Androgen receptor-modulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer
Androgen receptor (AR) signalling is a key prostate cancer (PC) driver, even in advanced ‘castrate-resistant’ disease (CRPC). To systematically identify microRNAs (miRs) modulating AR activity in lethal disease, hormone-responsive and -resistant PC cells expressing a luciferase-based AR reporter wer...
Gespeichert in:
Veröffentlicht in: | Oncogene 2019-07, Vol.38 (28), p.5700-5724 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5724 |
---|---|
container_issue | 28 |
container_start_page | 5700 |
container_title | Oncogene |
container_volume | 38 |
creator | Fletcher, Claire E. Sulpice, Eric Combe, Stephanie Shibakawa, Akifumi Leach, Damien A. Hamilton, Mark P. Chrysostomou, Stelios L. Sharp, Adam Welti, Jon Yuan, Wei Dart, Dafydd. A. Knight, Eleanor Ning, Jian Francis, Jeffrey C. Kounatidou, Evangelia E. Gaughan, Luke Swain, Amanda Lupold, Shawn E. de Bono, Johann S. McGuire, Sean E. Gidrol, Xavier Bevan, Charlotte L. |
description | Androgen receptor (AR) signalling is a key prostate cancer (PC) driver, even in advanced ‘castrate-resistant’ disease (CRPC). To systematically identify microRNAs (miRs) modulating AR activity in lethal disease, hormone-responsive and -resistant PC cells expressing a luciferase-based AR reporter were transfected with a miR inhibitor library; 78 inhibitors significantly altered AR activity. Upon validation, miR-346, miR-361-3p and miR-197 inhibitors markedly reduced AR transcriptional activity, mRNA and protein levels, increased apoptosis, reduced proliferation, repressed EMT, and inhibited PC migration and invasion, demonstrating additive effects with AR inhibition. Corresponding miRs increased AR activity through a novel and anti-dogmatic mechanism of direct association with AR 6.9 kb 3′UTR and transcript stabilisation. In addition, miR-346 and miR-361-3p modulation altered levels of constitutively active AR variants, and inhibited variant-driven PC cell proliferation, so may contribute to persistent AR signalling in CRPC in the absence of circulating androgens. Pathway analysis of AGO-PAR-CLIP-identified miR targets revealed roles in DNA replication and repair, cell cycle, signal transduction and immune function. Silencing these targets, including tumour suppressors ARHGDIA and TAGLN2, phenocopied miR effects, demonstrating physiological relevance. MiR-346 additionally upregulated the oncogene, YWHAZ, which correlated with grade, biochemical relapse and metastasis in patients. These AR-modulatory miRs and targets correlated with AR activity in patient biopsies, and were elevated in response to long-term enzalutamide treatment of patient-derived CRPC xenografts. In summary, we identified miRs that modulate AR activity in PC and CRPC, via novel mechanisms, and may represent novel PC therapeutic targets. |
doi_str_mv | 10.1038/s41388-019-0823-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6755970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A592930302</galeid><sourcerecordid>A592930302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-54ccfdcb6c9b36667f31acd3d877436ce2494c7a49efec306b1c77b861554bd03</originalsourceid><addsrcrecordid>eNp1kk-L1DAYxoso7rr6AbxIwYseuuZfm-QiDIu6wqAgeg5p8raTpZOMSTowVz-5KTPuuouSQ9I3v-dp8uapqpcYXWJExbvEMBWiQVg2SBDatI-qc8x417StZI-rcyRb1EhCyVn1LKUbhBCXiDytzihGjHIkzqtfK29jGMHXEQzscojNNth50mV1qLfOxPDtyyrVuxj2zkLtfHLjJpc5hzpvIOrdoUiTS1l7A7X29lSGOTtTZx1HyKnwtbb7BbGLV6Ez1Gb5js-rJ4OeErw4zRfVj48fvl9dN-uvnz5frdaNaTnOTcuMGazpOyN72nUdHyjWxlIrOGe0M0CYZIZrJmEAQ1HXY8N5Lzrctqy3iF5U74--u7nfgjXgc9ST2kW31fGggnbq_o53GzWGvep46SdfDN4eDTYPZNertVpqiBDBMKN7XNg3p5_F8HOGlNXWJQPTpD2EOSlCsJBSIMYL-voBehPm6EsrClXOzmTHxB016gmU80MoZzSLqVq1kkiKKCKFuvwHVYaF8pbBw-BK_Z4AHwXloVOKMNxeDCO1hEwdQ6ZKyNQSMtUWzau_G3mr-JOqApAjkMqWHyHe3ej_rr8B56TeRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2255449648</pqid></control><display><type>article</type><title>Androgen receptor-modulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fletcher, Claire E. ; Sulpice, Eric ; Combe, Stephanie ; Shibakawa, Akifumi ; Leach, Damien A. ; Hamilton, Mark P. ; Chrysostomou, Stelios L. ; Sharp, Adam ; Welti, Jon ; Yuan, Wei ; Dart, Dafydd. A. ; Knight, Eleanor ; Ning, Jian ; Francis, Jeffrey C. ; Kounatidou, Evangelia E. ; Gaughan, Luke ; Swain, Amanda ; Lupold, Shawn E. ; de Bono, Johann S. ; McGuire, Sean E. ; Gidrol, Xavier ; Bevan, Charlotte L.