptuPy6jYeaZlxm9CL2j5IKSll_O3qQLqghXraBUvEAbShStRK3IS7QhhLWVrFl9gk5T2hFCVCPJa3TCaa2YpGKD4Mpj8AmmbgQcBmzjPlTX9zjluNi8REhr9fGr2-IIT2BG7HLCNvghxMlkF3wpjcb3yZoZcElwWrrFu4zTDNYNzrq8f4NeDWZM8Pb5PUPfbq4ft5-ru4fbL9uru8o2ROWKN70UHevADkAZ7QWjyg5cEipUzdUgeA-Ey5K0ohGqF13ftsxwYzi0glh-hj4ddOelm6C34HM0o56jm0zc62Cc_rfj3Q_9PTzpVZAJWgTOnwVi-LlAynpyycJYLoSwJM2YFKoERgr68T90F5ZYvmOllGobqXhdqMsDZWNIKcJwXIYSvVqoVwv1HwvLxIe_bzjyvz0rwPsDsEs5xGOfCdk0VHH-C7jYooo</recordid><startdate>20190924</startdate><enddate>20190924</enddate><creator>Jin, Mingliang</creator><creator>Han, Wenyu</creator><creator>Liu, Caixuan</creator><creator>Zang, Yunxiang</creator><creator>Li, Jiawei</creator><creator>Wang, Fangfang</creator><creator>Wang, Yanxing</creator><creator>Cong, Yao</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190924</creationdate><title>An ensemble of cryo-EM structures of TRiC reveal its conformational landscape and subunit specificity</title><author>Jin, Mingliang ; Han, Wenyu ; Liu, Caixuan ; Zang, Yunxiang ; Li, Jiawei ; Wang, Fangfang ; Wang, Yanxing ; Cong, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-35d86b2becfe121d6219cf380169439f63de0389f676569d6bd772a3aa3e760c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenosine diphosphate</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine triphosphate</topic><topic>Allosteric properties</topic><topic>ATP</topic><topic>Biological Sciences</topic><topic>Chaperonin Containing TCP-1 - metabolism</topic><topic>Chaperonin Containing TCP-1 - physiology</topic><topic>Chaperonin Containing TCP-1 - ultrastructure</topic><topic>Chaperonins - metabolism</topic><topic>Cryoelectron Microscopy - methods</topic><topic>Electron microscopy</topic><topic>Homeostasis</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Nucleotides</topic><topic>PNAS Plus</topic><topic>Protein Folding</topic><topic>Protein Subunits - metabolism</topic><topic>Proteins</topic><topic>Proteostasis</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity - physiology</topic><topic>Substrates</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Mingliang</creatorcontrib><creatorcontrib>Han, Wenyu</creatorcontrib><creatorcontrib>Liu, Caixuan</creatorcontrib><creatorcontrib>Zang, Yunxiang</creatorcontrib><creatorcontrib>Li, Jiawei</creatorcontrib><creatorcontrib>Wang, Fangfang</creatorcontrib><creatorcontrib>Wang, Yanxing</creatorcontrib><creatorcontrib>Cong, Yao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Mingliang</au><au>Han, Wenyu</au><au>Liu, Caixuan</au><au>Zang, Yunxiang</au><au>Li, Jiawei</au><au>Wang, Fangfang</au><au>Wang, Yanxing</au><au>Cong, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ensemble of cryo-EM structures of TRiC reveal its conformational landscape and subunit specificity</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-09-24</date><risdate>2019</risdate><volume>116</volume><issue>39</issue><spage>19513</spage><epage>19522</epage><pages>19513-19522</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>TRiC/CCT assists the folding of ∼10% of cytosolic proteins through an ATP-driven conformational cycle and is essential in maintaining protein homeostasis. Here, we determined an ensemble of cryo-electron microscopy (cryo-EM) structures of yeast TRiC at various nucleotide concentrations, with 4 open-state maps resolved at near-atomic resolutions, and a closed-state map at atomic resolution, revealing an extra layer of an unforeseen N-terminal allosteric network. We found that, during TRiC ring closure, the CCT7 subunit moves first, responding to nucleotide binding; CCT4 is the last to bind ATP, serving as an ATP sensor; and CCT8 remains ADP-bound and is hardly involved in the ATPase-cycle in our experimental conditions; overall, yeast TRiC consumes nucleotide in a 2-ring positively coordinated manner. Our results depict a thorough picture of the TRiC conformational landscape and its allosteric transitions from the open to closed states in more structural detail and offer insights into TRiC subunit specificity in ATP consumption and ring closure, and potentially in substrate processing.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31492816</pmid><doi>10.1073/pnas.1903976116</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-09, Vol.116 (39), p.19513-19522
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6765261
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenosine diphosphate
Adenosine triphosphatase
Adenosine Triphosphatases - metabolism
Adenosine triphosphate
Allosteric properties
ATP
Biological Sciences
Chaperonin Containing TCP-1 - metabolism
Chaperonin Containing TCP-1 - physiology
Chaperonin Containing TCP-1 - ultrastructure
Chaperonins - metabolism
Cryoelectron Microscopy - methods
Electron microscopy
Homeostasis
Models, Molecular
Molecular Conformation
Nucleotides
PNAS Plus
Protein Folding
Protein Subunits - metabolism
Proteins
Proteostasis
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Structure-Activity Relationship
Substrate Specificity - physiology
Substrates
Yeast
Yeasts
title An ensemble of cryo-EM structures of TRiC reveal its conformational landscape and subunit specificity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ensemble%20of%20cryo-EM%20structures%20of%20TRiC%20reveal%20its%20conformational%20landscape%20and%20subunit%20specificity&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jin,%20Mingliang&rft.date=2019-09-24&rft.volume=116&rft.issue=39&rft.spage=19513&rft.epage=19522&rft.pages=19513-19522&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1903976116&rft_dat=%3Cjstor_pubme%3E26855193%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299758934&rft_id=info:pmid/31492816&rft_jstor_id=26855193&rfr_iscdi=true