Selective Electrical Silencing of Mammalian Neurons In Vitro by the Use of Invertebrate Ligand-Gated Chloride Channels

Selectively reducing the excitability of specific neurons will (1) allow for the creation of animal models of human neurological disorders and (2) provide insight into the global function of specific sets of neurons. We focus on a combined genetic and pharmacological approach to silence neurons elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2002-09, Vol.22 (17), p.7373-7379
Hauptverfasser: Slimko, Eric M, McKinney, Sheri, Anderson, David J, Davidson, Norman, Lester, Henry A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7379
container_issue 17
container_start_page 7373
container_title The Journal of neuroscience
container_volume 22
creator Slimko, Eric M
McKinney, Sheri
Anderson, David J
Davidson, Norman
Lester, Henry A
description Selectively reducing the excitability of specific neurons will (1) allow for the creation of animal models of human neurological disorders and (2) provide insight into the global function of specific sets of neurons. We focus on a combined genetic and pharmacological approach to silence neurons electrically. We express invertebrate ivermectin (IVM)-sensitive chloride channels (Caenorhabditis elegans GluCl alpha and beta) with a Sindbis virus and then activate these channels with IVM to produce inhibition via a Cl- conductance. We constructed a three-cistron Sindbis virus that expresses the alpha and beta subunits of a glutamate-gated chloride channel (GluCl) along with the green fluorescent protein (EGFP) marker. Expression of the C. elegans channel does not affect the normal spike activity or GABA/glutamate postsynaptic currents of cultured embryonic day 18 hippocampal neurons. At concentrations as low as 5 nm, IVM activates a Cl- current large enough to silence infected neurons effectively. This conductance reverses in 8 hr. These low concentrations of IVM do not potentiate GABA responses. Comparable results are observed with plasmid transfection of yellow fluorescent protein-tagged (EYFP) GluCl alpha and cyan fluorescent protein-tagged (ECFP) GluCl beta. The present study provides an in vitro model mimicking conditions that can be obtained in transgenic mice and in viral-mediated gene therapy. These experiments demonstrate the feasibility of using invertebrate ligand-activated Cl- channels as an approach to modulate excitability.
doi_str_mv 10.1523/jneurosci.22-17-07373.2002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6757961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72031964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-41ce7bb183fa8e010cd190bd194bd734c8928860a4e52949dc90aa5db43e7d03</originalsourceid><addsrcrecordid>eNqFkV1v0zAUhiMEYmXwF5DFBVylHH8kTrhAQlXZisom0Y1by3FOG0-us9lpq_37ObTi44ob-0h-zmsfP1n2jsKUFox_vPO4C300dspYTmUOkks-ZQDsWTZJRJ0zAfR5NgEmIS-FFGfZqxjvAEAClS-zM8poXRZFNcn2K3RoBrtHMh-LYI12ZGUdemP9hvRr8l1vt9pZ7cnVeK-PZOHJTzuEnjSPZOiQ3EYcwYXfYxiwCXpAsrQb7dv8ItUtmXWuD7bFVGjv0cXX2Yu1dhHfnPbz7Obr_GZ2mS-vLxazL8vcCM6HXFCDsmloxde6QqBgWlpDkxbRtJILU9WsqkrQAtPYom5NDVoXbSM4yhb4efb5GHu_a7bYGvRD0E7dB7vV4VH12qp_T7zt1Kbfq1IWsi5pCnh_Cgj9ww7joLY2GnROe-x3UUkGPH2l-C9IK8mhLsoEfjqCJimMAde_X0NBjXrVt6v57Y_r1WyhGFNUql961ag3Nb_9e54_rSefCfhwBDq76Q42oIrJnUs4VYfD4Rg45vEnTQ2y5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18730956</pqid></control><display><type>article</type><title>Selective Electrical Silencing of Mammalian Neurons In Vitro by the Use of Invertebrate Ligand-Gated Chloride Channels</title><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Slimko, Eric M ; McKinney, Sheri ; Anderson, David J ; Davidson, Norman ; Lester, Henry A</creator><creatorcontrib>Slimko, Eric M ; McKinney, Sheri ; Anderson, David J ; Davidson, Norman ; Lester, Henry A</creatorcontrib><description>Selectively reducing the excitability of specific neurons will (1) allow for the creation of animal models of human neurological disorders and (2) provide insight into the global function of specific sets of neurons. We focus on a combined genetic and pharmacological approach to silence neurons