The Switch of Subthalamic Neurons From an Irregular to a Bursting Pattern Does Not Solely Depend on Their GABAergic Inputs in the Anesthetic-Free Rat
The subthalamic nucleus (STN) powerfully controls basal ganglia outputs and has been implicated in movement disorders observed in Parkinson's disease because of its pathological mixed burst firing mode and hyperactivity. A recent study suggested that reciprocally connected glutamatergic STN and...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2002-10, Vol.22 (19), p.8665-8675 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8675 |
---|---|
container_issue | 19 |
container_start_page | 8665 |
container_title | The Journal of neuroscience |
container_volume | 22 |
creator | Urbain, Nadia Rentero, Nicolas Gervasoni, Damien Renaud, Bernard Chouvet, Guy |
description | The subthalamic nucleus (STN) powerfully controls basal ganglia outputs and has been implicated in movement disorders observed in Parkinson's disease because of its pathological mixed burst firing mode and hyperactivity. A recent study suggested that reciprocally connected glutamatergic STN and GABAergic globus pallidus (GP) neurons act in vitro as a generator of bursting activity in basal ganglia. In vivo, we reported that GP neurons increased their firing rate in wakefulness (W) compared with slow-wave sleep (SWS) without any change in their random pattern. In contrast, STN neurons exhibited similar firing rates in W and SWS, with an irregular pattern in W and a bursty one in SWS. Thus, the pallidal GABAergic tone might control the STN pattern. This hypothesis was tested by mimicking such variations with microiontophoresis of GABA receptor ligands. GABA agonists specifically decreased the STN firing rate but did not affect its firing pattern. GABA(A) (but not GABA(B)) antagonists strongly enhanced the STN mean discharge rate during all vigilance states up to three to five times its basal activity. However, such applications did not change the typical W random pattern. When applied during SWS, GABA(A) antagonists strongly reinforced the spontaneous bursty pattern into a particularly marked one with instantaneous frequencies reaching 500-600 Hz. SWS-W transitions occurring during ongoing antagonist iontophoresis invariably disrupted the bursty pattern into a random one. Thus GABA(A) receptors play a critical, but not exclusive, role in regulating the excitatory STN influence on basal ganglia outputs. |
doi_str_mv | 10.1523/jneurosci.22-19-08665.2002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6757798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18735446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-e49d6c10af6bf171f075b0c709c48cedd28ea080e5d879a233b9a60988fbec6c3</originalsourceid><addsrcrecordid>eNqFkl1v0zAYhSMEYmXwF5DFBYiLFNv5cMLFpK5bt6KqQ-t2bTnOm8ZTYhfbWbUfwv_FoRVfN1y9kv285_jIJ4reETwlGU0-PWgYrHFSTSmNSRnjIs-zKcWYPosmgShjmmLyPJpgynCcpyw9iV4594AxZpiwl9EJoUlGWEom0fe7FtBmr7xskWnQZqh8KzrRK4nWo4t2aGFNj4RGS2thO3TCIm-QQOeDdV7pLfoqvAer0YUBh9bGo43poHtCF7ADXSOjUfBQFl3Nzmdgt0F5qXeDd0hp5IP7TIML0ysZLywAuhX-dfSiEZ2DN8d5Gt0vLu_m1_Hq5mo5n61imZHSx5CWdS4JFk1eNYSRBrOswpLhUqaFhLqmBQhcYMjqgpWCJklVihyXRdFUIHOZnEZnB93dUPVQS9Deio7vrOqFfeJGKP73jVYt35pHnrOMsbIIAh8PAu0_a9ezFR_PMCYkKcrskQT2_dHMmm9DyMx75SR0ndBgBscZDd-Cs-S_IClYkqVpHsDPB1CGOjgLza8nEMzHqvAv68v725vNfMkp5aTkP6vCx6qE5bd_Zv-9euxGAD4cs6ltu1cWuOtF1wWc8P1-fxAc9ZIfpVjLiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18735446</pqid></control><display><type>article</type><title>The Switch of Subthalamic Neurons From an Irregular to a Bursting Pattern Does Not Solely Depend on Their GABAergic Inputs in the Anesthetic-Free Rat</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Urbain, Nadia ; Rentero, Nicolas ; Gervasoni, Damien ; Renaud, Bernard ; Chouvet, Guy</creator><creatorcontrib>Urbain, Nadia ; Rentero, Nicolas ; Gervasoni, Damien ; Renaud, Bernard ; Chouvet, Guy</creatorcontrib><description>The subthalamic nucleus (STN) powerfully controls basal ganglia outputs and has been implicated in movement disorders observed in Parkinson's disease because of its pathological mixed burst firing mode and hyperactivity. A recent study suggested that reciprocally connected glutamatergic STN and GABAergic globus pallidus (GP) neurons act in vitro as a generator of bursting activity in basal ganglia. In vivo, we reported that GP neurons increased their firing rate in wakefulness (W) compared with slow-wave sleep (SWS) without any change in their random