Selective Electrical Silencing of Mammalian Neurons In Vitro by the Use of Invertebrate Ligand-Gated Chloride Channels
Selectively reducing the excitability of specific neurons will (1) allow for the creation of animal models of human neurological disorders and (2) provide insight into the global function of specific sets of neurons. We focus on a combined genetic and pharmacological approach to silence neurons elec...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2002-09, Vol.22 (17), p.7373-7379 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7379 |
---|---|
container_issue | 17 |
container_start_page | 7373 |
container_title | The Journal of neuroscience |
container_volume | 22 |
creator | Slimko, Eric M McKinney, Sheri Anderson, David J Davidson, Norman Lester, Henry A |
description | Selectively reducing the excitability of specific neurons will (1) allow for the creation of animal models of human neurological disorders and (2) provide insight into the global function of specific sets of neurons. We focus on a combined genetic and pharmacological approach to silence neurons electrically. We express invertebrate ivermectin (IVM)-sensitive chloride channels (Caenorhabditis elegans GluCl alpha and beta) with a Sindbis virus and then activate these channels with IVM to produce inhibition via a Cl- conductance. We constructed a three-cistron Sindbis virus that expresses the alpha and beta subunits of a glutamate-gated chloride channel (GluCl) along with the green fluorescent protein (EGFP) marker. Expression of the C. elegans channel does not affect the normal spike activity or GABA/glutamate postsynaptic currents of cultured embryonic day 18 hippocampal neurons. At concentrations as low as 5 nm, IVM activates a Cl- current large enough to silence infected neurons effectively. This conductance reverses in 8 hr. These low concentrations of IVM do not potentiate GABA responses. Comparable results are observed with plasmid transfection of yellow fluorescent protein-tagged (EYFP) GluCl alpha and cyan fluorescent protein-tagged (ECFP) GluCl beta. The present study provides an in vitro model mimicking conditions that can be obtained in transgenic mice and in viral-mediated gene therapy. These experiments demonstrate the feasibility of using invertebrate ligand-activated Cl- channels as an approach to modulate excitability. |
doi_str_mv | 10.1523/jneurosci.22-17-07373.2002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6757961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72031964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-41ce7bb183fa8e010cd190bd194bd734c8928860a4e52949dc90aa5db43e7d03</originalsourceid><addsrcrecordid>eNqFkV1v0zAUhiMEYmXwF5DFBVylHH8kTrhAQlXZisom0Y1by3FOG0-us9lpq_37ObTi44ob-0h-zmsfP1n2jsKUFox_vPO4C300dspYTmUOkks-ZQDsWTZJRJ0zAfR5NgEmIS-FFGfZqxjvAEAClS-zM8poXRZFNcn2K3RoBrtHMh-LYI12ZGUdemP9hvRr8l1vt9pZ7cnVeK-PZOHJTzuEnjSPZOiQ3EYcwYXfYxiwCXpAsrQb7dv8ItUtmXWuD7bFVGjv0cXX2Yu1dhHfnPbz7Obr_GZ2mS-vLxazL8vcCM6HXFCDsmloxde6QqBgWlpDkxbRtJILU9WsqkrQAtPYom5NDVoXbSM4yhb4efb5GHu_a7bYGvRD0E7dB7vV4VH12qp_T7zt1Kbfq1IWsi5pCnh_Cgj9ww7joLY2GnROe-x3UUkGPH2l-C9IK8mhLsoEfjqCJimMAde_X0NBjXrVt6v57Y_r1WyhGFNUql961ag3Nb_9e54_rSefCfhwBDq76Q42oIrJnUs4VYfD4Rg45vEnTQ2y5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18730956</pqid></control><display><type>article</type><title>Selective Electrical Silencing of Mammalian Neurons In Vitro by the Use of Invertebrate Ligand-Gated Chloride Channels</title><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Slimko, Eric M ; McKinney, Sheri ; Anderson, David J ; Davidson, Norman ; Lester, Henry A</creator><creatorcontrib>Slimko, Eric M ; McKinney, Sheri ; Anderson, David J ; Davidson, Norman ; Lester, Henry A</creatorcontrib><description>Selectively reducing the excitability of specific neurons will (1) allow for the creation of animal models of human neurological disorders and (2) provide insight into the global function of specific sets of neurons. We focus on a combined genetic and pharmacological approach to silence neurons electrically. We express invertebrate ivermectin (IVM)-sensitive chloride channels (Caenorhabditis elegans GluCl alpha and beta) with a Sindbis virus and then activate these channels with IVM to produce inhibition via a Cl- conductance. We constructed a three-cistron Sindbis virus that expresses the alpha and beta subunits of a glutamate-gated chloride channel (GluCl) along with the green fluorescent protein (EGFP) marker. Expression of the C. elegans channel does not affect the normal spike activity or GABA/glutamate postsynaptic currents of cultured embryonic day 18 hippocampal neurons. At concentrations as low as 5 nm, IVM activates a Cl- current large enough to silence infected neurons effectively. This conductance reverses in 8 hr. These low concentrations of IVM do not potentiate GABA responses. Comparable results are observed with plasmid transfection of yellow fluorescent protein-tagged (EYFP) GluCl alpha and cyan fluorescent protein-tagged (ECFP) GluCl beta. The present study provides an in vitro model mimicking conditions that can be obtained in transgenic mice and in viral-mediated gene therapy. These experiments demonstrate the feasibility of using invertebrate ligand-activated Cl- channels as an approach to modulate excitability.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.22-17-07373.2002</identifier><identifier>PMID: 12196558</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; Caenorhabditis elegans - genetics ; Cells, Cultured ; Chloride Channels - drug effects ; Chloride Channels - genetics ; Chloride Channels - metabolism ; Chloride Channels - pharmacology ; Chlorides - metabolism ; Electric Stimulation ; Feasibility Studies ; gamma-Aminobutyric Acid - metabolism ; Genes, Reporter ; Genetic Vectors - biosynthesis ; Genetic Vectors - genetics ; Glutamic Acid - metabolism ; Humans ; Ion Channel Gating - physiology ; Ivermectin - pharmacology ; Kidney - cytology ; Kidney - metabolism ; Ligands ; Luminescent Proteins - genetics ; Neural Inhibition - drug effects ; Neural Inhibition - physiology ; Neurons - cytology ; Neurons - drug effects ; Neurons - metabolism ; Patch-Clamp Techniques ; Rats ; Sindbis Virus - genetics ; Synaptic Transmission - drug effects ; Transfection - methods</subject><ispartof>The Journal of neuroscience, 2002-09, Vol.22 (17), p.7373-7379</ispartof><rights>Copyright © 2002 Society for Neuroscience 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-41ce7bb183fa8e010cd190bd194bd734c8928860a4e52949dc90aa5db43e7d03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757961/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757961/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12196558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Slimko, Eric M</creatorcontrib><creatorcontrib>McKinney, Sheri</creatorcontrib><creatorcontrib>Anderson, David J</creatorcontrib><creatorcontrib>Davidson, Norman</creatorcontrib><creatorcontrib>Lester, Henry A</creatorcontrib><title>Selective Electrical Silencing of Mammalian Neurons In Vitro by the Use of Invertebrate Ligand-Gated Chloride Channels</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Selectively reducing the excitability of specific neurons will (1) allow for the creation of animal models of human neurological disorders and (2) provide insight into the global function of specific sets of neurons. We focus on a combined genetic and pharmacological approach to silence neurons electrically. We express invertebrate ivermectin (IVM)-sensitive chloride channels (Caenorhabditis elegans GluCl alpha and beta) with a Sindbis virus and then activate these channels with IVM to produce inhibition via a Cl- conductance. We constructed a three-cistron Sindbis virus that expresses the alpha and beta subunits of a glutamate-gated chloride channel (GluCl) along with the green fluorescent protein (EGFP) marker. Expression of the C. elegans channel does not affect the normal spike activity or GABA/glutamate postsynaptic currents of cultured embryonic day 18 hippocampal neurons. At concentrations as low as 5 nm, IVM activates a Cl- current large enough to silence infected neurons effectively. This conductance reverses in 8 hr. These low concentrations of IVM do not potentiate GABA responses. Comparable results are observed with plasmid transfection of yellow fluorescent protein-tagged (EYFP) GluCl alpha and cyan fluorescent protein-tagged (ECFP) GluCl beta. The present study provides an in vitro model mimicking conditions that can be obtained in transgenic mice and in viral-mediated gene therapy. These experiments demonstrate the feasibility of using invertebrate ligand-activated Cl- channels as an approach to modulate excitability.