Weak warning signals can persist in the absence of gene flow

Aposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent selection. How, then, can novel phenotypes persist after they arise, and why do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2019-09, Vol.116 (38), p.19037-19045
Hauptverfasser: Lawrence, J. P., Rojas, Bibiana, Fouquet, Antoine, Mappes, Johanna, Blanchette, Annelise, Saporito, Ralph A., Bosque, Renan Janke, Courtois, Elodie A., Noonan, Brice P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19045
container_issue 38
container_start_page 19037
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Lawrence, J. P.
Rojas, Bibiana
Fouquet, Antoine
Mappes, Johanna
Blanchette, Annelise
Saporito, Ralph A.
Bosque, Renan Janke
Courtois, Elodie A.
Noonan, Brice P.
description Aposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent selection. How, then, can novel phenotypes persist after they arise, and why do so many aposematic species exhibit intrapopulation signal variability? Using a polytypic poison frog (Dendrobates tinctorius), we explored the forces of selection on variable aposematic signals using 2 phenotypically distinct (white, yellow) populations. Contrary to expectations, local phenotype was not always better protected compared to novel phenotypes in either population; in the white population, the novel phenotype evoked greater avoidance in natural predators. Despite having a lower quantity of alkaloids, the skin extracts from yellow frogs provoked higher aversive reactions by birds than white frogs in the laboratory, although both populations differed from controls. Similarly, predators learned to avoid the yellow signal faster than the white signal, and generalized their learned avoidance of yellow but not white. We propose that signals that are easily learned and broadly generalized can protect rare, novel signals, and weak warning signals (i.e., signals with poor efficacy and/or poor defense) can persist when gene flow among populations, as in this case, is limited. This provides a mechanism for the persistence of intrapopulation aposematic variation, a likely precursor to polytypism and driver of speciation.
doi_str_mv 10.1073/pnas.1901872116
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6754554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26851665</jstor_id><sourcerecordid>26851665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-13d7f69ecba445529104b292d5c4f7eb09a49a207f02eff8f32984ddedfdc1e83</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EomnhzAlkiUs5bOtvr6UKqaqAVorUC4ij5fWOkw0bO9ibVvx7HKWkpaeRZp555-NF6B0lZ5Rofr6JrpxRQ2irGaXqBZpRYmijhCEv0YwQpptWMHGEjktZEUKMbMlrdMSpaKlifIYufoL7he9djkNc4DIsohsL9i7iDeQylAkPEU9LwK4rED3gFPACIuAwpvs36FWoOLx9iCfox9cv36-um_ntt5ury3njhdZTQ3mvgzLgOyeElMxQIjpmWC-9CBo6YpwwjhEdCIMQ2sCZaUXfQx96T6HlJ-jzXnez7dbQe4hTdqPd5GHt8h-b3GD_r8RhaRfpziot60BRBT7tBZbP2q4v53aXI4wLzaW8o5U9fRiW0-8tlMmuh-JhHF2EtC2WsVZIxbVQFf34DF2lbd59sFJGVEVtdKXO95TPqZQM4bABJXbnot25aB9drB0fnt574P_ZVoH3e2BVppQPdaZaSZWS_C_DtqEu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294473797</pqid></control><display><type>article</type><title>Weak warning signals can persist in the absence of gene flow</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lawrence, J. P. ; Rojas, Bibiana ; Fouquet, Antoine ; Mappes, Johanna ; Blanchette, Annelise ; Saporito, Ralph A. ; Bosque, Renan Janke ; Courtois, Elodie A. ; Noonan, Brice P.</creator><creatorcontrib>Lawrence, J. P. ; Rojas, Bibiana ; Fouquet, Antoine ; Mappes, Johanna ; Blanchette, Annelise ; Saporito, Ralph A. ; Bosque, Renan Janke ; Courtois, Elodie A. ; Noonan, Brice P.