Limbic Seizures Induce P-Glycoprotein in Rodent Brain: Functional Implications for Pharmacoresistance

The causes and mechanisms underlying multidrug resistance (MDR) in epilepsy are still elusive and may depend on inadequate drug concentration in crucial brain areas. We studied whether limbic seizures or anticonvulsant drug treatments in rodents enhance the brain expression of the MDR gene (mdr) enc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2002-07, Vol.22 (14), p.5833-5839
Hauptverfasser: Rizzi, Massimo, Caccia, Silvio, Guiso, Giovanna, Richichi, Cristina, Gorter, Jan A, Aronica, Eleonora, Aliprandi, Marisa, Bagnati, Renzo, Fanelli, Roberto, D'Incalci, Maurizio, Samanin, Rosario, Vezzani, Annamaria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5839
container_issue 14
container_start_page 5833
container_title The Journal of neuroscience
container_volume 22
creator Rizzi, Massimo
Caccia, Silvio
Guiso, Giovanna
Richichi, Cristina
Gorter, Jan A
Aronica, Eleonora
Aliprandi, Marisa
Bagnati, Renzo
Fanelli, Roberto
D'Incalci, Maurizio
Samanin, Rosario
Vezzani, Annamaria
description The causes and mechanisms underlying multidrug resistance (MDR) in epilepsy are still elusive and may depend on inadequate drug concentration in crucial brain areas. We studied whether limbic seizures or anticonvulsant drug treatments in rodents enhance the brain expression of the MDR gene (mdr) encoding a permeability glycoprotein (P-gp) involved in MDR to various cancer chemotherapeutic agents. We also investigated whether changes in P-gp levels affect anticonvulsant drug concentrations in the brain. Mdr mRNA measured by RT-PCR increased by 85% on average in the mouse hippocampus 3-24 hr after kainic acid-induced limbic seizures, returning to control levels by 72 hr. Treatment with therapeutic doses of phenytoin or carbamazepine for 7 d did not change mdr mRNA expression in the mouse hippocampus 1-72 hr after the last drug administration. Six hours after seizures, the brain/plasma ratio of phenytoin was reduced by 30% and its extracellular concentration estimated by microdialysis was increased by twofold compared with control mice. Knock-out mice (mdr1a/b -/-) lacking P-gp protein showed a 46% increase in phenytoin concentrations in the hippocampus 1 and 4 hr after injection compared with wild-type mice. A significant 23% increase was found in the cerebellum at 1 hr and in the cortex at 4 hr. Carbamazepine concentrations were measurable in the hippocampus at 3 hr in mdr1a/b -/- mice, whereas they were undetectable at the same time interval in wild-type mice. In rats having spontaneous seizures 3 months after electrically induced status epilepticus, mdr1 mRNA levels were enhanced by 1.8-fold and fivefold on average in the hippocampus and entorhinal cortex, respectively. Thus, changes in P-gp mRNA levels occur in limbic areas after both acute and chronic epileptic activity. P-gp alterations significantly affect antiepileptic drugs concentrations in the brain, suggesting that seizure-induced mdr mRNA expression contributes to MDR in epilepsy.
