The Switch of Subthalamic Neurons From an Irregular to a Bursting Pattern Does Not Solely Depend on Their GABAergic Inputs in the Anesthetic-Free Rat

The subthalamic nucleus (STN) powerfully controls basal ganglia outputs and has been implicated in movement disorders observed in Parkinson's disease because of its pathological mixed burst firing mode and hyperactivity. A recent study suggested that reciprocally connected glutamatergic STN and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2002-10, Vol.22 (19), p.8665-8675
Hauptverfasser: Urbain, Nadia, Rentero, Nicolas, Gervasoni, Damien, Renaud, Bernard, Chouvet, Guy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8675
container_issue 19
container_start_page 8665
container_title The Journal of neuroscience
container_volume 22
creator Urbain, Nadia
Rentero, Nicolas
Gervasoni, Damien
Renaud, Bernard
Chouvet, Guy
description The subthalamic nucleus (STN) powerfully controls basal ganglia outputs and has been implicated in movement disorders observed in Parkinson's disease because of its pathological mixed burst firing mode and hyperactivity. A recent study suggested that reciprocally connected glutamatergic STN and GABAergic globus pallidus (GP) neurons act in vitro as a generator of bursting activity in basal ganglia. In vivo, we reported that GP neurons increased their firing rate in wakefulness (W) compared with slow-wave sleep (SWS) without any change in their random pattern. In contrast, STN neurons exhibited similar firing rates in W and SWS, with an irregular pattern in W and a bursty one in SWS. Thus, the pallidal GABAergic tone might control the STN pattern. This hypothesis was tested by mimicking such variations with microiontophoresis of GABA receptor ligands. GABA agonists specifically decreased the STN firing rate but did not affect its firing pattern. GABA(A) (but not GABA(B)) antagonists strongly enhanced the STN mean discharge rate during all vigilance states up to three to five times its basal activity. However, such applications did not change the typical W random pattern. When applied during SWS, GABA(A) antagonists strongly reinforced the spontaneous bursty pattern into a particularly marked one with instantaneous frequencies reaching 500-600 Hz. SWS-W transitions occurring during ongoing antagonist iontophoresis invariably disrupted the bursty pattern into a random one. Thus GABA(A) receptors play a critical, but not exclusive, role in regulating the excitatory STN influence on basal ganglia outputs.
doi_str_mv 10.1523/jneurosci.22-19-08665.2002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6757798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18735446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-e49d6c10af6bf171f075b0c709c48cedd28ea080e5d879a233b9a60988fbec6c3</originalsourceid><addsrcrecordid>eNqFkl1v0zAYhSMEYmXwF5DFBYiLFNv5cMLFpK5bt6KqQ-t2bTnOm8ZTYhfbWbUfwv_FoRVfN1y9kv285_jIJ4reETwlGU0-PWgYrHFSTSmNSRnjIs-zKcWYPosmgShjmmLyPJpgynCcpyw9iV4594AxZpiwl9EJoUlGWEom0fe7FtBmr7xskWnQZqh8KzrRK4nWo4t2aGFNj4RGS2thO3TCIm-QQOeDdV7pLfoqvAer0YUBh9bGo43poHtCF7ADXSOjUfBQFl3Nzmdgt0F5qXeDd0hp5IP7TIML0ysZLywAuhX-dfSiEZ2DN8d5Gt0vLu_m1_Hq5mo5n61imZHSx5CWdS4JFk1eNYSRBrOswpLhUqaFhLqmBQhcYMjqgpWCJklVihyXRdFUIHOZnEZnB93dUPVQS9Deio7vrOqFfeJGKP73jVYt35pHnrOMsbIIAh8PAu0_a9ezFR_PMCYkKcrskQT2_dHMmm9DyMx75SR0ndBgBscZDd-Cs-S_IClYkqVpHsDPB1CGOjgLza8nEMzHqvAv68v725vNfMkp5aTkP6vCx6qE5bd_Zv-9euxGAD4cs6ltu1cWuOtF1wWc8P1-fxAc9ZIfpVjLiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18735446</pqid></control><display><type>article</type><title>The Switch of Subthalamic Neurons From an Irregular to a Bursting Pattern Does Not Solely Depend on Their GABAergic Inputs in the Anesthetic-Free Rat</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Urbain, Nadia ; Rentero, Nicolas ; Gervasoni, Damien ; Renaud, Bernard ; Chouvet, Guy</creator><creatorcontrib>Urbain, Nadia ; Rentero, Nicolas ; Gervasoni, Damien ; Renaud, Bernard ; Chouvet, Guy</creatorcontrib><description>The subthalamic nucleus (STN) powerfully controls basal ganglia outputs and has been implicated in movement disorders observed in Parkinson's disease because of its pathological mixed burst firing mode and hyperactivity. A recent study suggested that reciprocally connected glutamatergic STN and GABAergic globus pallidus (GP) neurons act in vitro as a generator of bursting activity in basal ganglia. In vivo, we reported that GP neurons increased their firing rate in wakefulness (W) compared with slow-wave