Mathematical Models of Cancer: When to Predict Novel Therapies, and When Not to
The number of publications on mathematical modeling of cancer is growing at an exponential rate, according to PubMed records, provided by the US National Library of Medicine and the National Institutes of Health. Seminal papers have initiated and promoted mathematical modeling of cancer and have hel...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2019-10, Vol.81 (10), p.3722-3731 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3731 |
---|---|
container_issue | 10 |
container_start_page | 3722 |
container_title | Bulletin of mathematical biology |
container_volume | 81 |
creator | Brady, Renee Enderling, Heiko |
description | The number of publications on mathematical modeling of cancer is growing at an exponential rate, according to PubMed records, provided by the US National Library of Medicine and the National Institutes of Health. Seminal papers have initiated and promoted mathematical modeling of cancer and have helped define the field of mathematical oncology (Norton and Simon in J Natl Cancer Inst 58:1735–1741,
1977
; Norton in Can Res 48:7067–7071,
1988
; Hahnfeldt et al. in Can Res 59:4770–4775,
1999
; Anderson et al. in Comput Math Methods Med 2:129–154,
2000
.
https://doi.org/10.1080/10273660008833042
; Michor et al. in Nature 435:1267–1270,
2005
.
https://doi.org/10.1038/nature03669
; Anderson et al. in Cell 127:905–915,
2006
.
https://doi.org/10.1016/j.cell.2006.09.042
; Benzekry et al. in PLoS Comput Biol 10:e1003800,
2014
.
https://doi.org/10.1371/journal.pcbi.1003800
). Following the introduction of undergraduate and graduate programs in mathematical biology, we have begun to see curricula developing with specific and exclusive focus on mathematical oncology. In 2018, 218 articles on mathematical modeling of cancer were published in various journals, including not only traditional modeling journals like the Bulletin of Mathematical Biology and the Journal of Theoretical Biology, but also publications in renowned science, biology, and cancer journals with tremendous impact in the cancer field (Cell, Cancer Research, Clinical Cancer Research, Cancer Discovery, Scientific Reports, PNAS, PLoS Biology, Nature Communications, eLife, etc). This shows the breadth of cancer models that are being developed for multiple purposes. While some models are phenomenological in nature following a bottom-up approach, other models are more top-down data-driven. Here, we discuss the emerging trend in mathematical oncology publications to predict novel, optimal, sometimes even patient-specific treatments, and propose a convention when to use a model to predict novel treatments and, probably more importantly, when not to. |
doi_str_mv | 10.1007/s11538-019-00640-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6764933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2263323864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-ca970f9ffcf80c51d0d6d54bed736d9716a78ec92bbd1c05e4202ec062eb8cea3</originalsourceid><addsrcrecordid>eNp9kUlvFDEQRi0EIpPAH-CALHHhkIby0l44IKERm5SFQxBHy21XZzrqaQ92TxT-PYYOYTlw8qHe95VLj5AnDF4wAP2yMNYK0wCzDYCS0NzcIyvWct5YBfw-WQFY3hgu4YAclnIFNWSFfUgOBBPCaMlW5PzUzxvc-nkIfqSnKeJYaOrp2k8B8yv6ZYMTnRP9lDEOYaZn6RpHerHB7HcDlmPqp7hAZ2mu4CPyoPdjwce37xH5_O7txfpDc3L-_uP6zUkTpJZzE7zV0Nu-D72B0LIIUcVWdhi1UNFqprw2GCzvusgCtCg5cAygOHYmoBdH5PXSu9t3W4wBpzn70e3ysPX5m0t-cH9PpmHjLtO1U1pJK0QteH5bkNPXPZbZbYcScBz9hGlfHOdKCC6MkhV99g96lfZ5qudVyhqtjGS8UnyhQk6lZOzvPsPA_fDlFl-u-nI_fbmbGnr65xl3kV-CKiAWoNTRdIn59-7_1H4H3TWhWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298768412</pqid></control><display><type>article</type><title>Mathematical Models of Cancer: When to Predict Novel Therapies, and When Not to</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Brady, Renee ; Enderling, Heiko</creator><creatorcontrib>Brady, Renee ; Enderling, Heiko</creatorcontrib><description>The number of publications on mathematical modeling of cancer is growing at an exponential rate, according to PubMed records, provided by the US National Library of Medicine and the National Institutes of Health. Seminal papers have initiated and promoted mathematical modeling of cancer and have helped define the field of mathematical oncology (Norton and Simon in J Natl Cancer Inst 58:1735–1741,
1977
; Norton in Can Res 48:7067–7071,
1988
; Hahnfeldt et al. in Can Res 59:4770–4775,
1999
; Anderson et al. in Comput Math Methods Med 2:129–154,
2000
.
https://doi.org/10.1080/10273660008833042
; Michor et al. in Nature 435:1267–1270,
2005
.
https://doi.org/10.1038/nature03669
; Anderson et al. in Cell 127:905–915,
2006
.
https://doi.org/10.1016/j.cell.2006.09.042
; Benzekry et al. in PLoS Comput Biol 10:e1003800,
2014
.