pattern. In contrast, STN neurons exhibited similar firing rates in W and SWS, with an irregular pattern in W and a bursty one in SWS. Thus, the pallidal GABAergic tone might control the STN pattern. This hypothesis was tested by mimicking such variations with microiontophoresis of GABA receptor ligands. GABA agonists specifically decreased the STN firing rate but did not affect its firing pattern. GABA(A) (but not GABA(B)) antagonists strongly enhanced the STN mean discharge rate during all vigilance states up to three to five times its basal activity. However, such applications did not change the typical W random pattern. When applied during SWS, GABA(A) antagonists strongly reinforced the spontaneous bursty pattern into a particularly marked one with instantaneous frequencies reaching 500-600 Hz. SWS-W transitions occurring during ongoing antagonist iontophoresis invariably disrupted the bursty pattern into a random one. Thus GABA(A) receptors play a critical, but not exclusive, role in regulating the excitatory STN influence on basal ganglia outputs.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.22-19-08665.2002</identifier><identifier>PMID: 12351741</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Action Potentials ; Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; Circadian Rhythm ; Circadian Rhythm - physiology ; Electroencephalography ; Electroencephalography - drug effects ; Electromyography ; GABA Agonists ; GABA Agonists - pharmacology ; GABA Antagonists ; GABA Antagonists - pharmacology ; GABA-A Receptor Agonists ; GABA-A Receptor Antagonists ; GABA-B Receptor Agonists ; GABA-B Receptor Antagonists ; gamma-Aminobutyric Acid - administration & dosage ; gamma-Aminobutyric Acid - metabolism ; Iontophoresis ; Life Sciences ; Male ; Neurobiology ; Neurons ; Neurons - drug effects ; Neurons - physiology ; Neurons and Cognition ; Periodicity ; Rats ; Rats, Sprague-Dawley ; Receptors, GABA-A ; Receptors, GABA-A - metabolism ; Receptors, GABA-B ; Research Support, Non-U.S ; Sleep - physiology ; Subthalamic Nucleus - cytology ; Subthalamic Nucleus - drug effects ; Subthalamic Nucleus - physiology ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Wakefulness - physiology</subject><ispartof>The Journal of neuroscience, 2002-10, Vol.22 (19), p.8665-8675</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2002 Society for Neuroscience 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-e49d6c10af6bf171f075b0c709c48cedd28ea080e5d879a233b9a60988fbec6c3</citedby><orcidid>0000-0003-1529-899X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757798/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757798/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12351741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00113895$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Urbain, Nadia</creatorcontrib><creatorcontrib>Rentero, Nicolas</creatorcontrib><creatorcontrib>Gervasoni, Damien</creatorcontrib><creatorcontrib>Renaud, Bernard</creatorcontrib><creatorcontrib>Chouvet, Guy</creatorcontrib><title>The Switch of Subthalamic Neurons From an Irregular to a Bursting Pattern Does Not Solely Depend on Their GABAergic Inputs in the Anesthetic-Free Rat</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The subthalamic nucleus (STN) powerfully controls basal ganglia outputs and has been implicated in movement disorders observed in Parkinson's disease because of its pathological mixed burst firing mode and hyperactivity. A recent study suggested that reciprocally connected glutamatergic STN and GABAergic globus pallidus (GP) neurons act in vitro as a generator of bursting activity in basal ganglia. In vivo, we reported that GP neurons increased their firing rate in wakefulness (W) compared with slow-wave sleep (SWS) without any change in their random pattern. In contrast, STN neurons exhibited similar firing rates in W and SWS, with an irregular pattern in W and a bursty one in SWS. Thus, the pallidal GABAergic tone might control the STN pattern. This hypothesis was tested by mimicking such variations with microiontophoresis of GABA receptor ligands. GABA agonists specifically decreased the STN firing rate but did not affect its firing pattern. GABA(A) (but not GABA(B)) antagonists strongly enhanced the STN mean discharge rate during all vigilance states up to three to five times its basal activity. However, such applications did not change the typical W random pattern. When applied during SWS, GABA(A) antagonists strongly reinforced the spontaneous bursty pattern into a particularly marked one with instantaneous frequencies reaching 500-600 Hz. SWS-W transitions occurring during ongoing antagonist iontophoresis invariably disrupted the bursty pattern into a random one. Thus GABA(A) receptors play a critical, but not exclusive, role in regulating the excitatory STN influence on basal ganglia outputs.