Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies
The breast stromal microenvironment is a pivotal factor in breast cancer development, growth and metastases. Although pathologists often detect morphologic changes in stroma by light microscopy, visual classification of such changes is subjective and non-quantitative, limiting its diagnostic utility...
Gespeichert in:
Veröffentlicht in: | Modern pathology 2018-10, Vol.31 (10), p.1502-1512 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1512 |
---|---|
container_issue | 10 |
container_start_page | 1502 |
container_title | Modern pathology |
container_volume | 31 |
creator | Ehteshami Bejnordi, Babak Mullooly, Maeve Pfeiffer, Ruth M. Fan, Shaoqi Vacek, Pamela M. Weaver, Donald L. Herschorn, Sally Brinton, Louise A. van Ginneken, Bram Karssemeijer, Nico Beck, Andrew H. Gierach, Gretchen L. van der Laak, Jeroen A. W.M. Sherman, Mark E. |
description | The breast stromal microenvironment is a pivotal factor in breast cancer development, growth and metastases. Although pathologists often detect morphologic changes in stroma by light microscopy, visual classification of such changes is subjective and non-quantitative, limiting its diagnostic utility. To gain insights into stromal changes associated with breast cancer, we applied automated machine learning techniques to digital images of 2387 hematoxylin and eosin stained tissue sections of benign and malignant image-guided breast biopsies performed to investigate mammographic abnormalities among 882 patients, ages 40–65 years, that were enrolled in the Breast Radiology Evaluation and Study of Tissues (BREAST) Stamp Project. Using deep convolutional neural networks, we trained an algorithm to discriminate between stroma surrounding invasive cancer and stroma from benign biopsies. In test sets (928 whole-slide images from 330 patients), this algorithm could distinguish biopsies diagnosed as invasive cancer from benign biopsies solely based on the stromal characteristics (area under the receiver operator characteristics curve = 0.962). Furthermore, without being trained specifically using ductal carcinoma in situ as an outcome, the algorithm detected tumor-associated stroma in greater amounts and at larger distances from grade 3 versus grade 1 ductal carcinoma in situ. Collectively, these results suggest that algorithms based on deep convolutional neural networks that evaluate only stroma may prove useful to classify breast biopsies and aid in understanding and evaluating the biology of breast lesions. |
doi_str_mv | 10.1038/s41379-018-0073-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6752036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893395222033014</els_id><sourcerecordid>2115637669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-fe43156239eb2b6374ae1dafa32030c830c1eceb61b245eb2c8df1ae9fa87cdb3</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhSMEopfCD2CDLLFhE_AjThwhIVUVtEiV2NC15diTi0tiXzzOrdpfjy8p5bHowhpZ850ZH5-qesnoW0aFeocNE11fU6ZqSjtR3z6qNkwKWlOu5ONqQ1UvatFLflQ9Q7yilDVS8afVEe9V30tJN9X1JfqwJQ5gR2wM-zgt2cdgJhJgSb9Kvo7pO5IciXcQsh9viAmO2MkgHi55mWOqyyVabzI4gjnF2RAfiPNmGyJmb8mQwGAmg4879IDPqyejmRBe3NXj6vLTx6-n5_XFl7PPpycXtZVK5XqERjDZctHDwIdWdI0B5sxoBKeCWlUOAwtDywbeyMJY5UZmoB-N6qwbxHH1YZ27W4YZnC0Giiu9S3426UZH4_W_neC_6W3c67aTZUVbBry5G5DijwUw69mjhWkyAeKCmlMpW9aJlhX09X_oVVxS-ctCseJCdG3bF4qtlE0RMcF4_xhG9SFWvcaqS6z6EKu-LZpXf7u4V_zOsQB8BbC0whbSn9UPTX2_iqAEsPdFhNZDsOB8Apu1i_4B9U_GUsZR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115637669</pqid></control><display><type>article</type><title>Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Ehteshami Bejnordi, Babak ; Mullooly, Maeve ; Pfeiffer, Ruth M. ; Fan, Shaoqi ; Vacek, Pamela M. ; Weaver, Donald L. ; Herschorn, Sally ; Brinton, Louise A. ; van Ginneken, Bram ; Karssemeijer, Nico ; Beck, Andrew H. ; Gierach, Gretchen L. ; van der Laak, Jeroen A. W.M. ; Sherman, Mark E.</creator><creatorcontrib>Ehteshami Bejnordi, Babak ; Mullooly, Maeve ; Pfeiffer, Ruth M. ; Fan, Shaoqi ; Vacek, Pamela M. ; Weaver, Donald L. ; Herschorn, Sally ; Brinton, Louise A. ; van Ginneken, Bram ; Karssemeijer, Nico ; Beck, Andrew H. ; Gierach, Gretchen L. ; van der Laak, Jeroen A. W.M. ; Sherman, Mark E.