</creator><creatorcontrib>Fletcher, Claire E. ; Sulpice, Eric ; Combe, Stephanie ; Shibakawa, Akifumi ; Leach, Damien A. ; Hamilton, Mark P. ; Chrysostomou, Stelios L. ; Sharp, Adam ; Welti, Jon ; Yuan, Wei ; Dart, Dafydd. A. ; Knight, Eleanor ; Ning, Jian ; Francis, Jeffrey C. ; Kounatidou, Evangelia E. ; Gaughan, Luke ; Swain, Amanda ; Lupold, Shawn E. ; de Bono, Johann S. ; McGuire, Sean E. ; Gidrol, Xavier ; Bevan, Charlotte L.</creatorcontrib><description>Androgen receptor (AR) signalling is a key prostate cancer (PC) driver, even in advanced ‘castrate-resistant’ disease (CRPC). To systematically identify microRNAs (miRs) modulating AR activity in lethal disease, hormone-responsive and -resistant PC cells expressing a luciferase-based AR reporter were transfected with a miR inhibitor library; 78 inhibitors significantly altered AR activity. Upon validation, miR-346, miR-361-3p and miR-197 inhibitors markedly reduced AR transcriptional activity, mRNA and protein levels, increased apoptosis, reduced proliferation, repressed EMT, and inhibited PC migration and invasion, demonstrating additive effects with AR inhibition. Corresponding miRs increased AR activity through a novel and anti-dogmatic mechanism of direct association with AR 6.9 kb 3′UTR and transcript stabilisation. In addition, miR-346 and miR-361-3p modulation altered levels of constitutively active AR variants, and inhibited variant-driven PC cell proliferation, so may contribute to persistent AR signalling in CRPC in the absence of circulating androgens. Pathway analysis of AGO-PAR-CLIP-identified miR targets revealed roles in DNA replication and repair, cell cycle, signal transduction and immune function. Silencing these targets, including tumour suppressors ARHGDIA and TAGLN2, phenocopied miR effects, demonstrating physiological relevance. MiR-346 additionally upregulated the oncogene, YWHAZ, which correlated with grade, biochemical relapse and metastasis in patients. These AR-modulatory miRs and targets correlated with AR activity in patient biopsies, and were elevated in response to long-term enzalutamide treatment of patient-derived CRPC xenografts. In summary, we identified miRs that modulate AR activity in PC and CRPC, via novel mechanisms, and may represent novel PC therapeutic targets.</description><identifier>ISSN: 0950-9232</identifier><identifier>ISSN: 1476-5594</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-019-0823-5</identifier><identifier>PMID: 31043708</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>3' Untranslated Regions ; 38 ; 38/47 ; 38/77 ; 42/44 ; 42/70 ; 42/89 ; 631/337/384 ; 631/67/589/466 ; 82/80 ; 96 ; 96/106 ; 96/2 ; Analysis ; Androgen receptors ; Androgens ; Antisense Elements (Genetics) ; Apoptosis ; Benzamides ; Cell Biology ; Cell cycle ; Cell Line, Tumor ; Cell proliferation ; Development and progression ; DNA biosynthesis ; DNA repair ; Drug Resistance, Neoplasm ; Drug therapy ; Epithelial-Mesenchymal Transition ; Genetic aspects ; Human Genetics ; Humans ; Immune response ; Internal Medicine ; Life Sciences ; Male ; Medicine ; Medicine & Public Health ; Metastases ; MicroRNA ; MicroRNAs ; MicroRNAs - antagonists & inhibitors ; MicroRNAs - genetics ; MicroRNAs - physiology ; miRNA ; Neoplasm Invasiveness ; Neoplasm Metastasis ; Nitriles ; Oncology ; Phenylthiohydantoin - analogs & derivatives ; Phenylthiohydantoin - pharmacology ; Pheochromocytoma cells ; Prostate cancer ; Prostatic Neoplasms - drug therapy ; Prostatic Neoplasms - pathology ; Receptors, Androgen - physiology ; Signal Transduction ; Therapeutic applications ; Transcription ; Treatment outcome ; Tumors ; Xenografts</subject><ispartof>Oncogene, 2019-07, Vol.38 (28), p.5700-5724</ispartof><rights>The Author(s) 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-54ccfdcb6c9b36667f31acd3d877436ce2494c7a49efec306b1c77b861554bd03</citedby><cites>FETCH-LOGICAL-c571t-54ccfdcb6c9b36667f31acd3d877436ce2494c7a49efec306b1c77b861554bd03</cites><orcidid>0000-0003-2083-2798 ; 0000-0002-5449-0362 ; 0000-0003-0683-368X ; 0000-0002-3977-9432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41388-019-0823-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41388-019-0823-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31043708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02284143$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fletcher, Claire E.</creatorcontrib><creatorcontrib>Sulpice, Eric</creatorcontrib><creatorcontrib>Combe, Stephanie</creatorcontrib><creatorcontrib>Shibakawa, Akifumi</creatorcontrib><creatorcontrib>Leach, Damien A.</creatorcontrib><creatorcontrib>Hamilton, Mark P.</creatorcontrib><creatorcontrib>Chrysostomou, Stelios L.</creatorcontrib><creatorcontrib>Sharp, Adam</creatorcontrib><creatorcontrib>Welti, Jon</creatorcontrib><creatorcontrib>Yuan, Wei</creatorcontrib><creatorcontrib>Dart, Dafydd. A.</creatorcontrib><creatorcontrib>Knight, Eleanor</creatorcontrib><creatorcontrib>Ning, Jian</creatorcontrib><creatorcontrib>Francis, Jeffrey C.</creatorcontrib><creatorcontrib>Kounatidou, Evangelia E.</creatorcontrib><creatorcontrib>Gaughan, Luke</creatorcontrib><creatorcontrib>Swain, Amanda</creatorcontrib><creatorcontrib>Lupold, Shawn E.</creatorcontrib><creatorcontrib>de Bono, Johann S.</creatorcontrib><creatorcontrib>McGuire, Sean E.</creatorcontrib><creatorcontrib>Gidrol, Xavier</creatorcontrib><creatorcontrib>Bevan, Charlotte L.</creatorcontrib><title>Androgen receptor-modulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Androgen receptor (AR) signalling is a key prostate cancer (PC) driver, even in advanced ‘castrate-resistant’ disease (CRPC). To systematically identify microRNAs (miRs) modulating AR activity in lethal disease, hormone-responsive and -resistant PC cells expressing a luciferase-based AR reporter were transfected with a miR inhibitor library; 78 inhibitors significantly altered AR activity. Upon validation, miR-346, miR-361-3p and miR-197 inhibitors markedly reduced AR transcriptional activity, mRNA and protein levels, increased apoptosis, reduced proliferation, repressed EMT, and inhibited PC migration and invasion, demonstrating additive effects with AR inhibition. Corresponding miRs increased AR activity through a novel and anti-dogmatic mechanism of direct association with AR 6.9 kb 3′UTR and transcript stabilisation. In addition, miR-346 and miR-361-3p modulation altered levels of constitutively active AR variants, and inhibited variant-driven PC cell proliferation, so may contribute to persistent AR signalling in CRPC in the absence of circulating androgens. Pathway analysis of AGO-PAR-CLIP-identified miR targets revealed roles in DNA replication and repair, cell cycle, signal transduction and immune function. Silencing these targets, including tumour suppressors ARHGDIA and TAGLN2, phenocopied miR effects, demonstrating physiological relevance. MiR-346 additionally upregulated the oncogene, YWHAZ, which correlated with grade, biochemical relapse and metastasis in patients. These AR-modulatory miRs and targets correlated with AR activity in patient biopsies, and were elevated in response to long-term enzalutamide treatment of patient-derived CRPC xenografts. In summary, we identified miRs that modulate AR activity in PC and CRPC, via novel mechanisms, and may represent novel PC therapeutic targets.