Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk

We address the challenge of detecting the contribution of noncoding mutations to disease with a deep-learning-based framework that predicts the specific regulatory effects and the deleterious impact of genetic variants. Applying this framework to 1,790 autism spectrum disorder (ASD) simplex families...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2019-06, Vol.51 (6), p.973-980
Hauptverfasser: Zhou, Jian, Park, Christopher Y., Theesfeld, Chandra L., Wong, Aaron K., Yuan, Yuan, Scheckel, Claudia, Fak, John J., Funk, Julien, Yao, Kevin, Tajima, Yoko, Packer, Alan, Darnell, Robert B., Troyanskaya, Olga G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!