Limbic Seizures Induce P-Glycoprotein in Rodent Brain: Functional Implications for Pharmacoresistance
The causes and mechanisms underlying multidrug resistance (MDR) in epilepsy are still elusive and may depend on inadequate drug concentration in crucial brain areas. We studied whether limbic seizures or anticonvulsant drug treatments in rodents enhance the brain expression of the MDR gene (mdr) enc...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2002-07, Vol.22 (14), p.5833-5839 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5839 |
---|---|
container_issue | 14 |
container_start_page | 5833 |
container_title | The Journal of neuroscience |
container_volume | 22 |
creator | Rizzi, Massimo Caccia, Silvio Guiso, Giovanna Richichi, Cristina Gorter, Jan A Aronica, Eleonora Aliprandi, Marisa Bagnati, Renzo Fanelli, Roberto D'Incalci, Maurizio Samanin, Rosario Vezzani, Annamaria |
description | The causes and mechanisms underlying multidrug resistance (MDR) in epilepsy are still elusive and may depend on inadequate drug concentration in crucial brain areas. We studied whether limbic seizures or anticonvulsant drug treatments in rodents enhance the brain expression of the MDR gene (mdr) encoding a permeability glycoprotein (P-gp) involved in MDR to various cancer chemotherapeutic agents. We also investigated whether changes in P-gp levels affect anticonvulsant drug concentrations in the brain. Mdr mRNA measured by RT-PCR increased by 85% on average in the mouse hippocampus 3-24 hr after kainic acid-induced limbic seizures, returning to control levels by 72 hr. Treatment with therapeutic doses of phenytoin or carbamazepine for 7 d did not change mdr mRNA expression in the mouse hippocampus 1-72 hr after the last drug administration. Six hours after seizures, the brain/plasma ratio of phenytoin was reduced by 30% and its extracellular concentration estimated by microdialysis was increased by twofold compared with control mice. Knock-out mice (mdr1a/b -/-) lacking P-gp protein showed a 46% increase in phenytoin concentrations in the hippocampus 1 and 4 hr after injection compared with wild-type mice. A significant 23% increase was found in the cerebellum at 1 hr and in the cortex at 4 hr. Carbamazepine concentrations were measurable in the hippocampus at 3 hr in mdr1a/b -/- mice, whereas they were undetectable at the same time interval in wild-type mice. In rats having spontaneous seizures 3 months after electrically induced status epilepticus, mdr1 mRNA levels were enhanced by 1.8-fold and fivefold on average in the hippocampus and entorhinal cortex, respectively. Thus, changes in P-gp mRNA levels occur in limbic areas after both acute and chronic epileptic activity. P-gp alterations significantly affect antiepileptic drugs concentrations in the brain, suggesting that seizure-induced mdr mRNA expression contributes to MDR in epilepsy. |
doi_str_mv | 10.1523/jneurosci.22-14-05833.2002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6757954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18734479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-88bb1dbe14c200eeef4c7eb9804d5e73d157ab75081dde819a99fd949e205c2a3</originalsourceid><addsrcrecordid>eNpVkV1vFCEUhonR2LX6FwzxQq9mBQbK0AsT3bR1zcY2rb0mDHOmS8PACjNu2l9f1t34kZCcEJ7zcE5ehN5RMqeC1R_vA0wpZuvmjFWUV0Q0dT1nhLBnaFYIVTFO6HM0I0yS6oRLfoRe5XxPCJGEypfoiDLKGOFihmDlhtZZfAPucUqQ8TJ0kwV8VV34Bxs3KY7gAi7nOnYQRvwlGRdO8fkU7OhiMB4vh4131uxuGfcx4au1SYOxsehcHk2w8Bq96I3P8OZQj9Ht-dmPxddqdXmxXHxeVVYIOlZN07a0a4FyW7YBgJ5bCa1qCO8EyLqjQppWCtLQroOGKqNU3ymugBFhmamP0ae9dzO1A3S2DJyM15vkBpMedDRO__8S3FrfxV_6RAqpBC-C9wdBij8nyKMeXLbgvQkQp6xpI2vOpSrg6R60JYmcoP_zCSV6l5L-9v3s9vryZrHUjGnK9e-U9C6l0vz23zH_th5iKcCHPbB2d-utS6DzYLwvONXb7XYv3PnqJ2xUoQc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18734479</pqid></control><display><type>article</type><title>Limbic