SIRT6 transcriptionally regulates global protein synthesis through transcription factor Sp1 independent of its deacetylase activity

Global protein synthesis is emerging as an important player in the context of aging and age-related diseases. However, the intricate molecular networks that regulate protein synthesis are poorly understood. Here, we report that SIRT6, a nuclear-localized histone deacetylase represses global protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2019-09, Vol.47 (17), p.9115-9131
Hauptverfasser: Ravi, Venkatraman, Jain, Aditi, Khan, Danish, Ahamed, Faiz, Mishra, Sneha, Giri, Malyasree, Inbaraj, Meena, Krishna, Swati, Sarikhani, Mohsen, Maity, Sangeeta, Kumar, Shweta, Shah, Riyaz Ahmad, Dave, Pratik, Pandit, Anwit S, Rajendran, Rajprabu, Desingu, Perumal A, Varshney, Umesh, Das, Saumitra, Kolthur-Seetharam, Ullas, Rajakumari, Sona, Singh, Mahavir, Sundaresan, Nagalingam R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9131
container_issue 17
container_start_page 9115
container_title Nucleic acids research
container_volume 47
creator Ravi, Venkatraman
Jain, Aditi
Khan, Danish
Ahamed, Faiz
Mishra, Sneha
Giri, Malyasree
Inbaraj, Meena
Krishna, Swati
Sarikhani, Mohsen
Maity, Sangeeta
Kumar, Shweta
Shah, Riyaz Ahmad
Dave, Pratik
Pandit, Anwit S
Rajendran, Rajprabu
Desingu, Perumal A
Varshney, Umesh
Das, Saumitra
Kolthur-Seetharam, Ullas
Rajakumari, Sona
Singh, Mahavir
Sundaresan, Nagalingam R
description Global protein synthesis is emerging as an important player in the context of aging and age-related diseases. However, the intricate molecular networks that regulate protein synthesis are poorly understood. Here, we report that SIRT6, a nuclear-localized histone deacetylase represses global protein synthesis by transcriptionally regulating mTOR signalling via the transcription factor Sp1, independent of its deacetylase activity. Our results suggest that SIRT6 deficiency increases protein synthesis in mice. Further, multiple lines of in vitro evidence suggest that SIRT6 negatively regulates protein synthesis in a cell-autonomous fashion and independent of its catalytic activity. Mechanistically, SIRT6 binds to the zinc finger DNA binding domain of Sp1 and represses its activity. SIRT6 deficiency increased the occupancy of Sp1 at key mTOR signalling gene promoters resulting in enhanced expression of these genes and activation of the mTOR signalling pathway. Interestingly, inhibition of either mTOR or Sp1 abrogated the increased protein synthesis observed under SIRT6 deficient conditions. Moreover, pharmacological inhibition of mTOR restored cardiac function in muscle-specific SIRT6 knockout mice, which spontaneously develop cardiac hypertrophy. Overall, these findings have unravelled a new layer of regulation of global protein synthesis by SIRT6, which can be potentially targeted to combat aging-associated diseases like cardiac hypertrophy.