sleep (SWS) without any change in their random pattern. In contrast, STN neurons exhibited similar firing rates in W and SWS, with an irregular pattern in W and a bursty one in SWS. Thus, the pallidal GABAergic tone might control the STN pattern. This hypothesis was tested by mimicking such variations with microiontophoresis of GABA receptor ligands. GABA agonists specifically decreased the STN firing rate but did not affect its firing pattern. GABA(A) (but not GABA(B)) antagonists strongly enhanced the STN mean discharge rate during all vigilance states up to three to five times its basal activity. However, such applications did not change the typical W random pattern. When applied during SWS, GABA(A) antagonists strongly reinforced the spontaneous bursty pattern into a particularly marked one with instantaneous frequencies reaching 500-600 Hz. SWS-W transitions occurring during ongoing antagonist iontophoresis invariably disrupted the bursty pattern into a random one. Thus GABA(A) receptors play a critical, but not exclusive, role in regulating the excitatory STN influence on basal ganglia outputs.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.22-19-08665.2002</identifier><identifier>PMID: 12351741</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Action Potentials ; Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; Circadian Rhythm ; Circadian Rhythm - physiology ; Electroencephalography ; Electroencephalography - drug effects ; Electromyography ; GABA Agonists ; GABA Agonists - pharmacology ; GABA Antagonists ; GABA Antagonists - pharmacology ; GABA-A Receptor Agonists ; GABA-A Receptor Antagonists ; GABA-B Receptor Agonists ; GABA-B Receptor Antagonists ; gamma-Aminobutyric Acid - administration &amp; dosage ; gamma-Aminobutyric Acid - metabolism ; Iontophoresis ; Life Sciences ; Male ; Neurobiology ; Neurons ; Neurons - drug effects ; Neurons - physiology ; Neurons and Cognition ; Periodicity ; Rats ; Rats, Sprague-Dawley ; Receptors, GABA-A ; Receptors, GABA-A - metabolism ; Receptors, GABA-B ; Research Support, Non-U.S ; Sleep - physiology ; Subthalamic Nucleus - cytology ; Subthalamic Nucleus - drug effects ; Subthalamic Nucleus - physiology ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Wakefulness - physiology</subject><ispartof>The Journal of neuroscience, 2002-10, Vol.22 (19), p.8665-8675</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2002 Society for Neuroscience 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-e49d6c10af6bf171f075b0c709c48cedd28ea080e5d879a233b9a60988fbec6c3</citedby><orcidid>0000-0003-1529-899X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757798/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757798/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12351741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00113895$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Urbain, Nadia</creatorcontrib><creatorcontrib>Rentero, Nicolas</creatorcontrib><creatorcontrib>Gervasoni, Damien</creatorcontrib><creatorcontrib>Renaud, Bernard</creatorcontrib><creatorcontrib>Chouvet, Guy</creatorcontrib><title>The Switch of Subthalamic Neurons From an Irregular to a Bursting Pattern Does Not Solely Depend on Their GABAergic Inputs in the Anesthetic-Free Rat</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The subthalamic nucleus (STN) powerfully controls basal ganglia outputs and has been implicated in movement disorders observed in Parkinson's disease because of its pathological mixed burst firing mode and hyperactivity. A recent study suggested that reciprocally connected glutamatergic STN and GABAergic globus pallidus (GP) neurons act in vitro as a generator of bursting activity in basal ganglia. In vivo, we reported that GP neurons increased their firing rate in wakefulness (W) compared with slow-wave sleep (SWS) without any change in their random pattern. In contrast, STN neurons exhibited similar firing rates in W and SWS, with an irregular pattern in W and a bursty one in SWS. Thus, the pallidal GABAergic tone might control the STN pattern. This hypothesis was tested by mimicking such variations with microiontophoresis of GABA receptor ligands. GABA agonists specifically decreased the STN firing rate but did not affect its firing pattern. GABA(A) (but not GABA(B)) antagonists strongly enhanced the STN mean discharge rate during all vigilance states up to three to five times its basal activity. However, such applications did not change the typical W random pattern. When applied during SWS, GABA(A) antagonists strongly reinforced the spontaneous bursty pattern into a particularly marked one with instantaneous frequencies reaching 500-600 Hz. SWS-W transitions occurring during ongoing antagonist iontophoresis invariably disrupted the bursty pattern into a random one. Thus GABA(A) receptors play a critical, but not exclusive, role in regulating the excitatory STN influence on basal ganglia outputs.