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Cells, Cultured</subject><subject>Chloride Channels - drug effects</subject><subject>Chloride Channels - genetics</subject><subject>Chloride Channels - metabolism</subject><subject>Chloride Channels - pharmacology</subject><subject>Chlorides - metabolism</subject><subject>Electric Stimulation</subject><subject>Feasibility Studies</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Genes, Reporter</subject><subject>Genetic Vectors - biosynthesis</subject><subject>Genetic Vectors - genetics</subject><subject>Glutamic Acid - metabolism</subject><subject>Humans</subject><subject>Ion Channel Gating - physiology</subject><subject>Ivermectin - pharmacology</subject><subject>Kidney - cytology</subject><subject>Kidney - metabolism</subject><subject>Ligands</subject><subject>Luminescent Proteins - genetics</subject><subject>Neural Inhibition - drug effects</subject><subject>Neural Inhibition - physiology</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>Rats</subject><subject>Sindbis Virus - genetics</subject><subject>Synaptic Transmission - drug effects</subject><subject>Transfection - methods</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1v0zAUhiMEYmXwF5DFBVylHH8kTrhAQlXZisom0Y1by3FOG0-us9lpq_37ObTi44ob-0h-zmsfP1n2jsKUFox_vPO4C300dspYTmUOkks-ZQDsWTZJRJ0zAfR5NgEmIS-FFGfZqxjvAEAClS-zM8poXRZFNcn2K3RoBrtHMh-LYI12ZGUdemP9hvRr8l1vt9pZ7cnVeK-PZOHJTzuEnjSPZOiQ3EYcwYXfYxiwCXpAsrQb7dv8ItUtmXWuD7bFVGjv0cXX2Yu1dhHfnPbz7Obr_GZ2mS-vLxazL8vcCM6HXFCDsmloxde6QqBgWlpDkxbRtJILU9WsqkrQAtPYom5NDVoXbSM4yhb4efb5GHu_a7bYGvRD0E7dB7vV4VH12qp_T7zt1Kbfq1IWsi5pCnh_Cgj9ww7joLY2GnROe-x3UUkGPH2l-C9IK8mhLsoEfjqCJimMAde_X0NBjXrVt6v57Y_r1WyhGFNUql961ag3Nb_9e54_rSefCfhwBDq76Q42oIrJnUs4VYfD4Rg45vEnTQ2y5Q</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Slimko, Eric M</creator><creator>McKinney, Sheri</creator><creator>Anderson, David J</creator><creator>Davidson, Norman</creator><creator>Lester, Henry A</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020901</creationdate><title>Selective Electrical Silencing of Mammalian Neurons In Vitro by the Use of Invertebrate Ligand-Gated Chloride Channels</title><author>Slimko, Eric M ; McKinney, Sheri ; Anderson, David J ; Davidson, Norman ; Lester, Henry A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-41ce7bb183fa8e010cd190bd194bd734c8928860a4e52949dc90aa5db43e7d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Cells, Cultured</topic><topic>Chloride Channels - drug effects</topic><topic>Chloride Channels - genetics</topic><topic>Chloride Channels - metabolism</topic><topic>Chloride Channels - pharmacology</topic><topic>Chlorides - metabolism</topic><topic>Electric Stimulation</topic><topic>Feasibility Studies</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Genes, Reporter</topic><topic>Genetic Vectors - biosynthesis</topic><topic>Genetic Vectors - genetics</topic><topic>Glutamic Acid - metabolism</topic><topic>Humans</topic><topic>Ion Channel Gating - physiology</topic><topic>Ivermectin - pharmacology</topic><topic>Kidney - cytology</topic><topic>Kidney - metabolism</topic><topic>Ligands</topic><topic>Luminescent Proteins - genetics</topic><topic>Neural Inhibition - drug effects</topic><topic>Neural Inhibition - physiology</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>Rats</topic><topic>Sindbis Virus - genetics</topic><topic>Synaptic Transmission - drug effects</topic><topic>Transfection - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slimko, Eric M</creatorcontrib><creatorcontrib>McKinney, Sheri</creatorcontrib><creatorcontrib>Anderson, David