doi_str_mv 10.1093/nar/gkz648
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6755095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268310710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-9c2ddad7a55331e3cdf39397c6fa371a79197074dcc686eb1507b2f4292561e03</originalsourceid><addsrcrecordid>eNpVkU9rFTEUxYNY7LO68QNIliKMzZ9JMtkIUqoWCoW2rkNe5s68aF4yJpnCuPWLO-XV0m7uXdzfPefAQegdJZ8o0fw02nw6_voj2-4F2lAuWdNqyV6iDeFENJS03TF6XcpPQmhLRfsKHXPKFZO83aC_NxfXtxLXbGNx2U_Vp2hDWHCGcQ62QsFjSFsb8JRTBR9xWWLdQfEF111O87h7_owH62rK-Gai2MceJlhHrDgN2NeCe7AO6hJsAbyC_s7X5Q06Gmwo8PZhn6AfX89vz743l1ffLs6-XDaOq6422rG-t72yQnBOgbt-4Jpr5eRguaJWaaoVUW3vnOwkbKkgasuGlmkmJAXCT9Dng-40b_fQuzVWtsFM2e9tXkyy3jy_RL8zY7ozUglBtFgFPjwI5PR7hlLN3hcHIdgIaS6GMdlxShS99_p4QF1OpWQYHm0oMfetmbU1c2hthd8_DfaI_q-J_wMDB5i9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268310710</pqid></control><display><type>article</type><title>SIRT6 transcriptionally regulates global protein synthesis through transcription factor Sp1 independent of its deacetylase activity</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ravi, Venkatraman ; Jain, Aditi ; Khan, Danish ; Ahamed, Faiz ; Mishra, Sneha ; Giri, Malyasree ; Inbaraj, Meena ; Krishna, Swati ; Sarikhani, Mohsen ; Maity, Sangeeta ; Kumar, Shweta ; Shah, Riyaz Ahmad ; Dave, Pratik ; Pandit, Anwit S ; Rajendran, Rajprabu ; Desingu, Perumal A ; Varshney, Umesh ; Das, Saumitra ; Kolthur-Seetharam, Ullas ; Rajakumari, Sona ; Singh, Mahavir ; Sundaresan, Nagalingam R</creator><creatorcontrib>Ravi, Venkatraman ; Jain, Aditi ; Khan, Danish ; Ahamed, Faiz ; Mishra, Sneha ; Giri, Malyasree ; Inbaraj, Meena ; Krishna, Swati ; Sarikhani, Mohsen ; Maity, Sangeeta ; Kumar, Shweta ; Shah, Riyaz Ahmad ; Dave, Pratik ; Pandit, Anwit S ; Rajendran, Rajprabu ; Desingu, Perumal A ; Varshney, Umesh ; Das, Saumitra ; Kolthur-Seetharam, Ullas ; Rajakumari, Sona ; Singh, Mahavir ; Sundaresan, Nagalingam R</creatorcontrib><description>Global protein synthesis is emerging as an important player in the context of aging and age-related diseases. However, the intricate molecular networks that regulate protein synthesis are poorly understood. Here, we report that SIRT6, a nuclear-localized histone deacetylase represses global protein synthesis by transcriptionally regulating mTOR signalling via the transcription factor Sp1, independent of its deacetylase activity. Our results suggest that SIRT6 deficiency increases protein synthesis in mice. Further, multiple lines of in vitro evidence suggest that SIRT6 negatively regulates protein synthesis in a cell-autonomous fashion and independent of its catalytic activity. Mechanistically, SIRT6 binds to the zinc finger DNA binding domain of Sp1 and represses its activity. SIRT6 deficiency increased the occupancy of Sp1 at key mTOR signalling gene promoters resulting in enhanced expression of these genes and activation of the mTOR signalling pathway. Interestingly, inhibition of either mTOR or Sp1 abrogated the increased protein synthesis observed under SIRT6 deficient conditions. Moreover, pharmacological inhibition of mTOR restored cardiac function in muscle-specific SIRT6 knockout mice, which spontaneously develop cardiac hypertrophy. Overall, these findings have unravelled a new layer of regulation of global protein synthesis by SIRT6, which can be potentially targeted to combat aging-associated diseases like cardiac hypertrophy.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkz648</identifier><identifier>PMID: 31372634</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Cardiomegaly - genetics ; Gene Expression Regulation ; Gene regulation, Chromatin and Epigenetics ; HEK293 Cells ; HeLa Cells ; Histone Deacetylases - genetics ; Histone Deacetylases - metabolism ; Humans ; Mice ; Mice, Knockout ; Promoter Regions, Genetic ; Protein Biosynthesis ; Signal Transduction ; Sirtuins - genetics ; Sirtuins - metabolism ; Sp1 Transcription Factor - chemistry ; Sp1 Transcription Factor - metabolism ; TOR Serine-Threonine Kinases - metabolism ; Transcription, Genetic ; Zinc Fingers</subject><ispartof>Nucleic acids research, 2019-09, Vol.47 (17), p.9115-9131</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-9c2ddad7a55331e3cdf39397c6fa371a79197074dcc686eb1507b2f4292561e03</citedby><cites>FETCH-LOGICAL-c378t-9c2ddad7a55331e3cdf39397c6fa371a79197074dcc686eb1507b2f4292561e03</cites><orcidid>0000-0003-1251-8248 ; 0000-0003-1770-5616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755095/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755095/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31372634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravi, Venkatraman</creatorcontrib><creatorcontrib>Jain, Aditi</creatorcontrib><creatorcontrib>Khan, Danish</creatorcontrib><creatorcontrib>Ahamed, Faiz</creatorcontrib><creatorcontrib>Mishra, Sneha</creatorcontrib><creatorcontrib>Giri, Malyasree</creatorcontrib><creatorcontrib>Inbaraj, Meena</creatorcontrib><creatorcontrib>Krishna, Swati</creatorcontrib><creatorcontrib>Sarikhani, Mohsen</creatorcontrib><creatorcontrib>Maity, Sangeeta</creatorcontrib><creatorcontrib>Kumar, Shweta</creatorcontrib><creatorcontrib>Shah, Riyaz Ahmad</creatorcontrib><creatorcontrib>Dave, Pratik</creatorcontrib><creatorcontrib>Pandit, Anwit S</creatorcontrib><creatorcontrib>Rajendran, Rajprabu</creatorcontrib><creatorcontrib>Desingu, Perumal A</creatorcontrib><creatorcontrib>Varshney, Umesh</creatorcontrib><creatorcontrib>Das, Saumitra</creatorcontrib><creatorcontrib>Kolthur-Seetharam, Ullas</creatorcontrib><creatorcontrib>Rajakumari, Sona</creatorcontrib><creatorcontrib>Singh, Mahavir</creatorcontrib><creatorcontrib>Sundaresan, Nagalingam R</creatorcontrib><title>SIRT6 transcriptionally regulates global protein synthesis through transcription factor Sp1 independent of its deacetylase activity</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Global protein synthesis is emerging as an important player in the context of aging and age-related diseases. However, the intricate molecular networks that regulate protein synthesis are poorly understood. Here, we report that SIRT6, a nuclear-localized histone deacetylase represses global protein synthesis by transcriptionally regulating mTOR signalling via the transcription factor Sp1, independent of its deacetylase activity. Our results suggest that SIRT6 deficiency increases protein synthesis in mice. Further, multiple lines of in vitro evidence suggest that SIRT6 negatively regulates protein synthesis in a cell-autonomous fashion and independent of its catalytic activity. Mechanistically, SIRT6 binds to the zinc finger DNA binding domain of Sp1 and represses its activity. SIRT6 deficiency increased the occupancy of Sp1 at key mTOR signalling gene promoters resulting in enhanced expression of these genes and activation of the mTOR signalling pathway. Interestingly, inhibition of either mTOR or Sp1 abrogated the increased protein synthesis observed under SIRT6 deficient conditions. Moreover, pharmacological inhibition of mTOR restored cardiac function in muscle-specific SIRT6 knockout mice, which spontaneously develop cardiac hypertrophy. Overall, these findings have unravelled a new layer of regulation of global protein synthesis by SIRT6, which can be potentially targeted to combat aging-associated diseases like cardiac hypertrophy.</description><subject>Animals</subject><subject>Cardiomegaly - genetics</subject><subject>Gene Expression Regulation</subject><subject>Gene regulation, Chromatin and Epigenetics</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Histone Deacetylases - genetics</subject><subject>Histone Deacetylases - metabolism</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Biosynthesis</subject><subject>Signal Transduction</subject><subject>Sirtuins - genetics</subject><subject>Sirtuins - metabolism</subject><subject>Sp1 Transcription Factor - chemistry</subject><subject>Sp1 Transcription Factor - metabolism</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcription, Genetic</subject><subject>Zinc