</description><subject>Action Potentials</subject><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Circadian Rhythm</subject><subject>Circadian Rhythm - physiology</subject><subject>Electroencephalography</subject><subject>Electroencephalography - drug effects</subject><subject>Electromyography</subject><subject>GABA Agonists</subject><subject>GABA Agonists - pharmacology</subject><subject>GABA Antagonists</subject><subject>GABA Antagonists - pharmacology</subject><subject>GABA-A Receptor Agonists</subject><subject>GABA-A Receptor Antagonists</subject><subject>GABA-B Receptor Agonists</subject><subject>GABA-B Receptor Antagonists</subject><subject>gamma-Aminobutyric Acid - administration &amp; dosage</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Iontophoresis</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Neurons and Cognition</subject><subject>Periodicity</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, GABA-A</subject><subject>Receptors, GABA-A - metabolism</subject><subject>Receptors, GABA-B</subject><subject>Research Support, Non-U.S</subject><subject>Sleep - physiology</subject><subject>Subthalamic Nucleus - cytology</subject><subject>Subthalamic Nucleus - drug effects</subject><subject>Subthalamic Nucleus - physiology</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Wakefulness - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkl1v0zAYhSMEYmXwF5DFBYiLFNv5cMLFpK5bt6KqQ-t2bTnOm8ZTYhfbWbUfwv_FoRVfN1y9kv285_jIJ4reETwlGU0-PWgYrHFSTSmNSRnjIs-zKcWYPosmgShjmmLyPJpgynCcpyw9iV4594AxZpiwl9EJoUlGWEom0fe7FtBmr7xskWnQZqh8KzrRK4nWo4t2aGFNj4RGS2thO3TCIm-QQOeDdV7pLfoqvAer0YUBh9bGo43poHtCF7ADXSOjUfBQFl3Nzmdgt0F5qXeDd0hp5IP7TIML0ysZLywAuhX-dfSiEZ2DN8d5Gt0vLu_m1_Hq5mo5n61imZHSx5CWdS4JFk1eNYSRBrOswpLhUqaFhLqmBQhcYMjqgpWCJklVihyXRdFUIHOZnEZnB93dUPVQS9Deio7vrOqFfeJGKP73jVYt35pHnrOMsbIIAh8PAu0_a9ezFR_PMCYkKcrskQT2_dHMmm9DyMx75SR0ndBgBscZDd-Cs-S_IClYkqVpHsDPB1CGOjgLza8nEMzHqvAv68v725vNfMkp5aTkP6vCx6qE5bd_Zv-9euxGAD4cs6ltu1cWuOtF1wWc8P1-fxAc9ZIfpVjLiw</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Urbain, Nadia</creator><creator>Rentero, Nicolas</creator><creator>Gervasoni, Damien</creator><creator>Renaud, Bernard</creator><creator>Chouvet, Guy</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1529-899X</orcidid></search><sort><creationdate>20021001</creationdate><title>The Switch of Subthalamic Neurons From an Irregular to a Bursting Pattern Does Not Solely Depend on Their GABAergic Inputs in the Anesthetic-Free Rat</title><author>Urbain, Nadia ; Rentero, Nicolas ; Gervasoni, Damien ; Renaud, Bernard ; Chouvet, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-e49d6c10af6bf171f075b0c709c48cedd28ea080e5d879a233b9a60988fbec6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Action Potentials</topic><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Circadian Rhythm</topic><topic>Circadian Rhythm - physiology</topic><topic>Electroencephalography</topic><topic>Electroencephalography - drug effects</topic><topic>Electromyography</topic><topic>GABA Agonists</topic><topic>GABA Agonists - pharmacology</topic><topic>GABA Antagonists</topic><topic>GABA Antagonists - pharmacology</topic><topic>GABA-A Receptor Agonists</topic><topic>GABA-A Receptor Antagonists</topic><topic>GABA-B Receptor Agonists</topic><topic>GABA-B Receptor Antagonists</topic><topic>gamma-Aminobutyric Acid - administration &amp; dosage</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Iontophoresis</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Neurons and Cognition</topic><topic>Periodicity</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, GABA-A</topic><topic>Receptors, GABA-A - metabolism</topic><topic>Receptors, GABA-B</topic><topic>Research Support, Non-U.S</topic><topic>Sleep - physiology</topic><topic>Subthalamic Nucleus - cytology</topic><topic>Subthalamic Nucleus - drug effects</topic><topic>Subthalamic Nucleus - physiology</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Wakefulness - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urbain, Nadia</creatorcontrib><creatorcontrib>Rentero, Nicolas</creatorcontrib><creatorcontrib>Gervasoni, Damien</creatorcontrib><creatorcontrib>Renaud, Bernard</creatorcontrib><creatorcontrib>Chouvet, Guy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urbain, Nadia</au><au>Rentero, Nicolas</au><au>Gervasoni, Damien</au><au>Renaud, Bernard</au><au>Chouvet, Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Switch of Subthalamic Neurons From an Irregular to a Bursting Pattern Does Not Solely Depend on Their GABAergic Inputs in the Anesthetic-Free Rat</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2002-10-01</date><risdate>2002</risdate><volume>22</volume><issue>19</issue><spage>8665</spage><epage>8675</epage><pages>8665-8675</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>The subthalamic nucleus (STN) powerfully controls basal ganglia outputs and has been implicated in movement disorders observed in Parkinson's disease because of its pathological mixed burst firing mode and hyperactivity. A recent study suggested that reciprocally connected glutamatergic STN and GABAergic globus pallidus (GP) neurons act in vitro as a generator of bursting activity in basal ganglia. In vivo, we reported that GP neurons increased their firing rate in wakefulness (W) compared with slow-wave sleep (SWS) without any change in their random pattern. In contrast, STN neurons exhibited similar firing rates in W and SWS, with an irregular pattern in W and a bursty one in SWS. Thus, the pallidal GABAergic tone might control the STN pattern. This hypothesis was tested by mimicking such variations with microiontophoresis of GABA receptor ligands. GABA agonists specifically decreased the STN firing rate but did not affect its firing pattern. GABA(A) (but not GABA(B)) antagonists strongly enhanced the STN mean discharge rate during all vigilance states up to three to five times its basal activity. However, such applications did not change the typical W random pattern. When applied during SWS, GABA(A) antagonists strongly reinforced the spontaneous bursty pattern into a particularly marked one with instantaneous frequencies reaching 500-600 Hz. SWS-W transitions occurring during ongoing antagonist iontophoresis invariably disrupted the bursty pattern into a random one. Thus GABA(A) receptors play a critical, but not exclusive, role in regulating the excitatory STN influence on basal ganglia outputs.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>12351741</pmid><doi>10.1523/jneurosci.22-19-08665.2002</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1529-899X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2002-10, Vol.22 (19), p.8665-8675
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6757798
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Action Potentials
Action Potentials - drug effects
Action Potentials - physiology
Animals
Circadian Rhythm
Circadian Rhythm - physiology
Electroencephalography
Electroencephalography - drug effects
Electromyography
GABA Agonists
GABA Agonists - pharmacology
GABA Antagonists
GABA Antagonists - pharmacology
GABA-A Receptor Agonists
GABA-A Receptor Antagonists
GABA-B Receptor Agonists
GABA-B Receptor Antagonists
gamma-Aminobutyric Acid - administration & dosage
gamma-Aminobutyric Acid - metabolism
Iontophoresis
Life Sciences
Male
Neurobiology
Neurons
Neurons - drug effects
Neurons - physiology
Neurons and Cognition
Periodicity
Rats
Rats, Sprague-Dawley
Receptors, GABA-A
Receptors, GABA-A - metabolism
Receptors, GABA-B
Research Support, Non-U.S
Sleep - physiology
Subthalamic Nucleus - cytology
Subthalamic Nucleus - drug effects
Subthalamic Nucleus - physiology
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
Wakefulness - physiology
title The Switch of Subthalamic Neurons From an Irregular to a Bursting Pattern Does Not Solely Depend on Their GABAergic Inputs in the Anesthetic-Free Rat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Switch%20of%20Subthalamic%20Neurons%20From%20an%20Irregular%20to%20a%20Bursting%20Pattern%20Does%20Not%20Solely%20Depend%20on%20Their%20GABAergic%20Inputs%20in%20the%20Anesthetic-Free%20Rat&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Urbain,%20Nadia&rft.date=2002-10-01&rft.volume=22&rft.issue=19&rft.spage=8665&rft.epage=8675&rft.pages=8665-8675&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.22-19-08665.2002&rft_dat=%3Cproquest_pubme%3E18735446%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18735446&rft_id=info:pmid/12351741&rfr_iscdi=true