electrically. We express invertebrate ivermectin (IVM)-sensitive chloride channels (Caenorhabditis elegans GluCl alpha and beta) with a Sindbis virus and then activate these channels with IVM to produce inhibition via a Cl- conductance. We constructed a three-cistron Sindbis virus that expresses the alpha and beta subunits of a glutamate-gated chloride channel (GluCl) along with the green fluorescent protein (EGFP) marker. Expression of the C. elegans channel does not affect the normal spike activity or GABA/glutamate postsynaptic currents of cultured embryonic day 18 hippocampal neurons. At concentrations as low as 5 nm, IVM activates a Cl- current large enough to silence infected neurons effectively. This conductance reverses in 8 hr. These low concentrations of IVM do not potentiate GABA responses. Comparable results are observed with plasmid transfection of yellow fluorescent protein-tagged (EYFP) GluCl alpha and cyan fluorescent protein-tagged (ECFP) GluCl beta. The present study provides an in vitro model mimicking conditions that can be obtained in transgenic mice and in viral-mediated gene therapy. These experiments demonstrate the feasibility of using invertebrate ligand-activated Cl- channels as an approach to modulate excitability.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.22-17-07373.2002</identifier><identifier>PMID: 12196558</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; Caenorhabditis elegans - genetics ; Cells, Cultured ; Chloride Channels - drug effects ; Chloride Channels - genetics ; Chloride Channels - metabolism ; Chloride Channels - pharmacology ; Chlorides - metabolism ; Electric Stimulation ; Feasibility Studies ; gamma-Aminobutyric Acid - metabolism ; Genes, Reporter ; Genetic Vectors - biosynthesis ; Genetic Vectors - genetics ; Glutamic Acid - metabolism ; Humans ; Ion Channel Gating - physiology ; Ivermectin - pharmacology ; Kidney - cytology ; Kidney - metabolism ; Ligands ; Luminescent Proteins - genetics ; Neural Inhibition - drug effects ; Neural Inhibition - physiology ; Neurons - cytology ; Neurons - drug effects ; Neurons - metabolism ; Patch-Clamp Techniques ; Rats ; Sindbis Virus - genetics ; Synaptic Transmission - drug effects ; Transfection - methods</subject><ispartof>The Journal of neuroscience, 2002-09, Vol.22 (17), p.7373-7379</ispartof><rights>Copyright © 2002 Society for Neuroscience 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-41ce7bb183fa8e010cd190bd194bd734c8928860a4e52949dc90aa5db43e7d03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757961/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757961/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12196558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Slimko, Eric M</creatorcontrib><creatorcontrib>McKinney, Sheri</creatorcontrib><creatorcontrib>Anderson, David J</creatorcontrib><creatorcontrib>Davidson, Norman</creatorcontrib><creatorcontrib>Lester, Henry A</creatorcontrib><title>Selective Electrical Silencing of Mammalian Neurons In Vitro by the Use of Invertebrate Ligand-Gated Chloride Channels</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Selectively reducing the excitability of specific neurons will (1) allow for the creation of animal models of human neurological disorders and (2) provide insight into the global function of specific sets of neurons. We focus on a combined genetic and pharmacological approach to silence neurons electrically. We express invertebrate ivermectin (IVM)-sensitive chloride channels (Caenorhabditis elegans GluCl alpha and beta) with a Sindbis virus and then activate these channels with IVM to produce inhibition via a Cl- conductance. We constructed a three-cistron Sindbis virus that expresses the alpha and beta subunits of a glutamate-gated chloride channel (GluCl) along with the green fluorescent protein (EGFP) marker. Expression of the C. elegans channel does not affect the normal spike activity or GABA/glutamate postsynaptic currents of cultured embryonic day 18 hippocampal neurons. At concentrations as low as 5 nm, IVM activates a Cl- current large enough to silence infected neurons effectively. This conductance reverses in 8 hr. These low concentrations of IVM do not potentiate GABA responses. Comparable results are observed with plasmid transfection of yellow fluorescent protein-tagged (EYFP) GluCl alpha and cyan fluorescent protein-tagged (ECFP) GluCl beta. The present study provides an in vitro model mimicking conditions that can be obtained in transgenic mice and in viral-mediated gene therapy. These experiments demonstrate the feasibility of using invertebrate ligand-activated Cl- channels as an approach to modulate excitability.