</creatorcontrib><description>The breast stromal microenvironment is a pivotal factor in breast cancer development, growth and metastases. Although pathologists often detect morphologic changes in stroma by light microscopy, visual classification of such changes is subjective and non-quantitative, limiting its diagnostic utility. To gain insights into stromal changes associated with breast cancer, we applied automated machine learning techniques to digital images of 2387 hematoxylin and eosin stained tissue sections of benign and malignant image-guided breast biopsies performed to investigate mammographic abnormalities among 882 patients, ages 40–65 years, that were enrolled in the Breast Radiology Evaluation and Study of Tissues (BREAST) Stamp Project. Using deep convolutional neural networks, we trained an algorithm to discriminate between stroma surrounding invasive cancer and stroma from benign biopsies. In test sets (928 whole-slide images from 330 patients), this algorithm could distinguish biopsies diagnosed as invasive cancer from benign biopsies solely based on the stromal characteristics (area under the receiver operator characteristics curve = 0.962). Furthermore, without being trained specifically using ductal carcinoma in situ as an outcome, the algorithm detected tumor-associated stroma in greater amounts and at larger distances from grade 3 versus grade 1 ductal carcinoma in situ. Collectively, these results suggest that algorithms based on deep convolutional neural networks that evaluate only stroma may prove useful to classify breast biopsies and aid in understanding and evaluating the biology of breast lesions.</description><identifier>ISSN: 0893-3952</identifier><identifier>EISSN: 1530-0285</identifier><identifier>DOI: 10.1038/s41379-018-0073-z</identifier><identifier>PMID: 29899550</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>14/63 ; 631/67/1347 ; 631/67/1857 ; 631/67/2321 ; Adult ; Aged ; Algorithms ; Benign ; Biopsy ; Breast cancer ; Breast Neoplasms - classification ; Breast Neoplasms - pathology ; Deep Learning ; Female ; Health risk assessment ; Humans ; Invasiveness ; Laboratory Medicine ; Learning algorithms ; Mammography ; Medical diagnosis ; Medicine ; Medicine & Public Health ; Metastases ; Middle Aged ; Neural networks ; Pathology ; Stroma ; Tumor Microenvironment</subject><ispartof>Modern pathology, 2018-10, Vol.31 (10), p.1502-1512</ispartof><rights>2018 United States & Canadian Academy of Pathology</rights><rights>United States & Canadian Academy of Pathology 2018</rights><rights>Copyright Nature Publishing Group Oct 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-fe43156239eb2b6374ae1dafa32030c830c1eceb61b245eb2c8df1ae9fa87cdb3</citedby><cites>FETCH-LOGICAL-c588t-fe43156239eb2b6374ae1dafa32030c830c1eceb61b245eb2c8df1ae9fa87cdb3</cites><orcidid>0000-0002-6258-5687 ; 0000-0001-7982-0754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29899550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ehteshami Bejnordi, Babak</creatorcontrib><creatorcontrib>Mullooly, Maeve</creatorcontrib><creatorcontrib>Pfeiffer, Ruth M.</creatorcontrib><creatorcontrib>Fan, Shaoqi</creatorcontrib><creatorcontrib>Vacek, Pamela M.</creatorcontrib><creatorcontrib>Weaver, Donald L.</creatorcontrib><creatorcontrib>Herschorn, Sally</creatorcontrib><creatorcontrib>Brinton, Louise A.</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><creatorcontrib>Karssemeijer, Nico</creatorcontrib><creatorcontrib>Beck, Andrew H.</creatorcontrib><creatorcontrib>Gierach, Gretchen L.</creatorcontrib><creatorcontrib>van der Laak, Jeroen A. W.M.</creatorcontrib><creatorcontrib>Sherman, Mark E.</creatorcontrib><title>Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies</title><title>Modern pathology</title><addtitle>Mod Pathol</addtitle><addtitle>Mod Pathol</addtitle><description>The breast stromal microenvironment is a pivotal factor in breast cancer development, growth and metastases. Although pathologists often detect morphologic changes in stroma by light microscopy, visual classification of such changes is subjective and non-quantitative, limiting its diagnostic utility. To gain insights into stromal changes associated with breast cancer, we applied automated machine learning techniques to digital images of 2387 hematoxylin and eosin stained tissue sections of benign and malignant image-guided breast biopsies performed to investigate mammographic abnormalities among 882 patients, ages 40–65 years, that were enrolled in the Breast Radiology Evaluation and Study of Tissues (BREAST) Stamp Project. Using deep convolutional neural networks, we trained an algorithm to discriminate between stroma surrounding invasive cancer and stroma from benign biopsies. In test sets (928 whole-slide images from 330 patients), this algorithm could distinguish biopsies diagnosed as invasive cancer from benign biopsies solely based on the stromal characteristics (area under the receiver operator characteristics curve = 0.962). Furthermore, without being trained specifically using ductal carcinoma in situ as an outcome, the algorithm detected tumor-associated stroma in greater amounts and at larger distances from grade 3 versus grade 1 ductal carcinoma in situ. Collectively, these results suggest that algorithms based on deep convolutional neural networks that evaluate only stroma may prove useful to classify breast biopsies and aid in understanding and evaluating the biology of breast lesions.