</creatorcontrib><description>Aposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent selection. How, then, can novel phenotypes persist after they arise, and why do so many aposematic species exhibit intrapopulation signal variability? Using a polytypic poison frog (Dendrobates tinctorius), we explored the forces of selection on variable aposematic signals using 2 phenotypically distinct (white, yellow) populations. Contrary to expectations, local phenotype was not always better protected compared to novel phenotypes in either population; in the white population, the novel phenotype evoked greater avoidance in natural predators. Despite having a lower quantity of alkaloids, the skin extracts from yellow frogs provoked higher aversive reactions by birds than white frogs in the laboratory, although both populations differed from controls. Similarly, predators learned to avoid the yellow signal faster than the white signal, and generalized their learned avoidance of yellow but not white. We propose that signals that are easily learned and broadly generalized can protect rare, novel signals, and weak warning signals (i.e., signals with poor efficacy and/or poor defense) can persist when gene flow among populations, as in this case, is limited. This provides a mechanism for the persistence of intrapopulation aposematic variation, a likely precursor to polytypism and driver of speciation.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1901872116</identifier><identifier>PMID: 31481623</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alkaloids ; Amphibians ; Animal biology ; Animal Communication ; Animals ; Animals, Poisonous - genetics ; Animals, Poisonous - physiology ; Anura - genetics ; Anura - physiology ; Aposematism ; Avoidance ; Avoidance Learning ; Behavior, Animal ; Biological Evolution ; Biological Sciences ; Birds ; Chickens - physiology ; Dendrobates tinctorius ; Frequency dependence ; Frogs ; Gene Flow ; Genetic Variation ; Genetics, Population ; Life Sciences ; Models, Biological ; Phenotype ; Phenotypes ; PNAS Plus ; Populations ; Predators ; Predatory Behavior - physiology ; Prey ; Skin ; Speciation ; Vertebrate Zoology ; Warning</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-09, Vol.116 (38), p.19037-19045</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Sep 17, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-13d7f69ecba445529104b292d5c4f7eb09a49a207f02eff8f32984ddedfdc1e83</citedby><cites>FETCH-LOGICAL-c477t-13d7f69ecba445529104b292d5c4f7eb09a49a207f02eff8f32984ddedfdc1e83</cites><orcidid>0000-0001-8577-4870 ; 0000-0002-6715-7294 ; 0000-0002-1117-5629 ; 0000-0003-4060-0281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26851665$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26851665$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27931,27932,53798,53800,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31481623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02347355$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lawrence, J. P.</creatorcontrib><creatorcontrib>Rojas, Bibiana</creatorcontrib><creatorcontrib>Fouquet, Antoine</creatorcontrib><creatorcontrib>Mappes, Johanna</creatorcontrib><creatorcontrib>Blanchette, Annelise</creatorcontrib><creatorcontrib>Saporito, Ralph A.</creatorcontrib><creatorcontrib>Bosque, Renan Janke</creatorcontrib><creatorcontrib>Courtois, Elodie A.</creatorcontrib><creatorcontrib>Noonan, Brice P.</creatorcontrib><title>Weak warning signals can persist in the absence of gene flow</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Aposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent selection. How, then, can novel phenotypes persist after they arise, and why do so many aposematic species exhibit intrapopulation signal variability? Using a polytypic poison frog (Dendrobates tinctorius), we explored the forces of selection on variable aposematic signals using 2 phenotypically distinct (white, yellow) populations. Contrary to expectations, local phenotype was not always better protected compared to novel phenotypes in either population; in the white population, the novel phenotype evoked greater avoidance in natural predators. Despite having a lower quantity of alkaloids, the skin extracts from yellow frogs provoked higher aversive reactions by birds than white frogs in the laboratory, although both populations differed from controls. Similarly, predators learned to avoid the yellow signal faster than the white signal, and generalized their learned avoidance of yellow but not white. We propose that signals that are easily learned and broadly generalized can protect rare, novel signals, and weak warning signals (i.e., signals with poor efficacy and/or poor defense) can persist when gene flow among populations, as in this case, is limited. This provides a mechanism for the persistence of intrapopulation aposematic variation, a likely precursor to polytypism and driver of speciation.