Weak warning signals can persist in the absence of gene flow
Aposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent selection. How, then, can novel phenotypes persist after they arise, and why do...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2019-09, Vol.116 (38), p.19037-19045 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19045 |
---|---|
container_issue | 38 |
container_start_page | 19037 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 116 |
creator | Lawrence, J. P. Rojas, Bibiana Fouquet, Antoine Mappes, Johanna Blanchette, Annelise Saporito, Ralph A. Bosque, Renan Janke Courtois, Elodie A. Noonan, Brice P. |
description | Aposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent selection. How, then, can novel phenotypes persist after they arise, and why do so many aposematic species exhibit intrapopulation signal variability? Using a polytypic poison frog (Dendrobates tinctorius), we explored the forces of selection on variable aposematic signals using 2 phenotypically distinct (white, yellow) populations. Contrary to expectations, local phenotype was not always better protected compared to novel phenotypes in either population; in the white population, the novel phenotype evoked greater avoidance in natural predators. Despite having a lower quantity of alkaloids, the skin extracts from yellow frogs provoked higher aversive reactions by birds than white frogs in the laboratory, although both populations differed from controls. Similarly, predators learned to avoid the yellow signal faster than the white signal, and generalized their learned avoidance of yellow but not white. We propose that signals that are easily learned and broadly generalized can protect rare, novel signals, and weak warning signals (i.e., signals with poor efficacy and/or poor defense) can persist when gene flow among populations, as in this case, is limited. This provides a mechanism for the persistence of intrapopulation aposematic variation, a likely precursor to polytypism and driver of speciation. |
doi_str_mv | 10.1073/pnas.1901872116 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6754554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26851665</jstor_id><sourcerecordid>26851665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-13d7f69ecba445529104b292d5c4f7eb09a49a207f02eff8f32984ddedfdc1e83</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EomnhzAlkiUs5bOtvr6UKqaqAVorUC4ij5fWOkw0bO9ibVvx7HKWkpaeRZp555-NF6B0lZ5Rofr6JrpxRQ2irGaXqBZpRYmijhCEv0YwQpptWMHGEjktZEUKMbMlrdMSpaKlifIYufoL7he9djkNc4DIsohsL9i7iDeQylAkPEU9LwK4rED3gFPACIuAwpvs36FWoOLx9iCfox9cv36-um_ntt5ury3njhdZTQ3mvgzLgOyeElMxQIjpmWC-9CBo6YpwwjhEdCIMQ2sCZaUXfQx96T6HlJ-jzXnez7dbQe4hTdqPd5GHt8h-b3GD_r8RhaRfpziot60BRBT7tBZbP2q4v53aXI4wLzaW8o5U9fRiW0-8tlMmuh-JhHF2EtC2WsVZIxbVQFf34DF2lbd59sFJGVEVtdKXO95TPqZQM4bABJXbnot25aB9drB0fnt574P_ZVoH3e2BVppQPdaZaSZWS_C_DtqEu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294473797</pqid></control><display><type>article</type><title>Weak warning signals can persist in the absence of gene flow</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lawrence, J. P. ; Rojas, Bibiana ; Fouquet, Antoine ; Mappes, Johanna ; Blanchette, Annelise ; Saporito, Ralph A. ; Bosque, Renan Janke ; Courtois, Elodie A. ; Noonan, Brice P.</creator><creatorcontrib>Lawrence, J. P. ; Rojas, Bibiana ; Fouquet, Antoine ; Mappes, Johanna ; Blanchette, Annelise ; Saporito, Ralph A. ; Bosque, Renan Janke ; Courtois, Elodie A. ; Noonan, Brice P.