J</creatorcontrib><creatorcontrib>Davidson, Norman</creatorcontrib><creatorcontrib>Lester, Henry A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slimko, Eric M</au><au>McKinney, Sheri</au><au>Anderson, David J</au><au>Davidson, Norman</au><au>Lester, Henry A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Electrical Silencing of Mammalian Neurons In Vitro by the Use of Invertebrate Ligand-Gated Chloride Channels</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2002-09-01</date><risdate>2002</risdate><volume>22</volume><issue>17</issue><spage>7373</spage><epage>7379</epage><pages>7373-7379</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Selectively reducing the excitability of specific neurons will (1) allow for the creation of animal models of human neurological disorders and (2) provide insight into the global function of specific sets of neurons. We focus on a combined genetic and pharmacological approach to silence neurons electrically. We express invertebrate ivermectin (IVM)-sensitive chloride channels (Caenorhabditis elegans GluCl alpha and beta) with a Sindbis virus and then activate these channels with IVM to produce inhibition via a Cl- conductance. We constructed a three-cistron Sindbis virus that expresses the alpha and beta subunits of a glutamate-gated chloride channel (GluCl) along with the green fluorescent protein (EGFP) marker. Expression of the C. elegans channel does not affect the normal spike activity or GABA/glutamate postsynaptic currents of cultured embryonic day 18 hippocampal neurons. At concentrations as low as 5 nm, IVM activates a Cl- current large enough to silence infected neurons effectively. This conductance reverses in 8 hr. These low concentrations of IVM do not potentiate GABA responses. Comparable results are observed with plasmid transfection of yellow fluorescent protein-tagged (EYFP) GluCl alpha and cyan fluorescent protein-tagged (ECFP) GluCl beta. The present study provides an in vitro model mimicking conditions that can be obtained in transgenic mice and in viral-mediated gene therapy. These experiments demonstrate the feasibility of using invertebrate ligand-activated Cl- channels as an approach to modulate excitability.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>12196558</pmid><doi>10.1523/jneurosci.22-17-07373.2002</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2002-09, Vol.22 (17), p.7373-7379 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6757961 |
source | MEDLINE; PubMed Central; EZB Electronic Journals Library |
subjects | Action Potentials - drug effects Action Potentials - physiology Animals Caenorhabditis elegans - genetics Cells, Cultured Chloride Channels - drug effects Chloride Channels - genetics Chloride Channels - metabolism Chloride Channels - pharmacology Chlorides - metabolism Electric Stimulation Feasibility Studies gamma-Aminobutyric Acid - metabolism Genes, Reporter Genetic Vectors - biosynthesis Genetic Vectors - genetics Glutamic Acid - metabolism Humans Ion Channel Gating - physiology Ivermectin - pharmacology Kidney - cytology Kidney - metabolism Ligands Luminescent Proteins - genetics Neural Inhibition - drug effects Neural Inhibition - physiology Neurons - cytology Neurons - drug effects Neurons - metabolism Patch-Clamp Techniques Rats Sindbis Virus - genetics Synaptic Transmission - drug effects Transfection - methods |
title | Selective Electrical Silencing of Mammalian Neurons In Vitro by the Use of Invertebrate Ligand-Gated Chloride Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Electrical%20Silencing%20of%20Mammalian%20Neurons%20In%20Vitro%20by%20the%20Use%20of%20Invertebrate%20Ligand-Gated%20Chloride%20Channels&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Slimko,%20Eric%20M&rft.date=2002-09-01&rft.volume=22&rft.issue=17&rft.spage=7373&rft.epage=7379&rft.pages=7373-7379&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.22-17-07373.2002&rft_dat=%3Cproquest_pubme%3E72031964%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18730956&rft_id=info:pmid/12196558&rfr_iscdi=true |