</description><subject>3' Untranslated Regions</subject><subject>38</subject><subject>38/47</subject><subject>38/77</subject><subject>42/44</subject><subject>42/70</subject><subject>42/89</subject><subject>631/337/384</subject><subject>631/67/589/466</subject><subject>82/80</subject><subject>96</subject><subject>96/106</subject><subject>96/2</subject><subject>Analysis</subject><subject>Androgen receptors</subject><subject>Androgens</subject><subject>Antisense Elements (Genetics)</subject><subject>Apoptosis</subject><subject>Benzamides</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell Line, Tumor</subject><subject>Cell proliferation</subject><subject>Development and progression</subject><subject>DNA biosynthesis</subject><subject>DNA repair</subject><subject>Drug Resistance, Neoplasm</subject><subject>Drug therapy</subject><subject>Epithelial-Mesenchymal Transition</subject><subject>Genetic aspects</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Immune response</subject><subject>Internal Medicine</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metastases</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - antagonists & inhibitors</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - physiology</subject><subject>miRNA</subject><subject>Neoplasm Invasiveness</subject><subject>Neoplasm Metastasis</subject><subject>Nitriles</subject><subject>Oncology</subject><subject>Phenylthiohydantoin - analogs & derivatives</subject><subject>Phenylthiohydantoin - pharmacology</subject><subject>Pheochromocytoma cells</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - drug therapy</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Receptors, Androgen - physiology</subject><subject>Signal Transduction</subject><subject>Therapeutic applications</subject><subject>Transcription</subject><subject>Treatment outcome</subject><subject>Tumors</subject><subject>Xenografts</subject><issn>0950-9232</issn><issn>1476-5594</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kk-L1DAYxoso7rr6AbxIwYseuuZfm-QiDIu6wqAgeg5p8raTpZOMSTowVz-5KTPuuouSQ9I3v-dp8uapqpcYXWJExbvEMBWiQVg2SBDatI-qc8x417StZI-rcyRb1EhCyVn1LKUbhBCXiDytzihGjHIkzqtfK29jGMHXEQzscojNNth50mV1qLfOxPDtyyrVuxj2zkLtfHLjJpc5hzpvIOrdoUiTS1l7A7X29lSGOTtTZx1HyKnwtbb7BbGLV6Ez1Gb5js-rJ4OeErw4zRfVj48fvl9dN-uvnz5frdaNaTnOTcuMGazpOyN72nUdHyjWxlIrOGe0M0CYZIZrJmEAQ1HXY8N5Lzrctqy3iF5U74--u7nfgjXgc9ST2kW31fGggnbq_o53GzWGvep46SdfDN4eDTYPZNertVpqiBDBMKN7XNg3p5_F8HOGlNXWJQPTpD2EOSlCsJBSIMYL-voBehPm6EsrClXOzmTHxB016gmU80MoZzSLqVq1kkiKKCKFuvwHVYaF8pbBw-BK_Z4AHwXloVOKMNxeDCO1hEwdQ6ZKyNQSMtUWzau_G3mr-JOqApAjkMqWHyHe3ej_rr8B56TeRw</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Fletcher, Claire E.</creator><creator>Sulpice, Eric</creator><creator>Combe, Stephanie</creator><creator>Shibakawa, Akifumi</creator><creator>Leach, Damien A.</creator><creator>Hamilton, Mark P.</creator><creator>Chrysostomou, Stelios L.</creator><creator>Sharp, Adam</creator><creator>Welti, Jon</creator><creator>Yuan, Wei</creator><creator>Dart, Dafydd. A.</creator><creator>Knight, Eleanor</creator><creator>Ning, Jian</creator><creator>Francis, Jeffrey C.</creator><creator>Kounatidou, Evangelia E.</creator><creator>Gaughan, Luke</creator><creator>Swain, Amanda</creator><creator>Lupold, Shawn E.</creator><creator>de Bono, Johann S.</creator><creator>McGuire, Sean E.</creator><creator>Gidrol, Xavier</creator><creator>Bevan, Charlotte L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group [1987-....]</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2083-2798</orcidid><orcidid>https://orcid.org/0000-0002-5449-0362</orcidid><orcidid>https://orcid.org/0000-0003-0683-368X</orcidid><orcidid>https://orcid.org/0000-0002-3977-9432</orcidid></search><sort><creationdate>201907</creationdate><title>Androgen receptor-modulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer</title><author>Fletcher, Claire E. ; Sulpice, Eric ; Combe, Stephanie ; Shibakawa, Akifumi ; Leach, Damien A. ; Hamilton, Mark P. ; Chrysostomou, Stelios L. ; Sharp, Adam ; Welti, Jon ; Yuan, Wei ; Dart, Dafydd. A. ; Knight, Eleanor ; Ning, Jian ; Francis, Jeffrey C. ; Kounatidou, Evangelia E. ; Gaughan, Luke ; Swain, Amanda ; Lupold, Shawn