</creatorcontrib><description>Aposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent selection. How, then, can novel phenotypes persist after they arise, and why do so many aposematic species exhibit intrapopulation signal variability? Using a polytypic poison frog (Dendrobates tinctorius), we explored the forces of selection on variable aposematic signals using 2 phenotypically distinct (white, yellow) populations. Contrary to expectations, local phenotype was not always better protected compared to novel phenotypes in either population; in the white population, the novel phenotype evoked greater avoidance in natural predators. Despite having a lower quantity of alkaloids, the skin extracts from yellow frogs provoked higher aversive reactions by birds than white frogs in the laboratory, although both populations differed from controls. Similarly, predators learned to avoid the yellow signal faster than the white signal, and generalized their learned avoidance of yellow but not white. We propose that signals that are easily learned and broadly generalized can protect rare, novel signals, and weak warning signals (i.e., signals with poor efficacy and/or poor defense) can persist when gene flow among populations, as in this case, is limited. This provides a mechanism for the persistence of intrapopulation aposematic variation, a likely precursor to polytypism and driver of speciation.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1901872116</identifier><identifier>PMID: 31481623</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alkaloids ; Amphibians ; Animal biology ; Animal Communication ; Animals ; Animals, Poisonous - genetics ; Animals, Poisonous - physiology ; Anura - genetics ; Anura - physiology ; Aposematism ; Avoidance ; Avoidance Learning ; Behavior, Animal ; Biological Evolution ; Biological Sciences ; Birds ; Chickens - physiology ; Dendrobates tinctorius ; Frequency dependence ; Frogs ; Gene Flow ; Genetic Variation ; Genetics, Population ; Life Sciences ; Models, Biological ; Phenotype ; Phenotypes ; PNAS Plus ; Populations ; Predators ; Predatory Behavior - physiology ; Prey ; Skin ; Speciation ; Vertebrate Zoology ; Warning</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-09, Vol.116 (38), p.19037-19045</ispartof><rights>Copyright © 2019 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Sep 17, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2019 the Author(s). Published by PNAS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-13d7f69ecba445529104b292d5c4f7eb09a49a207f02eff8f32984ddedfdc1e83</citedby><cites>FETCH-LOGICAL-c477t-13d7f69ecba445529104b292d5c4f7eb09a49a207f02eff8f32984ddedfdc1e83</cites><orcidid>0000-0001-8577-4870 ; 0000-0002-6715-7294 ; 0000-0002-1117-5629 ; 0000-0003-4060-0281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26851665$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26851665$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27931,27932,53798,53800,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31481623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02347355$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lawrence, J. P.</creatorcontrib><creatorcontrib>Rojas, Bibiana</creatorcontrib><creatorcontrib>Fouquet, Antoine</creatorcontrib><creatorcontrib>Mappes, Johanna</creatorcontrib><creatorcontrib>Blanchette, Annelise</creatorcontrib><creatorcontrib>Saporito, Ralph A.</creatorcontrib><creatorcontrib>Bosque, Renan Janke</creatorcontrib><creatorcontrib>Courtois, Elodie A.</creatorcontrib><creatorcontrib>Noonan, Brice P.</creatorcontrib><title>Weak warning signals can persist in the absence of gene flow</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Aposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent selection. How, then, can novel phenotypes persist after they arise, and why do so many aposematic species exhibit intrapopulation signal variability? Using a polytypic poison frog (Dendrobates tinctorius), we explored the forces of selection on variable aposematic signals using 2 phenotypically distinct (white, yellow) populations. Contrary to expectations, local phenotype was not always better protected compared to novel phenotypes in either population; in the white population, the novel phenotype evoked greater avoidance in natural predators. Despite having a lower quantity of alkaloids, the skin extracts from yellow frogs provoked higher aversive reactions by birds than white frogs in the laboratory, although both populations differed from controls. Similarly, predators learned to avoid the yellow signal faster than the white signal, and generalized their learned avoidance of yellow but not white. We propose that signals that are easily learned and broadly generalized can protect rare, novel signals, and weak warning signals (i.e., signals with poor efficacy and/or poor defense) can persist when gene flow among populations, as in this case, is limited. This provides a mechanism for the persistence of intrapopulation aposematic variation, a likely precursor to polytypism and driver of speciation.