pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data
Prior to statistical analysis of mass spectrometry (MS) data, quality control (QC) of the identified biomolecule peak intensities is imperative for reducing process-based sources of variation and extreme biological outliers. Without this step, statistical results can be biased. Additionally, liquid...
Gespeichert in:
Veröffentlicht in: | Journal of proteome research 2019-03, Vol.18 (3), p.1418-1425 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1425 |
---|---|
container_issue | 3 |
container_start_page | 1418 |
container_title | Journal of proteome research |
container_volume | 18 |
creator | Stratton, Kelly G Webb-Robertson, Bobbie-Jo M McCue, Lee Ann Stanfill, Bryan Claborne, Daniel Godinez, Iobani Johansen, Thomas Thompson, Allison M Burnum-Johnson, Kristin E Waters, Katrina M Bramer, Lisa M |
description | Prior to statistical analysis of mass spectrometry (MS) data, quality control (QC) of the identified biomolecule peak intensities is imperative for reducing process-based sources of variation and extreme biological outliers. Without this step, statistical results can be biased. Additionally, liquid chromatography–MS proteomics data present inherent challenges due to large amounts of missing data that require special consideration during statistical analysis. While a number of R packages exist to address these challenges individually, there is no single R package that addresses all of them. We present pmartR, an open-source R package, for QC (filtering and normalization), exploratory data analysis (EDA), visualization, and statistical analysis robust to missing data. Example analysis using proteomics data from a mouse study comparing smoke exposure to control demonstrates the core functionality of the package and highlights the capabilities for handling missing data. In particular, using a combined quantitative and qualitative statistical test, 19 proteins whose statistical significance would have been missed by a quantitative test alone were identified. The pmartR package provides a single software tool for QC, EDA, and statistical comparisons of MS data that is robust to missing data and includes numerous visualization capabilities. |
doi_str_mv | 10.1021/acs.jproteome.8b00760 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6750869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179329583</sourcerecordid><originalsourceid>FETCH-LOGICAL-a480t-abb59cb07e631ab39435185560c82bd87f34168fca56aff13caaade385f6fe543</originalsourceid><addsrcrecordid>eNqFkUtPJCEUhYkZMz5mfoKGzMpN9UDTUJQLE20fM4lm4mtNblGgmKqiBMqk_71otx1dzQoSvns45x6E9iiZUDKlv0HHydMQfDK-MxNZE1IKsoG2KWe8YBUpv33cZcW20E6MT4RQXhL2HW0xIphkkm-jm6GDkG4O8fUIrUsLPPd9Cr7F0Df4NkFyMTkdsfUBX0GM-HYwOgOdSWFRnEA0DT5xvvUPTkOLTyHBD7RpoY3m5-rcRffnZ3fzP8Xlv4u_8-PLAmaSpALqmle6JqURjELNqhnjVHIuiJbTupGlZTMqpNXABVhLmQaAxmTXVljDZ2wXHS11h7HuTKNNNg6tGoLLkRbKg1NfX3r3qB78ixIlJ1JUWeDXUsDnjCpql4x-1L7vc0JFOSmzoQwdrH4J_nk0ManORW3aFnrjx6imtKzYtOKSZZQvUR18jMHYtRdK1FtpKpem1qWpVWl5bv9zkPXUR0sZoEvgfd6Poc97_Y_oK7ZLqYI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179329583</pqid></control><display><type>article</type><title>pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data</title><source>MEDLINE</source><source>ACS Publications</source><creator>Stratton, Kelly G ; Webb-Robertson, Bobbie-Jo M ; McCue, Lee Ann ; Stanfill, Bryan ; Claborne, Daniel ; Godinez, Iobani ; Johansen, Thomas ; Thompson, Allison M ; Burnum-Johnson, Kristin E ; Waters, Katrina M ; Bramer, Lisa M</creator><creatorcontrib>Stratton, Kelly G ; Webb-Robertson, Bobbie-Jo M ; McCue, Lee Ann ; Stanfill, Bryan ; Claborne, Daniel ; Godinez, Iobani ; Johansen, Thomas ; Thompson, Allison M ; Burnum-Johnson, Kristin E ; Waters, Katrina M ; Bramer, Lisa M ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Prior to statistical analysis of mass spectrometry (MS) data, quality control (QC) of the identified biomolecule peak intensities is imperative for reducing process-based sources of variation and extreme biological outliers. Without this step, statistical results can be biased. Additionally, liquid chromatography–MS proteomics data present inherent challenges due to large amounts of missing data that require special consideration during statistical analysis. While a number of R packages exist to address these challenges individually, there is no single R package that addresses all of them. We present pmartR, an open-source R package, for QC (filtering and normalization), exploratory data analysis (EDA), visualization, and statistical analysis robust to missing data. Example analysis using proteomics data from a mouse study comparing smoke exposure to control demonstrates the core functionality of the package and highlights the capabilities for handling missing data. In particular, using a combined quantitative and qualitative statistical test, 19 proteins whose statistical significance would have been missed by a quantitative test alone were identified. The pmartR package provides a single software tool for QC, EDA, and statistical comparisons of MS data that is robust to missing data and includes numerous visualization capabilities.