E. ; de Bono, Johann S. ; McGuire, Sean E. ; Gidrol, Xavier ; Bevan, Charlotte L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-54ccfdcb6c9b36667f31acd3d877436ce2494c7a49efec306b1c77b861554bd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3' Untranslated Regions</topic><topic>38</topic><topic>38/47</topic><topic>38/77</topic><topic>42/44</topic><topic>42/70</topic><topic>42/89</topic><topic>631/337/384</topic><topic>631/67/589/466</topic><topic>82/80</topic><topic>96</topic><topic>96/106</topic><topic>96/2</topic><topic>Analysis</topic><topic>Androgen receptors</topic><topic>Androgens</topic><topic>Antisense Elements (Genetics)</topic><topic>Apoptosis</topic><topic>Benzamides</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell Line, Tumor</topic><topic>Cell proliferation</topic><topic>Development and progression</topic><topic>DNA biosynthesis</topic><topic>DNA repair</topic><topic>Drug Resistance, Neoplasm</topic><topic>Drug therapy</topic><topic>Epithelial-Mesenchymal Transition</topic><topic>Genetic aspects</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Immune response</topic><topic>Internal Medicine</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metastases</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - antagonists & inhibitors</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - physiology</topic><topic>miRNA</topic><topic>Neoplasm Invasiveness</topic><topic>Neoplasm Metastasis</topic><topic>Nitriles</topic><topic>Oncology</topic><topic>Phenylthiohydantoin - analogs & derivatives</topic><topic>Phenylthiohydantoin - pharmacology</topic><topic>Pheochromocytoma cells</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - drug therapy</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Receptors, Androgen - physiology</topic><topic>Signal Transduction</topic><topic>Therapeutic applications</topic><topic>Transcription</topic><topic>Treatment outcome</topic><topic>Tumors</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fletcher, Claire E.</creatorcontrib><creatorcontrib>Sulpice, Eric</creatorcontrib><creatorcontrib>Combe, Stephanie</creatorcontrib><creatorcontrib>Shibakawa, Akifumi</creatorcontrib><creatorcontrib>Leach, Damien A.</creatorcontrib><creatorcontrib>Hamilton, Mark P.</creatorcontrib><creatorcontrib>Chrysostomou, Stelios L.</creatorcontrib><creatorcontrib>Sharp, Adam</creatorcontrib><creatorcontrib>Welti, Jon</creatorcontrib><creatorcontrib>Yuan, Wei</creatorcontrib><creatorcontrib>Dart, Dafydd. A.</creatorcontrib><creatorcontrib>Knight, Eleanor</creatorcontrib><creatorcontrib>Ning, Jian</creatorcontrib><creatorcontrib>Francis, Jeffrey C.</creatorcontrib><creatorcontrib>Kounatidou, Evangelia E.</creatorcontrib><creatorcontrib>Gaughan, Luke</creatorcontrib><creatorcontrib>Swain, Amanda</creatorcontrib><creatorcontrib>Lupold, Shawn E.</creatorcontrib><creatorcontrib>de Bono, Johann S.</creatorcontrib><creatorcontrib>McGuire, Sean E.</creatorcontrib><creatorcontrib>Gidrol, Xavier</creatorcontrib><creatorcontrib>Bevan, Charlotte L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fletcher, Claire E.</au><au>Sulpice, Eric</au><au>Combe, Stephanie</au><au>Shibakawa, Akifumi</au><au>Leach, Damien A.</au><au>Hamilton, Mark P.</au><au>Chrysostomou, Stelios L.</au><au>Sharp, Adam</au><au>Welti, Jon</au><au>Yuan, Wei</au><au>Dart, Dafydd. A.</au><au>Knight, Eleanor</au><au>Ning, Jian</au><au>Francis, Jeffrey C.</au><au>Kounatidou, Evangelia E.</au><au>Gaughan, Luke</au><au>Swain, Amanda</au><au>Lupold, Shawn E.</au><au>de Bono, Johann S.</au><au>McGuire, Sean E.