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Cells, Cultured</subject><subject>Chloride Channels - drug effects</subject><subject>Chloride Channels - genetics</subject><subject>Chloride Channels - metabolism</subject><subject>Chloride Channels - pharmacology</subject><subject>Chlorides - metabolism</subject><subject>Electric Stimulation</subject><subject>Feasibility Studies</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Genes, Reporter</subject><subject>Genetic Vectors - biosynthesis</subject><subject>Genetic Vectors - genetics</subject><subject>Glutamic Acid - metabolism</subject><subject>Humans</subject><subject>Ion Channel Gating - physiology</subject><subject>Ivermectin - pharmacology</subject><subject>Kidney - cytology</subject><subject>Kidney - metabolism</subject><subject>Ligands</subject><subject>Luminescent Proteins - genetics</subject><subject>Neural Inhibition - drug effects</subject><subject>Neural Inhibition - physiology</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>Rats</subject><subject>Sindbis Virus - genetics</subject><subject>Synaptic Transmission - drug effects</subject><subject>Transfection - methods</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1v0zAUhiMEYmXwF5DFBVylHH8kTrhAQlXZisom0Y1by3FOG0-us9lpq_37ObTi44ob-0h-zmsfP1n2jsKUFox_vPO4C300dspYTmUOkks-ZQDsWTZJRJ0zAfR5NgEmIS-FFGfZqxjvAEAClS-zM8poXRZFNcn2K3RoBrtHMh-LYI12ZGUdemP9hvRr8l1vt9pZ7cnVeK-PZOHJTzuEnjSPZOiQ3EYcwYXfYxiwCXpAsrQb7dv8ItUtmXWuD7bFVGjv0cXX2Yu1dhHfnPbz7Obr_GZ2mS-vLxazL8vcCM6HXFCDsmloxde6QqBgWlpDkxbRtJILU9WsqkrQAtPYom5NDVoXbSM4yhb4efb5GHu_a7bYGvRD0E7dB7vV4VH12qp_T7zt1Kbfq1IWsi5pCnh_Cgj9ww7joLY2GnROe-x3UUkGPH2l-C9IK8mhLsoEfjqCJimMAde_X0NBjXrVt6v57Y_r1WyhGFNUql961ag3Nb_9e54_rSefCfhwBDq76Q42oIrJnUs4VYfD4Rg45vEnTQ2y5Q</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Slimko, Eric M</creator><creator>McKinney, Sheri</creator><creator>Anderson, David J</creator><creator>Davidson, Norman</creator><creator>Lester, Henry A</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020901</creationdate><title>Selective Electrical Silencing of Mammalian Neurons In Vitro by the Use of Invertebrate Ligand-Gated Chloride Channels</title><author>Slimko, Eric M ; McKinney, Sheri ; Anderson, David J ; Davidson, Norman ; Lester, Henry A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-41ce7bb183fa8e010cd190bd194bd734c8928860a4e52949dc90aa5db43e7d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Cells, Cultured</topic><topic>Chloride Channels - drug effects</topic><topic>Chloride Channels - genetics</topic><topic>Chloride Channels - metabolism</topic><topic>Chloride Channels - pharmacology</topic><topic>Chlorides - metabolism</topic><topic>Electric Stimulation</topic><topic>Feasibility Studies</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Genes, Reporter</topic><topic>Genetic Vectors - biosynthesis</topic><topic>Genetic Vectors - genetics</topic><topic>Glutamic Acid - metabolism</topic><topic>Humans</topic><topic>Ion Channel Gating - physiology</topic><topic>Ivermectin - pharmacology</topic><topic>Kidney - cytology</topic><topic>Kidney - metabolism</topic><topic>Ligands</topic><topic>Luminescent Proteins - genetics</topic><topic>Neural Inhibition - drug effects</topic><topic>Neural Inhibition - physiology</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>Rats</topic><topic>Sindbis Virus - genetics</topic><topic>Synaptic Transmission - drug effects</topic><topic>Transfection - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slimko, Eric