</description><identifier>ISSN: 1535-3893</identifier><identifier>ISSN: 1535-3907</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.8b00760</identifier><identifier>PMID: 30638385</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Chromatography, Liquid - methods ; Chromatography, Liquid - statistics & numerical data ; Data Interpretation, Statistical ; Mass Spectrometry - methods ; Mass Spectrometry - statistics & numerical data ; Mice ; Proteins - chemistry ; Proteins - isolation & purification ; Proteomics - methods ; Proteomics - statistics & numerical data ; Quality Control ; Technical Note</subject><ispartof>Journal of proteome research, 2019-03, Vol.18 (3), p.1418-1425</ispartof><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a480t-abb59cb07e631ab39435185560c82bd87f34168fca56aff13caaade385f6fe543</citedby><cites>FETCH-LOGICAL-a480t-abb59cb07e631ab39435185560c82bd87f34168fca56aff13caaade385f6fe543</cites><orcidid>0000-0003-4696-5396 ; 0000-0003-4456-517X ; 0000-0001-8808-6248 ; 0000-0002-1721-9688 ; 0000-0002-4744-2397 ; 0000-0002-8384-1926 ; 0000-0002-2722-4149 ; 0000-0001-5293-3628 ; 0000-0002-9791-4444 ; 0000-0003-0612-5333 ; 0000-0002-1710-9219 ; 000000034456517X ; 0000000217109219 ; 0000000306125333 ; 0000000217219688 ; 0000000188086248 ; 0000000227224149 ; 0000000283841926 ; 0000000346965396 ; 0000000152933628 ; 0000000297914444 ; 0000000247442397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.8b00760$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.8b00760$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30638385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1507351$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stratton, Kelly G</creatorcontrib><creatorcontrib>Webb-Robertson, Bobbie-Jo M</creatorcontrib><creatorcontrib>McCue, Lee Ann</creatorcontrib><creatorcontrib>Stanfill, Bryan</creatorcontrib><creatorcontrib>Claborne, Daniel</creatorcontrib><creatorcontrib>Godinez, Iobani</creatorcontrib><creatorcontrib>Johansen, Thomas</creatorcontrib><creatorcontrib>Thompson, Allison M</creatorcontrib><creatorcontrib>Burnum-Johnson, Kristin E</creatorcontrib><creatorcontrib>Waters, Katrina M</creatorcontrib><creatorcontrib>Bramer, Lisa M</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Prior to statistical analysis of mass spectrometry (MS) data, quality control (QC) of the identified biomolecule peak intensities is imperative for reducing process-based sources of variation and extreme biological outliers. Without this step, statistical results can be biased. Additionally, liquid chromatography–MS proteomics data present inherent challenges due to large amounts of missing data that require special consideration during statistical analysis. While a number of R packages exist to address these challenges individually, there is no single R package that addresses all of them. We present pmartR, an open-source R package, for QC (filtering and normalization), exploratory data analysis (EDA), visualization, and statistical analysis robust to missing data. Example analysis using proteomics data from a mouse study comparing smoke exposure to control demonstrates the core functionality of the package and highlights the capabilities for handling missing data. In particular, using a combined quantitative and qualitative statistical test, 19 proteins whose statistical significance would have been missed by a quantitative test alone were identified. The pmartR package provides a single software tool for QC, EDA, and statistical comparisons of MS data that is robust to missing data and includes numerous visualization capabilities.