Seizures Induce P-Glycoprotein in Rodent Brain: Functional Implications for Pharmacoresistance</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rizzi, Massimo ; Caccia, Silvio ; Guiso, Giovanna ; Richichi, Cristina ; Gorter, Jan A ; Aronica, Eleonora ; Aliprandi, Marisa ; Bagnati, Renzo ; Fanelli, Roberto ; D'Incalci, Maurizio ; Samanin, Rosario ; Vezzani, Annamaria</creator><creatorcontrib>Rizzi, Massimo ; Caccia, Silvio ; Guiso, Giovanna ; Richichi, Cristina ; Gorter, Jan A ; Aronica, Eleonora ; Aliprandi, Marisa ; Bagnati, Renzo ; Fanelli, Roberto ; D'Incalci, Maurizio ; Samanin, Rosario ; Vezzani, Annamaria</creatorcontrib><description>The causes and mechanisms underlying multidrug resistance (MDR) in epilepsy are still elusive and may depend on inadequate drug concentration in crucial brain areas. We studied whether limbic seizures or anticonvulsant drug treatments in rodents enhance the brain expression of the MDR gene (mdr) encoding a permeability glycoprotein (P-gp) involved in MDR to various cancer chemotherapeutic agents. We also investigated whether changes in P-gp levels affect anticonvulsant drug concentrations in the brain. Mdr mRNA measured by RT-PCR increased by 85% on average in the mouse hippocampus 3-24 hr after kainic acid-induced limbic seizures, returning to control levels by 72 hr. Treatment with therapeutic doses of phenytoin or carbamazepine for 7 d did not change mdr mRNA expression in the mouse hippocampus 1-72 hr after the last drug administration. Six hours after seizures, the brain/plasma ratio of phenytoin was reduced by 30% and its extracellular concentration estimated by microdialysis was increased by twofold compared with control mice. Knock-out mice (mdr1a/b -/-) lacking P-gp protein showed a 46% increase in phenytoin concentrations in the hippocampus 1 and 4 hr after injection compared with wild-type mice. A significant 23% increase was found in the cerebellum at 1 hr and in the cortex at 4 hr. Carbamazepine concentrations were measurable in the hippocampus at 3 hr in mdr1a/b -/- mice, whereas they were undetectable at the same time interval in wild-type mice. In rats having spontaneous seizures 3 months after electrically induced status epilepticus, mdr1 mRNA levels were enhanced by 1.8-fold and fivefold on average in the hippocampus and entorhinal cortex, respectively. Thus, changes in P-gp mRNA levels occur in limbic areas after both acute and chronic epileptic activity. P-gp alterations significantly affect antiepileptic drugs concentrations in the brain, suggesting that seizure-induced mdr mRNA expression contributes to MDR in epilepsy.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.22-14-05833.2002</identifier><identifier>PMID: 12122045</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Anticonvulsants - pharmacokinetics ; Anticonvulsants - pharmacology ; ATP Binding Cassette Transporter, Subfamily B, Member 1 - genetics ; ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism ; Brain - drug effects ; Brain - metabolism ; Brain - physiopathology ; Disease Models, Animal ; Drug Resistance - physiology ; Electric Stimulation ; Electroencephalography ; Entorhinal Cortex - drug effects ; Entorhinal Cortex - metabolism ; Gene Expression - drug effects ; Hippocampus - drug effects ; Hippocampus - metabolism ; Homozygote ; Limbic System - drug effects ; Limbic System - metabolism ; Limbic System - physiopathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Rats ; Rats, Sprague-Dawley ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - metabolism ; Seizures - physiopathology</subject><ispartof>The Journal of neuroscience, 2002-07, Vol.22 (14), p.5833-5839</ispartof><rights>Copyright © 2002 Society for Neuroscience 