</description><subject>14/63</subject><subject>631/67/1347</subject><subject>631/67/1857</subject><subject>631/67/2321</subject><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Benign</subject><subject>Biopsy</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - classification</subject><subject>Breast Neoplasms - pathology</subject><subject>Deep Learning</subject><subject>Female</subject><subject>Health risk assessment</subject><subject>Humans</subject><subject>Invasiveness</subject><subject>Laboratory Medicine</subject><subject>Learning algorithms</subject><subject>Mammography</subject><subject>Medical diagnosis</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metastases</subject><subject>Middle Aged</subject><subject>Neural networks</subject><subject>Pathology</subject><subject>Stroma</subject><subject>Tumor Microenvironment</subject><issn>0893-3952</issn><issn>1530-0285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtv1TAQhSMEopfCD2CDLLFhE_AjThwhIVUVtEiV2NC15diTi0tiXzzOrdpfjy8p5bHowhpZ850ZH5-qesnoW0aFeocNE11fU6ZqSjtR3z6qNkwKWlOu5ONqQ1UvatFLflQ9Q7yilDVS8afVEe9V30tJN9X1JfqwJQ5gR2wM-zgt2cdgJhJgSb9Kvo7pO5IciXcQsh9viAmO2MkgHi55mWOqyyVabzI4gjnF2RAfiPNmGyJmb8mQwGAmg4879IDPqyejmRBe3NXj6vLTx6-n5_XFl7PPpycXtZVK5XqERjDZctHDwIdWdI0B5sxoBKeCWlUOAwtDywbeyMJY5UZmoB-N6qwbxHH1YZ27W4YZnC0Giiu9S3426UZH4_W_neC_6W3c67aTZUVbBry5G5DijwUw69mjhWkyAeKCmlMpW9aJlhX09X_oVVxS-ctCseJCdG3bF4qtlE0RMcF4_xhG9SFWvcaqS6z6EKu-LZpXf7u4V_zOsQB8BbC0whbSn9UPTX2_iqAEsPdFhNZDsOB8Apu1i_4B9U_GUsZR</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Ehteshami Bejnordi, Babak</creator><creator>Mullooly, Maeve</creator><creator>Pfeiffer, Ruth M.</creator><creator>Fan, Shaoqi</creator><creator>Vacek, Pamela M.</creator><creator>Weaver, Donald L.</creator><creator>Herschorn, Sally</creator><creator>Brinton, Louise A.</creator><creator>van Ginneken, Bram</creator><creator>Karssemeijer, Nico</creator><creator>Beck, Andrew H.</creator><creator>Gierach, Gretchen L.</creator><creator>van der Laak, Jeroen A. W.M.</creator><creator>Sherman, Mark E.</creator><general>Elsevier Inc</general><general>Nature Publishing Group US</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6258-5687</orcidid><orcidid>https://orcid.org/0000-0001-7982-0754</orcidid></search><sort><creationdate>20181001</creationdate><title>Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies</title><author>Ehteshami Bejnordi, Babak ; Mullooly, Maeve ; Pfeiffer, Ruth M. ; Fan, Shaoqi ; Vacek, Pamela M. ; Weaver, Donald L. ; Herschorn, Sally ; Brinton, Louise A. ; van Ginneken, Bram ; Karssemeijer, Nico ; Beck, Andrew H. ; Gierach, Gretchen L. ; van der Laak, Jeroen A. W.M. ; Sherman, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-fe43156239eb2b6374ae1dafa32030c830c1eceb61b245eb2c8df1ae9fa87cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>14/63</topic><topic>631/67/1347</topic><topic>631/67/1857</topic><topic>631/67/2321</topic><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Benign</topic><topic>Biopsy</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - classification</topic><topic>Breast Neoplasms - pathology</topic><topic>Deep Learning</topic><topic>Female</topic><topic>Health risk assessment</topic><topic>Humans</topic><topic>Invasiveness</topic><topic>Laboratory Medicine</topic><topic>Learning algorithms</topic><topic>Mammography</topic><topic>Medical diagnosis</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metastases</topic><topic>Middle Aged</topic><topic>Neural networks</topic><topic>Pathology</topic><topic>Stroma</topic><topic>Tumor Microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ehteshami Bejnordi, Babak</creatorcontrib><creatorcontrib>Mullooly, Maeve</creatorcontrib><creatorcontrib>Pfeiffer, Ruth M.</creatorcontrib><creatorcontrib>Fan, Shaoqi</creatorcontrib><creatorcontrib>Vacek, Pamela M.