doi_str_mv 10.1523/jneurosci.22-14-05833.2002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6757954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18734479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-88bb1dbe14c200eeef4c7eb9804d5e73d157ab75081dde819a99fd949e205c2a3</originalsourceid><addsrcrecordid>eNpVkV1vFCEUhonR2LX6FwzxQq9mBQbK0AsT3bR1zcY2rb0mDHOmS8PACjNu2l9f1t34kZCcEJ7zcE5ehN5RMqeC1R_vA0wpZuvmjFWUV0Q0dT1nhLBnaFYIVTFO6HM0I0yS6oRLfoRe5XxPCJGEypfoiDLKGOFihmDlhtZZfAPucUqQ8TJ0kwV8VV34Bxs3KY7gAi7nOnYQRvwlGRdO8fkU7OhiMB4vh4131uxuGfcx4au1SYOxsehcHk2w8Bq96I3P8OZQj9Ht-dmPxddqdXmxXHxeVVYIOlZN07a0a4FyW7YBgJ5bCa1qCO8EyLqjQppWCtLQroOGKqNU3ymugBFhmamP0ae9dzO1A3S2DJyM15vkBpMedDRO__8S3FrfxV_6RAqpBC-C9wdBij8nyKMeXLbgvQkQp6xpI2vOpSrg6R60JYmcoP_zCSV6l5L-9v3s9vryZrHUjGnK9e-U9C6l0vz23zH_th5iKcCHPbB2d-utS6DzYLwvONXb7XYv3PnqJ2xUoQc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18734479</pqid></control><display><type>article</type><title>Limbic Seizures Induce P-Glycoprotein in Rodent Brain: Functional Implications for Pharmacoresistance</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rizzi, Massimo ; Caccia, Silvio ; Guiso, Giovanna ; Richichi, Cristina ; Gorter, Jan A ; Aronica, Eleonora ; Aliprandi, Marisa ; Bagnati, Renzo ; Fanelli, Roberto ; D'Incalci, Maurizio ; Samanin, Rosario ; Vezzani, Annamaria</creator><creatorcontrib>Rizzi, Massimo ; Caccia, Silvio ; Guiso, Giovanna ; Richichi, Cristina ; Gorter, Jan A ; Aronica, Eleonora ; Aliprandi, Marisa ; Bagnati, Renzo ; Fanelli, Roberto ; D'Incalci, Maurizio ; Samanin, Rosario ; Vezzani, Annamaria</creatorcontrib><description>The causes and mechanisms underlying multidrug resistance (MDR) in epilepsy are still elusive and may depend on inadequate drug concentration in crucial brain areas. We studied whether limbic seizures or anticonvulsant drug treatments in rodents enhance the brain expression of the MDR gene (mdr) encoding a permeability glycoprotein (P-gp) involved in MDR to various cancer chemotherapeutic agents. We also investigated whether changes in P-gp levels affect anticonvulsant drug concentrations in the brain. Mdr mRNA measured by RT-PCR increased by 85% on average in the mouse hippocampus 3-24 hr after kainic acid-induced limbic seizures, returning to control levels by 72 hr. Treatment with therapeutic doses of phenytoin or carbamazepine for 7 d did not change mdr mRNA expression in the mouse hippocampus 1-72 hr after the last drug administration. Six hours after seizures, the brain/plasma ratio of phenytoin was reduced by 30% and its extracellular concentration estimated by microdialysis was increased by twofold compared with control mice. Knock-out mice (mdr1a/b -/-) lacking P-gp protein showed a 46% increase in phenytoin concentrations in the hippocampus 1 and 4 hr after injection compared with wild-type mice. A significant 23% increase was found in the cerebellum at 1 hr and in the cortex at 4 hr. Carbamazepine concentrations were measurable in the hippocampus at 3 hr in mdr1a/b -/- mice, whereas they were undetectable at the same time interval in wild-type mice. In rats having spontaneous seizures 3 months after electrically induced status epilepticus, mdr1 mRNA levels were enhanced by 1.8-fold and fivefold on average in the hippocampus and entorhinal cortex, respectively. Thus, changes in P-gp mRNA levels occur in limbic areas after both acute and chronic epileptic activity. P-gp alterations significantly affect antiepileptic drugs concentrations in the brain, suggesting that seizure-induced mdr mRNA expression contributes to MDR in epilepsy.