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-88bb1dbe14c200eeef4c7eb9804d5e73d157ab75081dde819a99fd949e205c2a3</citedby><cites>FETCH-LOGICAL-c551t-88bb1dbe14c200eeef4c7eb9804d5e73d157ab75081dde819a99fd949e205c2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757954/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757954/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12122045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rizzi, Massimo</creatorcontrib><creatorcontrib>Caccia, Silvio</creatorcontrib><creatorcontrib>Guiso, Giovanna</creatorcontrib><creatorcontrib>Richichi, Cristina</creatorcontrib><creatorcontrib>Gorter, Jan A</creatorcontrib><creatorcontrib>Aronica, Eleonora</creatorcontrib><creatorcontrib>Aliprandi, Marisa</creatorcontrib><creatorcontrib>Bagnati, Renzo</creatorcontrib><creatorcontrib>Fanelli, Roberto</creatorcontrib><creatorcontrib>D'Incalci, Maurizio</creatorcontrib><creatorcontrib>Samanin, Rosario</creatorcontrib><creatorcontrib>Vezzani, Annamaria</creatorcontrib><title>Limbic Seizures Induce P-Glycoprotein in Rodent Brain: Functional Implications for Pharmacoresistance</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The causes and mechanisms underlying multidrug resistance (MDR) in epilepsy are still elusive and may depend on inadequate drug concentration in crucial brain areas. We studied whether limbic seizures or anticonvulsant drug treatments in rodents enhance the brain expression of the MDR gene (mdr) encoding a permeability glycoprotein (P-gp) involved in MDR to various cancer chemotherapeutic agents. We also investigated whether changes in P-gp levels affect anticonvulsant drug concentrations in the brain. Mdr mRNA measured by RT-PCR increased by 85% on average in the mouse hippocampus 3-24 hr after kainic acid-induced limbic seizures, returning to control levels by 72 hr. Treatment with therapeutic doses of phenytoin or carbamazepine for 7 d did not change mdr mRNA expression in the mouse hippocampus 1-72 hr after the last drug administration. Six hours after seizures, the brain/plasma ratio of phenytoin was reduced by 30% and its extracellular concentration estimated by microdialysis was increased by twofold compared with control mice. Knock-out mice (mdr1a/b -/-) lacking P-gp protein showed a 46% increase in phenytoin concentrations in the hippocampus 1 and 4 hr after injection compared with wild-type mice. A significant 23% increase was found in the cerebellum at 1 hr and in the cortex at 4 hr. Carbamazepine concentrations were measurable in the hippocampus at 3 hr in mdr1a/b -/- mice, whereas they were undetectable at the same time interval in wild-type mice. In rats having spontaneous seizures 3 months after electrically induced status epilepticus, mdr1 mRNA levels were enhanced by 1.8-fold and fivefold on average in the hippocampus and entorhinal cortex, respectively. Thus, changes in P-gp mRNA levels occur in limbic areas after both acute and chronic epileptic activity. P-gp alterations significantly affect antiepileptic drugs concentrations in the brain, suggesting that seizure-induced mdr mRNA expression contributes to MDR in epilepsy.</description><subject>Animals</subject><subject>Anticonvulsants - pharmacokinetics</subject><subject>Anticonvulsants - pharmacology</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 1 - genetics</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain - physiopathology</subject><subject>Disease Models, Animal</subject><subject>Drug Resistance - physiology</subject><subject>Electric Stimulation</subject><subject>Electroencephalography</subject><subject>Entorhinal Cortex - drug effects</subject><subject>Entorhinal Cortex - metabolism</subject><subject>Gene Expression - drug effects</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>Homozygote</subject><subject>Limbic System - drug effects</subject><subject>Limbic System - metabolism</subject><subject>Limbic System - physiopathology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - metabolism</subject><subject>Seizures - physiopathology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkV1vFCEUhonR2LX6FwzxQq9mBQbK0AsT3bR1zcY2rb0mDHOmS8PACjNu2l9f1t34kZCcEJ7zcE5ehN5RMqeC1R_vA0wpZuvmjFWUV0Q0dT1nhLBnaFYIVTFO6HM0I0yS6oRLfoRe5XxPCJGEypfoiDLKGOFihmDlhtZZfAPucUqQ8TJ0kwV8VV34Bxs3KY7gAi7nOnYQRvwlGRdO8fkU7OhiMB4vh4131uxuGfcx4au1SYOxsehcHk2w8Bq96I3P8OZQj9Ht-dmPxddqdXmxXHxeVVYIOlZN07a0a4FyW7YBgJ5bCa1qCO8EyLqjQppWCtLQroOGKqNU3ymugBFhmamP0ae9dzO1A3S2DJyM15vkBpMedDRO__8S3FrfxV_6RAqpBC-C9wdBij8nyKMeXLbgvQkQp6xpI2vOpSrg6R60JYmcoP_zCSV6l5L-9v3s9vryZrHUjGnK9e-U9C6l0vz23zH_th5iKcCHPbB2d-utS6DzYLwvONXb7XYv3PnqJ2xUoQc</recordid><startdate>20020715</startdate><enddate>20020715</enddate><creator>Rizzi, Massimo</creator><creator>Caccia, Silvio</creator><creator>Guiso, Giovanna</creator><creator>Richichi, Cristina</creator><creator>Gorter, Jan A</creator><creator>Aronica, Eleonora</creator><creator>Aliprandi, Marisa</creator><creator>Bagnati, Renzo</creator><creator>Fanelli, Roberto</creator><creator>D'Incalci, Maurizio</creator><creator>Samanin, Rosario</creator><creator>Vezzani, Annamaria</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20020715</creationdate><title>Limbic Seizures Induce P-Glycoprotein in Rodent Brain: Functional Implications for Pharmacoresistance</title><author>Rizzi, Massimo ; Caccia, Silvio ; Guiso, Giovanna ; Richichi, Cristina ; Gorter, Jan A ; Aronica, Eleonora ; Aliprandi, Marisa ; Bagnati, Renzo ; Fanelli, Roberto ; D'Incalci, Maurizio ; Samanin, Rosario ; Vezzani, Annamaria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-88bb1dbe14c200eeef4c7eb9804d5e73d157ab75081dde819a99fd949e205c2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Anticonvulsants - pharmacokinetics</topic><topic>Anticonvulsants - pharmacology</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 1 - genetics</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain - physiopathology</topic><topic>Disease Models, Animal</topic><topic>Drug Resistance - physiology</topic><topic>Electric Stimulation</topic><topic>Electroencephalography</topic><topic>Entorhinal Cortex - drug effects</topic><topic>Entorhinal Cortex - metabolism</topic><topic>Gene Expression - drug effects</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>Homozygote</topic><topic>Limbic System - drug effects</topic><topic>Limbic System - metabolism</topic><topic>Limbic System - physiopathology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - metabolism</topic><topic>Seizures - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rizzi, Massimo</creatorcontrib><creatorcontrib>Caccia, Silvio</creatorcontrib><creatorcontrib>Guiso, Giovanna</creatorcontrib><creatorcontrib>Richichi, Cristina</creatorcontrib><creatorcontrib>Gorter, Jan A</creatorcontrib><creatorcontrib>Aronica, Eleonora</creatorcontrib><creatorcontrib>Aliprandi, Marisa</creatorcontrib><creatorcontrib>Bagnati, Renzo</creatorcontrib><creatorcontrib>Fanelli, Roberto</creatorcontrib><creatorcontrib>D'Incalci, Maurizio</creatorcontrib><creatorcontrib>Samanin, Rosario</creatorcontrib><creatorcontrib>Vezzani, Annamaria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizzi, Massimo</au><au>Caccia, Silvio</au><au>Guiso, Giovanna</au><au>Richichi, Cristina</au><au>Gorter, Jan A</au><au>Aronica, Eleonora</au><au>Aliprandi, Marisa</au><au>Bagnati, Renzo</au><au>Fanelli, Roberto</au><au>D'Incalci, Maurizio</au><au>Samanin, Rosario</au><au>Vezzani, Annamaria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limbic Seizures Induce P-Glycoprotein in Rodent Brain: Functional Implications for