</description><subject>Action Potentials</subject><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Circadian Rhythm</subject><subject>Circadian Rhythm - physiology</subject><subject>Electroencephalography</subject><subject>Electroencephalography - drug effects</subject><subject>Electromyography</subject><subject>GABA Agonists</subject><subject>GABA Agonists - pharmacology</subject><subject>GABA Antagonists</subject><subject>GABA Antagonists - pharmacology</subject><subject>GABA-A Receptor Agonists</subject><subject>GABA-A Receptor Antagonists</subject><subject>GABA-B Receptor Agonists</subject><subject>GABA-B Receptor Antagonists</subject><subject>gamma-Aminobutyric Acid - administration & dosage</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Iontophoresis</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Neurons and Cognition</subject><subject>Periodicity</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, GABA-A</subject><subject>Receptors, GABA-A - metabolism</subject><subject>Receptors, GABA-B</subject><subject>Research Support, Non-U.S</subject><subject>Sleep - physiology</subject><subject>Subthalamic Nucleus - cytology</subject><subject>Subthalamic Nucleus - drug effects</subject><subject>Subthalamic Nucleus - physiology</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Wakefulness - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkl1v0zAYhSMEYmXwF5DFBYiLFNv5cMLFpK5bt6KqQ-t2bTnOm8ZTYhfbWbUfwv_FoRVfN1y9kv285_jIJ4reETwlGU0-PWgYrHFSTSmNSRnjIs-zKcWYPosmgShjmmLyPJpgynCcpyw9iV4594AxZpiwl9EJoUlGWEom0fe7FtBmr7xskWnQZqh8KzrRK4nWo4t2aGFNj4RGS2thO3TCIm-QQOeDdV7pLfoqvAer0YUBh9bGo43poHtCF7ADXSOjUfBQFl3Nzmdgt0F5qXeDd0hp5IP7TIML0ysZLywAuhX-dfSiEZ2DN8d5Gt0vLu_m1_Hq5mo5n61imZHSx5CWdS4JFk1eNYSRBrOswpLhUqaFhLqmBQhcYMjqgpWCJklVihyXRdFUIHOZnEZnB93dUPVQS9Deio7vrOqFfeJGKP73jVYt35pHnrOMsbIIAh8PAu0_a9ezFR_PMCYkKcrskQT2_dHMmm9DyMx75SR0ndBgBscZDd-Cs-S_IClYkqVpHsDPB1CGOjgLza8nEMzHqvAv68v725vNfMkp5aTkP6vCx6qE5bd_Zv-9euxGAD4cs6ltu1cWuOtF1wWc8P1-fxAc9ZIfpVjLiw</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Urbain, Nadia</creator><creator>Rentero, Nicolas</creator><creator>Gervasoni, Damien</creator><creator>Renaud, Bernard</creator><creator>Chouvet, Guy</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1529-899X</orcidid></search><sort><creationdate>20021001</creationdate><title>The Switch of Subthalamic Neurons From an Irregular to a Bursting Pattern Does Not Solely Depend on Their GABAergic Inputs in the Anesthetic-Free Rat</title><author>Urbain, Nadia ; Rentero, Nicolas ; Gervasoni, Damien ; Renaud, Bernard ; Chouvet, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-e49d6c10af6bf171f075b0c709c48cedd28ea080e5d879a233b9a60988fbec6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Action Potentials</topic><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Circadian Rhythm</topic><topic>Circadian Rhythm - physiology</topic><topic>Electroencephalography</topic><topic>Electroencephalography - drug effects</topic><topic>Electromyography</topic><topic>GABA Agonists</topic><topic>GABA Agonists - pharmacology</topic><topic>GABA Antagonists</topic><topic>GABA Antagonists - pharmacology</topic><topic>GABA-A Receptor Agonists</topic><topic>GABA-A Receptor Antagonists</topic><topic>GABA-B Receptor Agonists</topic><topic>GABA-B Receptor Antagonists</topic><topic>gamma-Aminobutyric Acid - administration & dosage</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Iontophoresis</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Neurons and Cognition</topic><topic>Periodicity</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, GABA-A</topic><topic>Receptors, GABA-A - metabolism</topic><topic>Receptors, GABA-B</topic><topic>Research Support, Non-U.S</topic><topic>Sleep - physiology</topic><topic>Subthalamic Nucleus - cytology</topic><topic>Subthalamic Nucleus - drug effects</topic><topic>Subthalamic Nucleus - physiology</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Wakefulness - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urbain, Nadia</creatorcontrib><creatorcontrib>Rentero, Nicolas</creatorcontrib><creatorcontrib>Gervasoni, Damien</creatorcontrib><creatorcontrib>Renaud, Bernard</creatorcontrib><creatorcontrib>Chouvet, Guy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urbain, Nadia</au><au>Rentero, Nicolas</au><au>Gervasoni, Damien</au><au>Renaud, Bernard</au><au>Chouvet, Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Switch of Subthalamic Neurons From an Irregular to a Bursting Pattern Does Not Solely Depend on Their GABAergic Inputs in the Anesthetic-Free Rat</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2002-10-01</date><risdate>2002</risdate><volume>22</volume><issue>19</issue><spage>8665</spage><epage>8675</epage><pages>8665-8675</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>The subthalamic nucleus (STN) powerfully controls basal ganglia outputs and has been implicated in movement disorders observed in Parkinson's disease because of its pathological mixed burst firing mode and hyperactivity. A recent study suggested that reciprocally connected glutamatergic STN and GABAergic globus pallidus (GP) neurons act in vitro as a generator of bursting activity in basal ganglia. In vivo, we reported that GP neurons increased their firing rate in wakefulness (W) compared with slow-wave sleep (SWS) without any change in their random pattern. In contrast, STN neurons exhibited similar firing rates in W and SWS, with an irregular pattern in W and a bursty one in SWS. Thus, the pallidal GABAergic tone might control the STN pattern. This hypothesis was tested by mimicking such variations with microiontophoresis of GABA receptor ligands. GABA agonists specifically decreased the STN firing rate but did not affect its firing pattern. GABA(A) (but not GABA(B)) antagonists strongly enhanced the STN mean discharge rate during all vigilance states up to three to five times its basal activity. However, such applications did not change the typical W random pattern. When applied during SWS, GABA(A) antagonists strongly reinforced the spontaneous bursty pattern into a particularly marked one with instantaneous frequencies reaching 500-600 Hz. SWS-W transitions occurring during ongoing antagonist iontophoresis invariably disrupted the bursty pattern into a random one. Thus GABA(A) receptors play a critical, but not exclusive, role in regulating the excitatory STN influence on basal ganglia outputs.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>12351741</pmid><doi>10.1523/jneurosci.22-19-08665.2002</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1529-899X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2002-10, Vol.22 (19), p.8665-8675 |
issn | 0270-6474 1529-2401 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6757798 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Action Potentials Action Potentials - drug effects Action Potentials - physiology Animals Circadian Rhythm Circadian Rhythm - physiology Electroencephalography Electroencephalography - drug effects Electromyography GABA Agonists GABA Agonists - pharmacology GABA Antagonists GABA Antagonists - pharmacology GABA-A Receptor Agonists GABA-A Receptor Antagonists GABA-B Receptor Agonists GABA-B Receptor Antagonists gamma-Aminobutyric Acid - administration & dosage gamma-Aminobutyric Acid - metabolism Iontophoresis Life Sciences Male Neurobiology Neurons Neurons - drug effects Neurons - physiology Neurons and Cognition Periodicity Rats Rats, Sprague-Dawley Receptors, GABA-A Receptors, GABA-A - metabolism Receptors, GABA-B Research Support, Non-U.S Sleep - physiology Subthalamic Nucleus - cytology Subthalamic Nucleus - drug effects Subthalamic Nucleus - physiology Synaptic Transmission - drug effects Synaptic Transmission - physiology Wakefulness - physiology |
title | The Switch of Subthalamic Neurons From an Irregular to a Bursting Pattern Does Not Solely Depend on Their GABAergic Inputs in the Anesthetic-Free Rat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Switch%20of%20Subthalamic%20Neurons%20From%20an%20Irregular%20to%20a%20Bursting%20Pattern%20Does%20Not%20Solely%20Depend%20on%20Their%20GABAergic%20Inputs%20in%20the%20Anesthetic-Free%20Rat&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Urbain,%20Nadia&rft.date=2002-10-01&rft.volume=22&rft.issue=19&rft.spage=8665&rft.epage=8675&rft.pages=8665-8675&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.22-19-08665.2002&rft_dat=%3Cproquest_pubme%3E18735446%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18735446&rft_id=info:pmid/12351741&rfr_iscdi=true |