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.22-14-05833.2002</identifier><identifier>PMID: 12122045</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Anticonvulsants - pharmacokinetics ; Anticonvulsants - pharmacology ; ATP Binding Cassette Transporter, Subfamily B, Member 1 - genetics ; ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism ; Brain - drug effects ; Brain - metabolism ; Brain - physiopathology ; Disease Models, Animal ; Drug Resistance - physiology ; Electric Stimulation ; Electroencephalography ; Entorhinal Cortex - drug effects ; Entorhinal Cortex - metabolism ; Gene Expression - drug effects ; Hippocampus - drug effects ; Hippocampus - metabolism ; Homozygote ; Limbic System - drug effects ; Limbic System - metabolism ; Limbic System - physiopathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Rats ; Rats, Sprague-Dawley ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - metabolism ; Seizures - physiopathology</subject><ispartof>The Journal of neuroscience, 2002-07, Vol.22 (14), p.5833-5839</ispartof><rights>Copyright © 2002 Society for Neuroscience 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-88bb1dbe14c200eeef4c7eb9804d5e73d157ab75081dde819a99fd949e205c2a3</citedby><cites>FETCH-LOGICAL-c551t-88bb1dbe14c200eeef4c7eb9804d5e73d157ab75081dde819a99fd949e205c2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757954/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757954/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12122045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rizzi, Massimo</creatorcontrib><creatorcontrib>Caccia, Silvio</creatorcontrib><creatorcontrib>Guiso, Giovanna</creatorcontrib><creatorcontrib>Richichi, Cristina</creatorcontrib><creatorcontrib>Gorter, Jan A</creatorcontrib><creatorcontrib>Aronica, Eleonora</creatorcontrib><creatorcontrib>Aliprandi, Marisa</creatorcontrib><creatorcontrib>Bagnati, Renzo</creatorcontrib><creatorcontrib>Fanelli, Roberto</creatorcontrib><creatorcontrib>D'Incalci, Maurizio</creatorcontrib><creatorcontrib>Samanin, Rosario</creatorcontrib><creatorcontrib>Vezzani, Annamaria</creatorcontrib><title>Limbic Seizures Induce P-Glycoprotein in Rodent Brain: Functional Implications for Pharmacoresistance</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The causes and mechanisms underlying multidrug resistance (MDR) in epilepsy are still elusive and may depend on inadequate drug concentration in crucial brain areas. We studied whether limbic seizures or anticonvulsant drug treatments in rodents enhance the brain expression of the MDR gene (mdr) encoding a permeability glycoprotein (P-gp) involved in MDR to various cancer chemotherapeutic agents. We also investigated whether changes in P-gp levels affect anticonvulsant drug concentrations in the brain. Mdr mRNA measured by RT-PCR increased by 85% on average in the mouse hippocampus 3-24 hr after kainic acid-induced limbic seizures, returning to control levels by 72 hr. Treatment with therapeutic doses of phenytoin or carbamazepine for 7 d did not change mdr mRNA expression in the mouse hippocampus 1-72 hr after the last drug administration. Six hours after seizures, the brain/plasma ratio of phenytoin was reduced by 30% and its extracellular concentration estimated by microdialysis was increased by twofold compared with control mice. Knock-out mice (mdr1a/b -/-) lacking P-gp protein showed a 46% increase in phenytoin concentrations in the hippocampus 1 and 4 hr after injection compared with wild-type mice. A significant 23% increase was found in the cerebellum at 1 hr and in the cortex at 4 hr. Carbamazepine concentrations were measurable in the hippocampus at 3 hr in mdr1a/b -/- mice, whereas they were undetectable at the same time interval in wild-type mice. In rats having spontaneous seizures 3 months after electrically induced status epilepticus, mdr1 mRNA levels were enhanced by 1.8-fold and fivefold on average in the hippocampus and entorhinal cortex, respectively. Thus, changes in P-gp mRNA levels occur in limbic areas after both acute and chronic epileptic activity. P-gp alterations significantly affect antiepileptic drugs concentrations in the brain, suggesting that seizure-induced mdr mRNA expression contributes to MDR in epilepsy.