</description><subject>Alkaloids</subject><subject>Amphibians</subject><subject>Animal biology</subject><subject>Animal Communication</subject><subject>Animals</subject><subject>Animals, Poisonous - genetics</subject><subject>Animals, Poisonous - physiology</subject><subject>Anura - genetics</subject><subject>Anura - physiology</subject><subject>Aposematism</subject><subject>Avoidance</subject><subject>Avoidance Learning</subject><subject>Behavior, Animal</subject><subject>Biological Evolution</subject><subject>Biological Sciences</subject><subject>Birds</subject><subject>Chickens - physiology</subject><subject>Dendrobates tinctorius</subject><subject>Frequency dependence</subject><subject>Frogs</subject><subject>Gene Flow</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>PNAS Plus</subject><subject>Populations</subject><subject>Predators</subject><subject>Predatory Behavior - physiology</subject><subject>Prey</subject><subject>Skin</subject><subject>Speciation</subject><subject>Vertebrate Zoology</subject><subject>Warning</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1vEzEQhi0EomnhzAlkiUs5bOtvr6UKqaqAVorUC4ij5fWOkw0bO9ibVvx7HKWkpaeRZp555-NF6B0lZ5Rofr6JrpxRQ2irGaXqBZpRYmijhCEv0YwQpptWMHGEjktZEUKMbMlrdMSpaKlifIYufoL7he9djkNc4DIsohsL9i7iDeQylAkPEU9LwK4rED3gFPACIuAwpvs36FWoOLx9iCfox9cv36-um_ntt5ury3njhdZTQ3mvgzLgOyeElMxQIjpmWC-9CBo6YpwwjhEdCIMQ2sCZaUXfQx96T6HlJ-jzXnez7dbQe4hTdqPd5GHt8h-b3GD_r8RhaRfpziot60BRBT7tBZbP2q4v53aXI4wLzaW8o5U9fRiW0-8tlMmuh-JhHF2EtC2WsVZIxbVQFf34DF2lbd59sFJGVEVtdKXO95TPqZQM4bABJXbnot25aB9drB0fnt574P_ZVoH3e2BVppQPdaZaSZWS_C_DtqEu</recordid><startdate>20190917</startdate><enddate>20190917</enddate><creator>Lawrence, J. P.</creator><creator>Rojas, Bibiana</creator><creator>Fouquet, Antoine</creator><creator>Mappes, Johanna</creator><creator>Blanchette, Annelise</creator><creator>Saporito, Ralph A.</creator><creator>Bosque, Renan Janke</creator><creator>Courtois, Elodie A.</creator><creator>Noonan, Brice P.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8577-4870</orcidid><orcidid>https://orcid.org/0000-0002-6715-7294</orcidid><orcidid>https://orcid.org/0000-0002-1117-5629</orcidid><orcidid>https://orcid.org/0000-0003-4060-0281</orcidid></search><sort><creationdate>20190917</creationdate><title>Weak warning signals can persist in the absence of gene flow</title><author>Lawrence, J. P. ; Rojas, Bibiana ; Fouquet, Antoine ; Mappes, Johanna ; Blanchette, Annelise ; Saporito, Ralph A. ; Bosque, Renan Janke ; Courtois, Elodie A. ; Noonan, Brice P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-13d7f69ecba445529104b292d5c4f7eb09a49a207f02eff8f32984ddedfdc1e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkaloids</topic><topic>Amphibians</topic><topic>Animal biology</topic><topic>Animal Communication</topic><topic>Animals</topic><topic>Animals, Poisonous - genetics</topic><topic>Animals, Poisonous - physiology</topic><topic>Anura - genetics</topic><topic>Anura - physiology</topic><topic>Aposematism</topic><topic>Avoidance</topic><topic>Avoidance Learning</topic><topic>Behavior, Animal</topic><topic>Biological Evolution</topic><topic>Biological Sciences</topic><topic>Birds</topic><topic>Chickens - physiology</topic><topic>Dendrobates tinctorius</topic><topic>Frequency dependence</topic><topic>Frogs</topic><topic>Gene Flow</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>PNAS Plus</topic><topic>Populations</topic><topic>Predators</topic><topic>Predatory Behavior - physiology</topic><topic>Prey</topic><topic>Skin</topic><topic>Speciation</topic><topic>Vertebrate Zoology</topic><topic>Warning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawrence, J. P.