M</creatorcontrib><creatorcontrib>McKinney, Sheri</creatorcontrib><creatorcontrib>Anderson, David J</creatorcontrib><creatorcontrib>Davidson, Norman</creatorcontrib><creatorcontrib>Lester, Henry A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slimko, Eric M</au><au>McKinney, Sheri</au><au>Anderson, David J</au><au>Davidson, Norman</au><au>Lester, Henry A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Electrical Silencing of Mammalian Neurons In Vitro by the Use of Invertebrate Ligand-Gated Chloride Channels</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2002-09-01</date><risdate>2002</risdate><volume>22</volume><issue>17</issue><spage>7373</spage><epage>7379</epage><pages>7373-7379</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Selectively reducing the excitability of specific neurons will (1) allow for the creation of animal models of human neurological disorders and (2) provide insight into the global function of specific sets of neurons. We focus on a combined genetic and pharmacological approach to silence neurons electrically. We express invertebrate ivermectin (IVM)-sensitive chloride channels (Caenorhabditis elegans GluCl alpha and beta) with a Sindbis virus and then activate these channels with IVM to produce inhibition via a Cl- conductance. We constructed a three-cistron Sindbis virus that expresses the alpha and beta subunits of a glutamate-gated chloride channel (GluCl) along with the green fluorescent protein (EGFP) marker. Expression of the C. elegans channel does not affect the normal spike activity or GABA/glutamate postsynaptic currents of cultured embryonic day 18 hippocampal neurons. At concentrations as low as 5 nm, IVM activates a Cl- current large enough to silence infected neurons effectively. This conductance reverses in 8 hr. These low concentrations of IVM do not potentiate GABA responses. Comparable results are observed with plasmid transfection of yellow fluorescent protein-tagged (EYFP) GluCl alpha and cyan fluorescent protein-tagged (ECFP) GluCl beta. The present study provides an in vitro model mimicking conditions that can be obtained in transgenic mice and in viral-mediated gene therapy. These experiments demonstrate the feasibility of using invertebrate ligand-activated Cl- channels as an approach to modulate excitability.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>12196558</pmid><doi>10.1523/jneurosci.22-17-07373.2002</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2002-09, Vol.22 (17), p.7373-7379
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6757961
source MEDLINE; PubMed Central; EZB Electronic Journals Library
subjects Action Potentials - drug effects
Action Potentials - physiology
Animals
Caenorhabditis elegans - genetics
Cells, Cultured
Chloride Channels - drug effects
Chloride Channels - genetics
Chloride Channels - metabolism
Chloride Channels - pharmacology
Chlorides - metabolism
Electric Stimulation
Feasibility Studies
gamma-Aminobutyric Acid - metabolism
Genes, Reporter
Genetic Vectors - biosynthesis
Genetic Vectors - genetics
Glutamic Acid - metabolism
Humans
Ion Channel Gating - physiology
Ivermectin - pharmacology
Kidney - cytology
Kidney - metabolism
Ligands
Luminescent Proteins - genetics
Neural Inhibition - drug effects
Neural Inhibition - physiology
Neurons - cytology
Neurons - drug effects
Neurons - metabolism
Patch-Clamp Techniques
Rats
Sindbis Virus - genetics
Synaptic Transmission - drug effects
Transfection - methods
title Selective Electrical Silencing of Mammalian Neurons In Vitro by the Use of Invertebrate Ligand-Gated Chloride Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Electrical%20Silencing%20of%20Mammalian%20Neurons%20In%20Vitro%20by%20the%20Use%20of%20Invertebrate%20Ligand-Gated%20Chloride%20Channels&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Slimko,%20Eric%20M&rft.date=2002-09-01&rft.volume=22&rft.issue=17&rft.spage=7373&rft.epage=7379&rft.pages=7373-7379&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.22-17-07373.2002&rft_dat=%3Cproquest_pubme%3E72031964%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18730956&rft_id=info:pmid/12196558&rfr_iscdi=true