</description><subject>Animals</subject><subject>Anticonvulsants - pharmacokinetics</subject><subject>Anticonvulsants - pharmacology</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 1 - genetics</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain - physiopathology</subject><subject>Disease Models, Animal</subject><subject>Drug Resistance - physiology</subject><subject>Electric Stimulation</subject><subject>Electroencephalography</subject><subject>Entorhinal Cortex - drug effects</subject><subject>Entorhinal Cortex - metabolism</subject><subject>Gene Expression - drug effects</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>Homozygote</subject><subject>Limbic System - drug effects</subject><subject>Limbic System - metabolism</subject><subject>Limbic System - physiopathology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - metabolism</subject><subject>Seizures - physiopathology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkV1vFCEUhonR2LX6FwzxQq9mBQbK0AsT3bR1zcY2rb0mDHOmS8PACjNu2l9f1t34kZCcEJ7zcE5ehN5RMqeC1R_vA0wpZuvmjFWUV0Q0dT1nhLBnaFYIVTFO6HM0I0yS6oRLfoRe5XxPCJGEypfoiDLKGOFihmDlhtZZfAPucUqQ8TJ0kwV8VV34Bxs3KY7gAi7nOnYQRvwlGRdO8fkU7OhiMB4vh4131uxuGfcx4au1SYOxsehcHk2w8Bq96I3P8OZQj9Ht-dmPxddqdXmxXHxeVVYIOlZN07a0a4FyW7YBgJ5bCa1qCO8EyLqjQppWCtLQroOGKqNU3ymugBFhmamP0ae9dzO1A3S2DJyM15vkBpMedDRO__8S3FrfxV_6RAqpBC-C9wdBij8nyKMeXLbgvQkQp6xpI2vOpSrg6R60JYmcoP_zCSV6l5L-9v3s9vryZrHUjGnK9e-U9C6l0vz23zH_th5iKcCHPbB2d-utS6DzYLwvONXb7XYv3PnqJ2xUoQc</recordid><startdate>20020715</startdate><enddate>20020715</enddate><creator>Rizzi, Massimo</creator><creator>Caccia, Silvio</creator><creator>Guiso, Giovanna</creator><creator>Richichi, Cristina</creator><creator>Gorter, Jan A</creator><creator>Aronica, Eleonora</creator><creator>Aliprandi, Marisa</creator><creator>Bagnati, Renzo</creator><creator>Fanelli, Roberto</creator><creator>D'Incalci, Maurizio</creator><creator>Samanin, Rosario</creator><creator>Vezzani, Annamaria</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20020715</creationdate><title>Limbic Seizures Induce P-Glycoprotein in Rodent Brain: Functional Implications for Pharmacoresistance</title><author>Rizzi, Massimo ; Caccia, Silvio ; Guiso, Giovanna ; Richichi, Cristina ; Gorter, Jan A ; Aronica, Eleonora ; Aliprandi, Marisa ; Bagnati, Renzo ; Fanelli, Roberto ; D'Incalci, Maurizio ; Samanin, Rosario ; Vezzani, Annamaria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-88bb1dbe14c200eeef4c7eb9804d5e73d157ab75081dde819a99fd949e205c2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Anticonvulsants - pharmacokinetics</topic><topic>Anticonvulsants - pharmacology</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 1 - genetics</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain - physiopathology</topic><topic>Disease Models, Animal</topic><topic>Drug Resistance - physiology</topic><topic>Electric Stimulation</topic><topic>Electroencephalography</topic><topic>Entorhinal Cortex - drug effects</topic><topic>Entorhinal Cortex - metabolism</topic><topic>Gene Expression - drug effects</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>Homozygote</topic><topic>Limbic System - drug effects</topic><topic>Limbic System - metabolism</topic><topic>Limbic System - physiopathology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - metabolism</topic><topic>Seizures - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rizzi, Massimo</creatorcontrib><creatorcontrib>Caccia, Silvio</creatorcontrib><creatorcontrib>Guiso, Giovanna</creatorcontrib><creatorcontrib>Richichi, Cristina</creatorcontrib><creatorcontrib>Gorter, Jan A</creatorcontrib><creatorcontrib>Aronica, Eleonora</creatorcontrib><creatorcontrib>Aliprandi, Marisa</creatorcontrib><creatorcontrib>Bagnati, Renzo</creatorcontrib><creatorcontrib>Fanelli, Roberto</creatorcontrib><creatorcontrib>D'Incalci, Maurizio</creatorcontrib><creatorcontrib>Samanin, Rosario</creatorcontrib><creatorcontrib>Vezzani, Annamaria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizzi, Massimo</au><au>Caccia, Silvio</au><au>Guiso, Giovanna</au><au>Richichi, Cristina</au><au>Gorter, Jan A</au><au>Aronica, Eleonora</au><au>Aliprandi, Marisa</au><au>Bagnati, Renzo</au><au>Fanelli, Roberto</au><au>D'Incalci, Maurizio</au><au>Samanin, Rosario</au><au>Vezzani, Annamaria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limbic