</au><au>Gidrol, Xavier</au><au>Bevan, Charlotte L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Androgen receptor-modulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2019-07</date><risdate>2019</risdate><volume>38</volume><issue>28</issue><spage>5700</spage><epage>5724</epage><pages>5700-5724</pages><issn>0950-9232</issn><issn>1476-5594</issn><eissn>1476-5594</eissn><abstract>Androgen receptor (AR) signalling is a key prostate cancer (PC) driver, even in advanced ‘castrate-resistant’ disease (CRPC). To systematically identify microRNAs (miRs) modulating AR activity in lethal disease, hormone-responsive and -resistant PC cells expressing a luciferase-based AR reporter were transfected with a miR inhibitor library; 78 inhibitors significantly altered AR activity. Upon validation, miR-346, miR-361-3p and miR-197 inhibitors markedly reduced AR transcriptional activity, mRNA and protein levels, increased apoptosis, reduced proliferation, repressed EMT, and inhibited PC migration and invasion, demonstrating additive effects with AR inhibition. Corresponding miRs increased AR activity through a novel and anti-dogmatic mechanism of direct association with AR 6.9 kb 3′UTR and transcript stabilisation. In addition, miR-346 and miR-361-3p modulation altered levels of constitutively active AR variants, and inhibited variant-driven PC cell proliferation, so may contribute to persistent AR signalling in CRPC in the absence of circulating androgens. Pathway analysis of AGO-PAR-CLIP-identified miR targets revealed roles in DNA replication and repair, cell cycle, signal transduction and immune function. Silencing these targets, including tumour suppressors ARHGDIA and TAGLN2, phenocopied miR effects, demonstrating physiological relevance. MiR-346 additionally upregulated the oncogene, YWHAZ, which correlated with grade, biochemical relapse and metastasis in patients. These AR-modulatory miRs and targets correlated with AR activity in patient biopsies, and were elevated in response to long-term enzalutamide treatment of patient-derived CRPC xenografts. In summary, we identified miRs that modulate AR activity in PC and CRPC, via novel mechanisms, and may represent novel PC therapeutic targets.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31043708</pmid><doi>10.1038/s41388-019-0823-5</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-2083-2798</orcidid><orcidid>https://orcid.org/0000-0002-5449-0362</orcidid><orcidid>https://orcid.org/0000-0003-0683-368X</orcidid><orcidid>https://orcid.org/0000-0002-3977-9432</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2019-07, Vol.38 (28), p.5700-5724 |
issn | 0950-9232 1476-5594 1476-5594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6755970 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 3' Untranslated Regions 38 38/47 38/77 42/44 42/70 42/89 631/337/384 631/67/589/466 82/80 96 96/106 96/2 Analysis Androgen receptors Androgens Antisense Elements (Genetics) Apoptosis Benzamides Cell Biology Cell cycle Cell Line, Tumor Cell proliferation Development and progression DNA biosynthesis DNA repair Drug Resistance, Neoplasm Drug therapy Epithelial-Mesenchymal Transition Genetic aspects Human Genetics Humans Immune response Internal Medicine Life Sciences Male Medicine Medicine & Public Health Metastases MicroRNA MicroRNAs MicroRNAs - antagonists & inhibitors MicroRNAs - genetics MicroRNAs - physiology miRNA Neoplasm Invasiveness Neoplasm Metastasis Nitriles Oncology Phenylthiohydantoin - analogs & derivatives Phenylthiohydantoin - pharmacology Pheochromocytoma cells Prostate cancer Prostatic Neoplasms - drug therapy Prostatic Neoplasms - pathology Receptors, Androgen - physiology Signal Transduction Therapeutic applications Transcription Treatment outcome Tumors Xenografts |
title | Androgen receptor-modulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Androgen%20receptor-modulatory%20microRNAs%20provide%20insight%20into%20therapy%20resistance%20and%20therapeutic%20targets%20in%20advanced%20prostate%20cancer&rft.jtitle=Oncogene&rft.au=Fletcher,%20Claire%20E.&rft.date=2019-07&rft.volume=38&rft.issue=28&rft.spage=5700&rft.epage=5724&rft.pages=5700-5724&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-019-0823-5&rft_dat=%3Cgale_pubme%3EA592930302%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2255449648&rft_id=info:pmid/31043708&rft_galeid=A592930302&rfr_iscdi=true |