</description><subject>Alkaloids</subject><subject>Amphibians</subject><subject>Animal biology</subject><subject>Animal Communication</subject><subject>Animals</subject><subject>Animals, Poisonous - genetics</subject><subject>Animals, Poisonous - physiology</subject><subject>Anura - genetics</subject><subject>Anura - physiology</subject><subject>Aposematism</subject><subject>Avoidance</subject><subject>Avoidance Learning</subject><subject>Behavior, Animal</subject><subject>Biological Evolution</subject><subject>Biological Sciences</subject><subject>Birds</subject><subject>Chickens - physiology</subject><subject>Dendrobates tinctorius</subject><subject>Frequency dependence</subject><subject>Frogs</subject><subject>Gene Flow</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>PNAS Plus</subject><subject>Populations</subject><subject>Predators</subject><subject>Predatory Behavior - physiology</subject><subject>Prey</subject><subject>Skin</subject><subject>Speciation</subject><subject>Vertebrate Zoology</subject><subject>Warning</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1vEzEQhi0EomnhzAlkiUs5bOtvr6UKqaqAVorUC4ij5fWOkw0bO9ibVvx7HKWkpaeRZp555-NF6B0lZ5Rofr6JrpxRQ2irGaXqBZpRYmijhCEv0YwQpptWMHGEjktZEUKMbMlrdMSpaKlifIYufoL7he9djkNc4DIsohsL9i7iDeQylAkPEU9LwK4rED3gFPACIuAwpvs36FWoOLx9iCfox9cv36-um_ntt5ury3njhdZTQ3mvgzLgOyeElMxQIjpmWC-9CBo6YpwwjhEdCIMQ2sCZaUXfQx96T6HlJ-jzXnez7dbQe4hTdqPd5GHt8h-b3GD_r8RhaRfpziot60BRBT7tBZbP2q4v53aXI4wLzaW8o5U9fRiW0-8tlMmuh-JhHF2EtC2WsVZIxbVQFf34DF2lbd59sFJGVEVtdKXO95TPqZQM4bABJXbnot25aB9drB0fnt574P_ZVoH3e2BVppQPdaZaSZWS_C_DtqEu</recordid><startdate>20190917</startdate><enddate>20190917</enddate><creator>Lawrence, J. P.</creator><creator>Rojas, Bibiana</creator><creator>Fouquet, Antoine</creator><creator>Mappes, Johanna</creator><creator>Blanchette, Annelise</creator><creator>Saporito, Ralph A.</creator><creator>Bosque, Renan Janke</creator><creator>Courtois, Elodie A.</creator><creator>Noonan, Brice P.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8577-4870</orcidid><orcidid>https://orcid.org/0000-0002-6715-7294</orcidid><orcidid>https://orcid.org/0000-0002-1117-5629</orcidid><orcidid>https://orcid.org/0000-0003-4060-0281</orcidid></search><sort><creationdate>20190917</creationdate><title>Weak warning signals can persist in the absence of gene flow</title><author>Lawrence, J. P. ; Rojas, Bibiana ; Fouquet, Antoine ; Mappes, Johanna ; Blanchette, Annelise ; Saporito, Ralph A. ; Bosque, Renan Janke ; Courtois, Elodie A. ; Noonan, Brice P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-13d7f69ecba445529104b292d5c4f7eb09a49a207f02eff8f32984ddedfdc1e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkaloids</topic><topic>Amphibians</topic><topic>Animal biology</topic><topic>Animal Communication</topic><topic>Animals</topic><topic>Animals, Poisonous - genetics</topic><topic>Animals, Poisonous - physiology</topic><topic>Anura - genetics</topic><topic>Anura - physiology</topic><topic>Aposematism</topic><topic>Avoidance</topic><topic>Avoidance Learning</topic><topic>Behavior, Animal</topic><topic>Biological Evolution</topic><topic>Biological Sciences</topic><topic>Birds</topic><topic>Chickens - physiology</topic><topic>Dendrobates tinctorius</topic><topic>Frequency dependence</topic><topic>Frogs</topic><topic>Gene Flow</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>PNAS Plus</topic><topic>Populations</topic><topic>Predators</topic><topic>Predatory Behavior - physiology</topic><topic>Prey</topic><topic>Skin</topic><topic>Speciation</topic><topic>Vertebrate Zoology</topic><topic>Warning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawrence, J. P.