Pharmacoresistance</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2002-07-15</date><risdate>2002</risdate><volume>22</volume><issue>14</issue><spage>5833</spage><epage>5839</epage><pages>5833-5839</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The causes and mechanisms underlying multidrug resistance (MDR) in epilepsy are still elusive and may depend on inadequate drug concentration in crucial brain areas. We studied whether limbic seizures or anticonvulsant drug treatments in rodents enhance the brain expression of the MDR gene (mdr) encoding a permeability glycoprotein (P-gp) involved in MDR to various cancer chemotherapeutic agents. We also investigated whether changes in P-gp levels affect anticonvulsant drug concentrations in the brain. Mdr mRNA measured by RT-PCR increased by 85% on average in the mouse hippocampus 3-24 hr after kainic acid-induced limbic seizures, returning to control levels by 72 hr. Treatment with therapeutic doses of phenytoin or carbamazepine for 7 d did not change mdr mRNA expression in the mouse hippocampus 1-72 hr after the last drug administration. Six hours after seizures, the brain/plasma ratio of phenytoin was reduced by 30% and its extracellular concentration estimated by microdialysis was increased by twofold compared with control mice. Knock-out mice (mdr1a/b -/-) lacking P-gp protein showed a 46% increase in phenytoin concentrations in the hippocampus 1 and 4 hr after injection compared with wild-type mice. A significant 23% increase was found in the cerebellum at 1 hr and in the cortex at 4 hr. Carbamazepine concentrations were measurable in the hippocampus at 3 hr in mdr1a/b -/- mice, whereas they were undetectable at the same time interval in wild-type mice. In rats having spontaneous seizures 3 months after electrically induced status epilepticus, mdr1 mRNA levels were enhanced by 1.8-fold and fivefold on average in the hippocampus and entorhinal cortex, respectively. Thus, changes in P-gp mRNA levels occur in limbic areas after both acute and chronic epileptic activity. P-gp alterations significantly affect antiepileptic drugs concentrations in the brain, suggesting that seizure-induced mdr mRNA expression contributes to MDR in epilepsy.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>12122045</pmid><doi>10.1523/jneurosci.22-14-05833.2002</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2002-07, Vol.22 (14), p.5833-5839 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6757954 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Anticonvulsants - pharmacokinetics Anticonvulsants - pharmacology ATP Binding Cassette Transporter, Subfamily B, Member 1 - genetics ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism Brain - drug effects Brain - metabolism Brain - physiopathology Disease Models, Animal Drug Resistance - physiology Electric Stimulation Electroencephalography Entorhinal Cortex - drug effects Entorhinal Cortex - metabolism Gene Expression - drug effects Hippocampus - drug effects Hippocampus - metabolism Homozygote Limbic System - drug effects Limbic System - metabolism Limbic System - physiopathology Male Mice Mice, Inbred C57BL Mice, Knockout Rats Rats, Sprague-Dawley Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - metabolism Seizures - physiopathology |
title | Limbic Seizures Induce P-Glycoprotein in Rodent Brain: Functional Implications for Pharmacoresistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limbic%20Seizures%20Induce%20P-Glycoprotein%20in%20Rodent%20Brain:%20Functional%20Implications%20for%20Pharmacoresistance&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Rizzi,%20Massimo&rft.date=2002-07-15&rft.volume=22&rft.issue=14&rft.spage=5833&rft.epage=5839&rft.pages=5833-5839&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.22-14-05833.2002&rft_dat=%3Cproquest_pubme%3E18734479%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18734479&rft_id=info:pmid/12122045&rfr_iscdi=true |