</creatorcontrib><creatorcontrib>Weaver, Donald L.</creatorcontrib><creatorcontrib>Herschorn, Sally</creatorcontrib><creatorcontrib>Brinton, Louise A.</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><creatorcontrib>Karssemeijer, Nico</creatorcontrib><creatorcontrib>Beck, Andrew H.</creatorcontrib><creatorcontrib>Gierach, Gretchen L.</creatorcontrib><creatorcontrib>van der Laak, Jeroen A. W.M.</creatorcontrib><creatorcontrib>Sherman, Mark E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Neurosciences Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Modern pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehteshami Bejnordi, Babak</au><au>Mullooly, Maeve</au><au>Pfeiffer, Ruth M.</au><au>Fan, Shaoqi</au><au>Vacek, Pamela M.</au><au>Weaver, Donald L.</au><au>Herschorn, Sally</au><au>Brinton, Louise A.</au><au>van Ginneken, Bram</au><au>Karssemeijer, Nico</au><au>Beck, Andrew H.</au><au>Gierach, Gretchen L.</au><au>van der Laak, Jeroen A. W.M.</au><au>Sherman, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies</atitle><jtitle>Modern pathology</jtitle><stitle>Mod Pathol</stitle><addtitle>Mod Pathol</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>31</volume><issue>10</issue><spage>1502</spage><epage>1512</epage><pages>1502-1512</pages><issn>0893-3952</issn><eissn>1530-0285</eissn><abstract>The breast stromal microenvironment is a pivotal factor in breast cancer development, growth and metastases. Although pathologists often detect morphologic changes in stroma by light microscopy, visual classification of such changes is subjective and non-quantitative, limiting its diagnostic utility. To gain insights into stromal changes associated with breast cancer, we applied automated machine learning techniques to digital images of 2387 hematoxylin and eosin stained tissue sections of benign and malignant image-guided breast biopsies performed to investigate mammographic abnormalities among 882 patients, ages 40–65 years, that were enrolled in the Breast Radiology Evaluation and Study of Tissues (BREAST) Stamp Project. Using deep convolutional neural networks, we trained an algorithm to discriminate between stroma surrounding invasive cancer and stroma from benign biopsies. In test sets (928 whole-slide images from 330 patients), this algorithm could distinguish biopsies diagnosed as invasive cancer from benign biopsies solely based on the stromal characteristics (area under the receiver operator characteristics curve = 0.962). Furthermore, without being trained specifically using ductal carcinoma in situ as an outcome, the algorithm detected tumor-associated stroma in greater amounts and at larger distances from grade 3 versus grade 1 ductal carcinoma in situ. Collectively, these results suggest that algorithms based on deep convolutional neural networks that evaluate only stroma may prove useful to classify breast biopsies and aid in understanding and evaluating the biology of breast lesions.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><pmid>29899550</pmid><doi>10.1038/s41379-018-0073-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6258-5687</orcidid><orcidid>https://orcid.org/0000-0001-7982-0754</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-3952 |
ispartof | Modern pathology, 2018-10, Vol.31 (10), p.1502-1512 |
issn | 0893-3952 1530-0285 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6752036 |
source | MEDLINE; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | 14/63 631/67/1347 631/67/1857 631/67/2321 Adult Aged Algorithms Benign Biopsy Breast cancer Breast Neoplasms - classification Breast Neoplasms - pathology Deep Learning Female Health risk assessment Humans Invasiveness Laboratory Medicine Learning algorithms Mammography Medical diagnosis Medicine Medicine & Public Health Metastases Middle Aged Neural networks Pathology Stroma Tumor Microenvironment |
title | Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A33%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20deep%20convolutional%20neural%20networks%20to%20identify%20and%20classify%20tumor-associated%20stroma%20in%20diagnostic%20breast%20biopsies&rft.jtitle=Modern%20pathology&rft.au=Ehteshami%20Bejnordi,%20Babak&rft.date=2018-10-01&rft.volume=31&rft.issue=10&rft.spage=1502&rft.epage=1512&rft.pages=1502-1512&rft.issn=0893-3952&rft.eissn=1530-0285&rft_id=info:doi/10.1038/s41379-018-0073-z&rft_dat=%3Cproquest_pubme%3E2115637669%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115637669&rft_id=info:pmid/29899550&rft_els_id=S0893395222033014&rfr_iscdi=true |