Seizures Induce P-Glycoprotein in Rodent Brain: Functional Implications for Pharmacoresistance</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2002-07-15</date><risdate>2002</risdate><volume>22</volume><issue>14</issue><spage>5833</spage><epage>5839</epage><pages>5833-5839</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The causes and mechanisms underlying multidrug resistance (MDR) in epilepsy are still elusive and may depend on inadequate drug concentration in crucial brain areas. We studied whether limbic seizures or anticonvulsant drug treatments in rodents enhance the brain expression of the MDR gene (mdr) encoding a permeability glycoprotein (P-gp) involved in MDR to various cancer chemotherapeutic agents. We also investigated whether changes in P-gp levels affect anticonvulsant drug concentrations in the brain. Mdr mRNA measured by RT-PCR increased by 85% on average in the mouse hippocampus 3-24 hr after kainic acid-induced limbic seizures, returning to control levels by 72 hr. Treatment with therapeutic doses of phenytoin or carbamazepine for 7 d did not change mdr mRNA expression in the mouse hippocampus 1-72 hr after the last drug administration. Six hours after seizures, the brain/plasma ratio of phenytoin was reduced by 30% and its extracellular concentration estimated by microdialysis was increased by twofold compared with control mice. Knock-out mice (mdr1a/b -/-) lacking P-gp protein showed a 46% increase in phenytoin concentrations in the hippocampus 1 and 4 hr after injection compared with wild-type mice. A significant 23% increase was found in the cerebellum at 1 hr and in the cortex at 4 hr. Carbamazepine concentrations were measurable in the hippocampus at 3 hr in mdr1a/b -/- mice, whereas they were undetectable at the same time interval in wild-type mice. In rats having spontaneous seizures 3 months after electrically induced status epilepticus, mdr1 mRNA levels were enhanced by 1.8-fold and fivefold on average in the hippocampus and entorhinal cortex, respectively. Thus, changes in P-gp mRNA levels occur in limbic areas after both acute and chronic epileptic activity. P-gp alterations significantly affect antiepileptic drugs concentrations in the brain, suggesting that seizure-induced mdr mRNA expression contributes to MDR in epilepsy.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>12122045</pmid><doi>10.1523/jneurosci.22-14-05833.2002</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2002-07, Vol.22 (14), p.5833-5839
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6757954
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Anticonvulsants - pharmacokinetics
Anticonvulsants - pharmacology
ATP Binding Cassette Transporter, Subfamily B, Member 1 - genetics
ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism
Brain - drug effects
Brain - metabolism
Brain - physiopathology
Disease Models, Animal
Drug Resistance - physiology
Electric Stimulation
Electroencephalography
Entorhinal Cortex - drug effects
Entorhinal Cortex - metabolism
Gene Expression - drug effects
Hippocampus - drug effects
Hippocampus - metabolism
Homozygote
Limbic System - drug effects
Limbic System - metabolism
Limbic System - physiopathology
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Rats
Rats, Sprague-Dawley
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - metabolism
Seizures - physiopathology
title Limbic Seizures Induce P-Glycoprotein in Rodent Brain: Functional Implications for Pharmacoresistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limbic%20Seizures%20Induce%20P-Glycoprotein%20in%20Rodent%20Brain:%20Functional%20Implications%20for%20Pharmacoresistance&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Rizzi,%20Massimo&rft.date=2002-07-15&rft.volume=22&rft.issue=14&rft.spage=5833&rft.epage=5839&rft.pages=5833-5839&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.22-14-05833.2002&rft_dat=%3Cproquest_pubme%3E18734479%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18734479&rft_id=info:pmid/12122045&rfr_iscdi=true