Fingers</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU9rFTEUxYNY7LO68QNIliKMzZ9JMtkIUqoWCoW2rkNe5s68aF4yJpnCuPWLO-XV0m7uXdzfPefAQegdJZ8o0fw02nw6_voj2-4F2lAuWdNqyV6iDeFENJS03TF6XcpPQmhLRfsKHXPKFZO83aC_NxfXtxLXbGNx2U_Vp2hDWHCGcQ62QsFjSFsb8JRTBR9xWWLdQfEF111O87h7_owH62rK-Gai2MceJlhHrDgN2NeCe7AO6hJsAbyC_s7X5Q06Gmwo8PZhn6AfX89vz743l1ffLs6-XDaOq6422rG-t72yQnBOgbt-4Jpr5eRguaJWaaoVUW3vnOwkbKkgasuGlmkmJAXCT9Dng-40b_fQuzVWtsFM2e9tXkyy3jy_RL8zY7ozUglBtFgFPjwI5PR7hlLN3hcHIdgIaS6GMdlxShS99_p4QF1OpWQYHm0oMfetmbU1c2hthd8_DfaI_q-J_wMDB5i9</recordid><startdate>20190926</startdate><enddate>20190926</enddate><creator>Ravi, Venkatraman</creator><creator>Jain, Aditi</creator><creator>Khan, Danish</creator><creator>Ahamed, Faiz</creator><creator>Mishra, Sneha</creator><creator>Giri, Malyasree</creator><creator>Inbaraj, Meena</creator><creator>Krishna, Swati</creator><creator>Sarikhani, Mohsen</creator><creator>Maity, Sangeeta</creator><creator>Kumar, Shweta</creator><creator>Shah, Riyaz Ahmad</creator><creator>Dave, Pratik</creator><creator>Pandit, Anwit S</creator><creator>Rajendran, Rajprabu</creator><creator>Desingu, Perumal A</creator><creator>Varshney, Umesh</creator><creator>Das, Saumitra</creator><creator>Kolthur-Seetharam, Ullas</creator><creator>Rajakumari, Sona</creator><creator>Singh, Mahavir</creator><creator>Sundaresan, Nagalingam R</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1251-8248</orcidid><orcidid>https://orcid.org/0000-0003-1770-5616</orcidid></search><sort><creationdate>20190926</creationdate><title>SIRT6 transcriptionally regulates global protein synthesis through transcription factor Sp1 independent of its deacetylase activity</title><author>Ravi, Venkatraman ; Jain, Aditi ; Khan, Danish ; Ahamed, Faiz ; Mishra, Sneha ; Giri, Malyasree ; Inbaraj, Meena ; Krishna, Swati ; Sarikhani, Mohsen ; Maity, Sangeeta ; Kumar, Shweta ; Shah, Riyaz Ahmad ; Dave, Pratik ; Pandit, Anwit S ; Rajendran, Rajprabu ; Desingu, Perumal A ; Varshney, Umesh ; Das, Saumitra ; Kolthur-Seetharam, Ullas ; Rajakumari, Sona ; Singh, Mahavir ; Sundaresan, Nagalingam R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-9c2ddad7a55331e3cdf39397c6fa371a79197074dcc686eb1507b2f4292561e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cardiomegaly - genetics</topic><topic>Gene Expression Regulation</topic><topic>Gene regulation, Chromatin and Epigenetics</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Histone Deacetylases - genetics</topic><topic>Histone Deacetylases - metabolism</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Biosynthesis</topic><topic>Signal Transduction</topic><topic>Sirtuins - genetics</topic><topic>Sirtuins - metabolism</topic><topic>Sp1 Transcription Factor - chemistry</topic><topic>Sp1 Transcription Factor - metabolism</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcription, Genetic</topic><topic>Zinc Fingers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravi, Venkatraman</creatorcontrib><creatorcontrib>Jain, Aditi</creatorcontrib><creatorcontrib>Khan, Danish</creatorcontrib><creatorcontrib>Ahamed, Faiz</creatorcontrib><creatorcontrib>Mishra, Sneha</creatorcontrib><creatorcontrib>Giri, Malyasree</creatorcontrib><creatorcontrib>Inbaraj, Meena</creatorcontrib><creatorcontrib>Krishna, Swati</creatorcontrib><creatorcontrib>Sarikhani, Mohsen</creatorcontrib><creatorcontrib>Maity, Sangeeta</creatorcontrib><creatorcontrib>Kumar, Shweta</creatorcontrib><creatorcontrib>Shah, Riyaz Ahmad</creatorcontrib><creatorcontrib>Dave, Pratik</creatorcontrib><creatorcontrib>Pandit, Anwit S</creatorcontrib><creatorcontrib>Rajendran, Rajprabu</creatorcontrib><creatorcontrib>Desingu, Perumal A</creatorcontrib><creatorcontrib>Varshney, Umesh</creatorcontrib><creatorcontrib>Das, Saumitra</creatorcontrib><creatorcontrib>Kolthur-Seetharam, Ullas</creatorcontrib><creatorcontrib>Rajakumari, Sona</creatorcontrib><creatorcontrib>Singh, Mahavir</creatorcontrib><creatorcontrib>Sundaresan, Nagalingam