</creatorcontrib><creatorcontrib>Rojas, Bibiana</creatorcontrib><creatorcontrib>Fouquet, Antoine</creatorcontrib><creatorcontrib>Mappes, Johanna</creatorcontrib><creatorcontrib>Blanchette, Annelise</creatorcontrib><creatorcontrib>Saporito, Ralph A.</creatorcontrib><creatorcontrib>Bosque, Renan Janke</creatorcontrib><creatorcontrib>Courtois, Elodie A.</creatorcontrib><creatorcontrib>Noonan, Brice P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawrence, J. P.</au><au>Rojas, Bibiana</au><au>Fouquet, Antoine</au><au>Mappes, Johanna</au><au>Blanchette, Annelise</au><au>Saporito, Ralph A.</au><au>Bosque, Renan Janke</au><au>Courtois, Elodie A.</au><au>Noonan, Brice P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak warning signals can persist in the absence of gene flow</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-09-17</date><risdate>2019</risdate><volume>116</volume><issue>38</issue><spage>19037</spage><epage>19045</epage><pages>19037-19045</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Aposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent selection. How, then, can novel phenotypes persist after they arise, and why do so many aposematic species exhibit intrapopulation signal variability? Using a polytypic poison frog (Dendrobates tinctorius), we explored the forces of selection on variable aposematic signals using 2 phenotypically distinct (white, yellow) populations. Contrary to expectations, local phenotype was not always better protected compared to novel phenotypes in either population; in the white population, the novel phenotype evoked greater avoidance in natural predators. Despite having a lower quantity of alkaloids, the skin extracts from yellow frogs provoked higher aversive reactions by birds than white frogs in the laboratory, although both populations differed from controls. Similarly, predators learned to avoid the yellow signal faster than the white signal, and generalized their learned avoidance of yellow but not white. We propose that signals that are easily learned and broadly generalized can protect rare, novel signals, and weak warning signals (i.e., signals with poor efficacy and/or poor defense) can persist when gene flow among populations, as in this case, is limited. This provides a mechanism for the persistence of intrapopulation aposematic variation, a likely precursor to polytypism and driver of speciation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31481623</pmid><doi>10.1073/pnas.1901872116</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8577-4870</orcidid><orcidid>https://orcid.org/0000-0002-6715-7294</orcidid><orcidid>https://orcid.org/0000-0002-1117-5629</orcidid><orcidid>https://orcid.org/0000-0003-4060-0281</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-09, Vol.116 (38), p.19037-19045
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6754554
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alkaloids
Amphibians
Animal biology
Animal Communication
Animals
Animals, Poisonous - genetics
Animals, Poisonous - physiology
Anura - genetics
Anura - physiology
Aposematism
Avoidance
Avoidance Learning
Behavior, Animal
Biological Evolution
Biological Sciences
Birds
Chickens - physiology
Dendrobates tinctorius
Frequency dependence
Frogs
Gene Flow
Genetic Variation
Genetics, Population
Life Sciences
Models, Biological
Phenotype
Phenotypes
PNAS Plus
Populations
Predators
Predatory Behavior - physiology
Prey
Skin
Speciation
Vertebrate Zoology
Warning
title Weak warning signals can persist in the absence of gene flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T05%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20warning%20signals%20can%20persist%20in%20the%20absence%20of%20gene%20flow&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lawrence,%20J.%20P.&rft.date=2019-09-17&rft.volume=116&rft.issue=38&rft.spage=19037&rft.epage=19045&rft.pages=19037-19045&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1901872116&rft_dat=%3Cjstor_pubme%3E26851665%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2294473797&rft_id=info:pmid/31481623&rft_jstor_id=26851665&rfr_iscdi=true