</creatorcontrib><creatorcontrib>Rojas, Bibiana</creatorcontrib><creatorcontrib>Fouquet, Antoine</creatorcontrib><creatorcontrib>Mappes, Johanna</creatorcontrib><creatorcontrib>Blanchette, Annelise</creatorcontrib><creatorcontrib>Saporito, Ralph A.</creatorcontrib><creatorcontrib>Bosque, Renan Janke</creatorcontrib><creatorcontrib>Courtois, Elodie A.</creatorcontrib><creatorcontrib>Noonan, Brice P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawrence, J. P.</au><au>Rojas, Bibiana</au><au>Fouquet, Antoine</au><au>Mappes, Johanna</au><au>Blanchette, Annelise</au><au>Saporito, Ralph A.</au><au>Bosque, Renan Janke</au><au>Courtois, Elodie A.</au><au>Noonan, Brice P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak warning signals can persist in the absence of gene flow</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-09-17</date><risdate>2019</risdate><volume>116</volume><issue>38</issue><spage>19037</spage><epage>19045</epage><pages>19037-19045</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Aposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent selection. How, then, can novel phenotypes persist after they arise, and why do so many aposematic species exhibit intrapopulation signal variability? Using a polytypic poison frog (Dendrobates tinctorius), we explored the forces of selection on variable aposematic signals using 2 phenotypically distinct (white, yellow) populations. Contrary to expectations, local phenotype was not always better protected compared to novel phenotypes in either population; in the white population, the novel phenotype evoked greater avoidance in natural predators. Despite having a lower quantity of alkaloids, the skin extracts from yellow frogs provoked higher aversive reactions by birds than white frogs in the laboratory, although both populations differed from controls. Similarly, predators learned to avoid the yellow signal faster than the white signal, and generalized their learned avoidance of yellow but not white. We propose that signals that are easily learned and broadly generalized can protect rare, novel signals, and weak warning signals (i.e., signals with poor efficacy and/or poor defense) can persist when gene flow among populations, as in this case, is limited. This provides a mechanism for the persistence of intrapopulation aposematic variation, a likely precursor to polytypism and driver of speciation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31481623</pmid><doi>10.1073/pnas.1901872116</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8577-4870</orcidid><orcidid>https://orcid.org/0000-0002-6715-7294</orcidid><orcidid>https://orcid.org/0000-0002-1117-5629</orcidid><orcidid>https://orcid.org/0000-0003-4060-0281</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2019-09, Vol.116 (38), p.19037-19045 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6754554 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alkaloids Amphibians Animal biology Animal Communication Animals Animals, Poisonous - genetics Animals, Poisonous - physiology Anura - genetics Anura - physiology Aposematism Avoidance Avoidance Learning Behavior, Animal Biological Evolution Biological Sciences Birds Chickens - physiology Dendrobates tinctorius Frequency dependence Frogs Gene Flow Genetic Variation Genetics, Population Life Sciences Models, Biological Phenotype Phenotypes PNAS Plus Populations Predators Predatory Behavior - physiology Prey Skin Speciation Vertebrate Zoology Warning |
title | Weak warning signals can persist in the absence of gene flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T05%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20warning%20signals%20can%20persist%20in%20the%20absence%20of%20gene%20flow&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lawrence,%20J.%20P.&rft.date=2019-09-17&rft.volume=116&rft.issue=38&rft.spage=19037&rft.epage=19045&rft.pages=19037-19045&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1901872116&rft_dat=%3Cjstor_pubme%3E26851665%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2294473797&rft_id=info:pmid/31481623&rft_jstor_id=26851665&rfr_iscdi=true |