R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravi, Venkatraman</au><au>Jain, Aditi</au><au>Khan, Danish</au><au>Ahamed, Faiz</au><au>Mishra, Sneha</au><au>Giri, Malyasree</au><au>Inbaraj, Meena</au><au>Krishna, Swati</au><au>Sarikhani, Mohsen</au><au>Maity, Sangeeta</au><au>Kumar, Shweta</au><au>Shah, Riyaz Ahmad</au><au>Dave, Pratik</au><au>Pandit, Anwit S</au><au>Rajendran, Rajprabu</au><au>Desingu, Perumal A</au><au>Varshney, Umesh</au><au>Das, Saumitra</au><au>Kolthur-Seetharam, Ullas</au><au>Rajakumari, Sona</au><au>Singh, Mahavir</au><au>Sundaresan, Nagalingam R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SIRT6 transcriptionally regulates global protein synthesis through transcription factor Sp1 independent of its deacetylase activity</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2019-09-26</date><risdate>2019</risdate><volume>47</volume><issue>17</issue><spage>9115</spage><epage>9131</epage><pages>9115-9131</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Global protein synthesis is emerging as an important player in the context of aging and age-related diseases. However, the intricate molecular networks that regulate protein synthesis are poorly understood. Here, we report that SIRT6, a nuclear-localized histone deacetylase represses global protein synthesis by transcriptionally regulating mTOR signalling via the transcription factor Sp1, independent of its deacetylase activity. Our results suggest that SIRT6 deficiency increases protein synthesis in mice. Further, multiple lines of in vitro evidence suggest that SIRT6 negatively regulates protein synthesis in a cell-autonomous fashion and independent of its catalytic activity. Mechanistically, SIRT6 binds to the zinc finger DNA binding domain of Sp1 and represses its activity. SIRT6 deficiency increased the occupancy of Sp1 at key mTOR signalling gene promoters resulting in enhanced expression of these genes and activation of the mTOR signalling pathway. Interestingly, inhibition of either mTOR or Sp1 abrogated the increased protein synthesis observed under SIRT6 deficient conditions. Moreover, pharmacological inhibition of mTOR restored cardiac function in muscle-specific SIRT6 knockout mice, which spontaneously develop cardiac hypertrophy. Overall, these findings have unravelled a new layer of regulation of global protein synthesis by SIRT6, which can be potentially targeted to combat aging-associated diseases like cardiac hypertrophy.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31372634</pmid><doi>10.1093/nar/gkz648</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1251-8248</orcidid><orcidid>https://orcid.org/0000-0003-1770-5616</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2019-09, Vol.47 (17), p.9115-9131
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6755095
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Cardiomegaly - genetics
Gene Expression Regulation
Gene regulation, Chromatin and Epigenetics
HEK293 Cells
HeLa Cells
Histone Deacetylases - genetics
Histone Deacetylases - metabolism
Humans
Mice
Mice, Knockout
Promoter Regions, Genetic
Protein Biosynthesis
Signal Transduction
Sirtuins - genetics
Sirtuins - metabolism
Sp1 Transcription Factor - chemistry
Sp1 Transcription Factor - metabolism
TOR Serine-Threonine Kinases - metabolism
Transcription, Genetic
Zinc Fingers
title SIRT6 transcriptionally regulates global protein synthesis through transcription factor Sp1 independent of its deacetylase activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A56%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SIRT6%20transcriptionally%20regulates%20global%20protein%20synthesis%20through%20transcription%20factor%20Sp1%20independent%20of%20its%20deacetylase%20activity&rft.jtitle=Nucleic%20acids%20research&rft.au=Ravi,%20Venkatraman&rft.date=2019-09-26&rft.volume=47&rft.issue=17&rft.spage=9115&rft.epage=9131&rft.pages=9115-9131&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkz648&rft_dat=%3Cproquest_pubme%3E2268310710%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268310710&rft_id=info:pmid/31372634&rfr_iscdi=true