https://doi.org/10.1371/journal.pcbi.1003800
). Following the introduction of undergraduate and graduate programs in mathematical biology, we have begun to see curricula developing with specific and exclusive focus on mathematical oncology. In 2018, 218 articles on mathematical modeling of cancer were published in various journals, including not only traditional modeling journals like the Bulletin of Mathematical Biology and the Journal of Theoretical Biology, but also publications in renowned science, biology, and cancer journals with tremendous impact in the cancer field (Cell, Cancer Research, Clinical Cancer Research, Cancer Discovery, Scientific Reports, PNAS, PLoS Biology, Nature Communications, eLife, etc). This shows the breadth of cancer models that are being developed for multiple purposes. While some models are phenomenological in nature following a bottom-up approach, other models are more top-down data-driven. Here, we discuss the emerging trend in mathematical oncology publications to predict novel, optimal, sometimes even patient-specific treatments, and propose a convention when to use a model to predict novel treatments and, probably more importantly, when not to.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-019-00640-x</identifier><identifier>PMID: 31338741</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biology ; Cancer ; Cell Biology ; Computer Simulation ; Curricula ; Documents ; Humans ; Life Sciences ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Medical Oncology - statistics & numerical data ; Medical Oncology - trends ; Medical research ; Models, Biological ; Neoplasms - therapy ; On the Profession ; Oncology ; Publishing - statistics & numerical data ; Publishing - trends ; Translational Medical Research - statistics & numerical data ; Translational Medical Research - trends</subject><ispartof>Bulletin of mathematical biology, 2019-10, Vol.81 (10), p.3722-3731</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-ca970f9ffcf80c51d0d6d54bed736d9716a78ec92bbd1c05e4202ec062eb8cea3</citedby><cites>FETCH-LOGICAL-c474t-ca970f9ffcf80c51d0d6d54bed736d9716a78ec92bbd1c05e4202ec062eb8cea3</cites><orcidid>0000-0002-9696-6410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-019-00640-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-019-00640-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31338741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brady, Renee</creatorcontrib><creatorcontrib>Enderling, Heiko</creatorcontrib><title>Mathematical Models of Cancer: When to Predict Novel Therapies, and When Not to</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>The number of publications on mathematical modeling of cancer is growing at an exponential rate, according to PubMed records, provided by the US National Library of Medicine and the National Institutes of Health. Seminal papers have initiated and promoted mathematical modeling of cancer and have helped define the field of mathematical oncology (Norton and Simon in J Natl Cancer Inst 58:1735–1741,
1977
; Norton in Can Res 48:7067–7071,
1988
; Hahnfeldt et al. in Can Res 59:4770–4775,
1999
; Anderson et al. in Comput Math Methods Med 2:129–154,
2000
.
https://doi.org/10.1080/10273660008833042
; Michor et al. in Nature 435:1267–1270,
2005
.
https://doi.org/10.1038/nature03669
; Anderson et al. in Cell 127:905–915,
2006
.
https://doi.org/10.1016/j.cell.2006.09.042
; Benzekry et al. in PLoS Comput Biol 10:e1003800,
2014
.
https://doi.org/10.1371/journal.pcbi.1003800
). Following the introduction of undergraduate and graduate programs in mathematical biology, we have begun to see curricula developing with specific and exclusive focus on mathematical oncology. In 2018, 218 articles on mathematical modeling of cancer were published in various journals, including not only traditional modeling journals like the Bulletin of Mathematical Biology and the Journal of Theoretical Biology, but also publications in renowned science, biology, and cancer journals with tremendous impact in the cancer field (Cell, Cancer Research, Clinical Cancer Research, Cancer Discovery, Scientific Reports, PNAS, PLoS Biology, Nature Communications, eLife, etc). This shows the breadth of cancer models that are being developed for multiple purposes. While some models are phenomenological in nature following a bottom-up approach, other models are more top-down data-driven. Here, we discuss the emerging trend in mathematical oncology publications to predict novel, optimal, sometimes even patient-specific treatments, and propose a convention when to use a model to predict novel treatments and, probably more importantly, when not to.</description><subject>Biology</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Computer Simulation</subject><subject>Curricula</subject><subject>Documents</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Medical Oncology - statistics & numerical data</subject><subject>Medical Oncology - trends</subject><subject>Medical research</subject><subject>Models, Biological</subject><subject>Neoplasms - therapy</subject><subject>On the Profession</subject><subject>Oncology</subject><subject>Publishing - statistics & numerical data</subject><subject>Publishing - trends</subject><subject>Translational Medical Research - statistics & numerical data</subject><subject>Translational Medical Research - trends</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUlvFDEQRi0EIpPAH-CALHHhkIby0l44IKERm5SFQxBHy21XZzrqaQ92TxT-PYYOYTlw8qHe95VLj5AnDF4wAP2yMNYK0wCzDYCS0NzcIyvWct5YBfw-WQFY3hgu4YAclnIFNWSFfUgOBBPCaMlW5PzUzxvc-nkIfqSnKeJYaOrp2k8B8yv6ZYMTnRP9lDEOYaZn6RpHerHB7HcDlmPqp7hAZ2mu4CPyoPdjwce37xH5_O7txfpDc3L-_uP6zUkTpJZzE7zV0Nu-D72B0LIIUcVWdhi1UNFqprw2GCzvusgCtCg5cAygOHYmoBdH5PXSu9t3W4wBpzn70e3ysPX5m0t-cH9PpmHjLtO1U1pJK0QteH5bkNPXPZbZbYcScBz9hGlfHOdKCC6MkhV99g96lfZ5qudVyhqtjGS8UnyhQk6lZOzvPsPA_fDlFl-u-nI_fbmbGnr65xl3kV-CKiAWoNTRdIn59-7_1H4H3TWhWg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Brady, Renee</creator><creator>Enderling, Heiko</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9696-6410</orcidid></search><sort><creationdate>20191001</creationdate><title>Mathematical Models of Cancer: When to Predict Novel Therapies, and When Not to</title><author>Brady, Renee ; Enderling, Heiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-ca970f9ffcf80c51d0d6d54bed736d9716a78ec92bbd1c05e4202ec062eb8cea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biology</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Computer Simulation</topic><topic>Curricula</topic><topic>Documents</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Medical Oncology - statistics & numerical data</topic><topic>Medical Oncology - trends</topic><topic>Medical research</topic><topic>Models, Biological</topic><topic>Neoplasms - therapy</topic><topic>On the Profession</topic><topic>Oncology</topic><topic>Publishing - statistics & numerical data</topic><topic>Publishing - trends</topic><topic>Translational Medical Research - statistics & numerical data</topic><topic>Translational Medical Research - trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brady, Renee</creatorcontrib><creatorcontrib>Enderling, Heiko</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brady, Renee</au><au>Enderling, Heiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Models of Cancer: When to Predict Novel Therapies, and When Not to</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>81</volume><issue>10</issue><spage>3722</spage><epage>3731</epage><pages>3722-3731</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>The number of publications on mathematical modeling of cancer is growing at an exponential rate, according to PubMed records, provided by the US National Library of Medicine and the National Institutes of Health. Seminal papers have initiated and promoted mathematical modeling of cancer and have helped define the field of mathematical oncology (Norton and Simon in J Natl Cancer Inst 58:1735–1741,
1977
; Norton in Can Res 48:7067–7071,
1988
; Hahnfeldt et al. in Can Res 59:4770–4775,
1999
; Anderson et al. in Comput Math Methods Med 2:129–154,
2000
.
https://doi.org/10.1080/10273660008833042
; Michor et al. in Nature 435:1267–1270,
2005
.
https://doi.org/10.1038/nature03669
; Anderson et al. in Cell 127:905–915,
2006
.
https://doi.org/10.1016/j.cell.2006.09.042
; Benzekry et al. in PLoS Comput Biol 10:e1003800,
2014
.
https://doi.org/10.1371/journal.pcbi.1003800
). Following the introduction of undergraduate and graduate programs in mathematical biology, we have begun to see curricula developing with specific and exclusive focus on mathematical oncology. In 2018, 218 articles on mathematical modeling of cancer were published in various journals, including not only traditional modeling journals like the Bulletin of Mathematical Biology and the Journal of Theoretical Biology, but also publications in renowned science, biology, and cancer journals with tremendous impact in the cancer field (Cell, Cancer Research, Clinical Cancer Research, Cancer Discovery, Scientific Reports, PNAS, PLoS Biology, Nature Communications, eLife, etc). This shows the breadth of cancer models that are being developed for multiple purposes. While some models are phenomenological in nature following a bottom-up approach, other models are more top-down data-driven. Here, we discuss the emerging trend in mathematical oncology publications to predict novel, optimal, sometimes even patient-specific treatments, and propose a convention when to use a model to predict novel treatments and, probably more importantly, when not to.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31338741</pmid><doi>10.1007/s11538-019-00640-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9696-6410</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2019-10, Vol.81 (10), p.3722-3731 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6764933 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Biology Cancer Cell Biology Computer Simulation Curricula Documents Humans Life Sciences Mathematical analysis Mathematical and Computational Biology Mathematical Concepts Mathematical models Mathematics Mathematics and Statistics Medical Oncology - statistics & numerical data Medical Oncology - trends Medical research Models, Biological Neoplasms - therapy On the Profession Oncology Publishing - statistics & numerical data Publishing - trends Translational Medical Research - statistics & numerical data Translational Medical Research - trends |
title | Mathematical Models of Cancer: When to Predict Novel Therapies, and When Not to |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Models%20of%20Cancer:%20When%20to%20Predict%20Novel%20Therapies,%20and%20When%20Not%20to&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Brady,%20Renee&rft.date=2019-10-01&rft.volume=81&rft.issue=10&rft.spage=3722&rft.epage=3731&rft.pages=3722-3731&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-019-00640-x&rft_dat=%3Cproquest_pubme%3E2263323864%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298768412&rft_id=info:pmid/31338741&rfr_iscdi=true |