</description><subject>Animals</subject><subject>Chromatography, Liquid - methods</subject><subject>Chromatography, Liquid - statistics & numerical data</subject><subject>Data Interpretation, Statistical</subject><subject>Mass Spectrometry - methods</subject><subject>Mass Spectrometry - statistics & numerical data</subject><subject>Mice</subject><subject>Proteins - chemistry</subject><subject>Proteins - isolation & purification</subject><subject>Proteomics - methods</subject><subject>Proteomics - statistics & numerical data</subject><subject>Quality Control</subject><subject>Technical Note</subject><issn>1535-3893</issn><issn>1535-3907</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtPJCEUhYkZMz5mfoKGzMpN9UDTUJQLE20fM4lm4mtNblGgmKqiBMqk_71otx1dzQoSvns45x6E9iiZUDKlv0HHydMQfDK-MxNZE1IKsoG2KWe8YBUpv33cZcW20E6MT4RQXhL2HW0xIphkkm-jm6GDkG4O8fUIrUsLPPd9Cr7F0Df4NkFyMTkdsfUBX0GM-HYwOgOdSWFRnEA0DT5xvvUPTkOLTyHBD7RpoY3m5-rcRffnZ3fzP8Xlv4u_8-PLAmaSpALqmle6JqURjELNqhnjVHIuiJbTupGlZTMqpNXABVhLmQaAxmTXVljDZ2wXHS11h7HuTKNNNg6tGoLLkRbKg1NfX3r3qB78ixIlJ1JUWeDXUsDnjCpql4x-1L7vc0JFOSmzoQwdrH4J_nk0ManORW3aFnrjx6imtKzYtOKSZZQvUR18jMHYtRdK1FtpKpem1qWpVWl5bv9zkPXUR0sZoEvgfd6Poc97_Y_oK7ZLqYI</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Stratton, Kelly G</creator><creator>Webb-Robertson, Bobbie-Jo M</creator><creator>McCue, Lee Ann</creator><creator>Stanfill, Bryan</creator><creator>Claborne, Daniel</creator><creator>Godinez, Iobani</creator><creator>Johansen, Thomas</creator><creator>Thompson, Allison M</creator><creator>Burnum-Johnson, Kristin E</creator><creator>Waters, Katrina M</creator><creator>Bramer, Lisa M</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4696-5396</orcidid><orcidid>https://orcid.org/0000-0003-4456-517X</orcidid><orcidid>https://orcid.org/0000-0001-8808-6248</orcidid><orcidid>https://orcid.org/0000-0002-1721-9688</orcidid><orcidid>https://orcid.org/0000-0002-4744-2397</orcidid><orcidid>https://orcid.org/0000-0002-8384-1926</orcidid><orcidid>https://orcid.org/0000-0002-2722-4149</orcidid><orcidid>https://orcid.org/0000-0001-5293-3628</orcidid><orcidid>https://orcid.org/0000-0002-9791-4444</orcidid><orcidid>https://orcid.org/0000-0003-0612-5333</orcidid><orcidid>https://orcid.org/0000-0002-1710-9219</orcidid><orcidid>https://orcid.org/000000034456517X</orcidid><orcidid>https://orcid.org/0000000217109219</orcidid><orcidid>https://orcid.org/0000000306125333</orcidid><orcidid>https://orcid.org/0000000217219688</orcidid><orcidid>https://orcid.org/0000000188086248</orcidid><orcidid>https://orcid.org/0000000227224149</orcidid><orcidid>https://orcid.org/0000000283841926</orcidid><orcidid>https://orcid.org/0000000346965396</orcidid><orcidid>https://orcid.org/0000000152933628</orcidid><orcidid>https://orcid.org/0000000297914444</orcidid><orcidid>https://orcid.org/0000000247442397</orcidid></search><sort><creationdate>20190301</creationdate><title>pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data</title><author>Stratton, Kelly G ; Webb-Robertson, Bobbie-Jo M ; McCue, Lee Ann ; Stanfill, Bryan ; Claborne, Daniel ; Godinez, Iobani ; Johansen, Thomas ; Thompson, Allison M ; Burnum-Johnson, Kristin E ; Waters, Katrina M ; Bramer, Lisa M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a480t-abb59cb07e631ab39435185560c82bd87f34168fca56aff13caaade385f6fe543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Chromatography, Liquid - methods</topic><topic>Chromatography, Liquid - statistics & numerical data</topic><topic>Data Interpretation, Statistical</topic><topic>Mass Spectrometry - methods</topic><topic>Mass Spectrometry - statistics & numerical data</topic><topic>Mice</topic><topic>Proteins - chemistry</topic><topic>Proteins - isolation & purification</topic><topic>Proteomics - methods</topic><topic>Proteomics - statistics & numerical data</topic><topic>Quality Control</topic><topic>Technical Note</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stratton, Kelly G</creatorcontrib><creatorcontrib>Webb-Robertson, Bobbie-Jo M</creatorcontrib><creatorcontrib>McCue, Lee Ann</creatorcontrib><creatorcontrib>Stanfill, Bryan</creatorcontrib><creatorcontrib>Claborne, Daniel</creatorcontrib><creatorcontrib>Godinez, Iobani</creatorcontrib><creatorcontrib>Johansen, Thomas</creatorcontrib><creatorcontrib>Thompson, Allison M</creatorcontrib><creatorcontrib>Burnum-Johnson, Kristin E</creatorcontrib><creatorcontrib>Waters, Katrina M</creatorcontrib><creatorcontrib>Bramer, Lisa M</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stratton, Kelly G</au><au>Webb-Robertson, Bobbie-Jo M</au><au>McCue, Lee Ann</au><au>Stanfill, Bryan</au><au>Claborne, Daniel</au><au>Godinez, Iobani</au><au>Johansen, Thomas</au><au>Thompson, Allison M</au><au>Burnum-Johnson, Kristin E</au><au>Waters, Katrina M</au><au>Bramer, Lisa M</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>18</volume><issue>3</issue><spage>1418</spage><epage>1425</epage><pages>1418-1425</pages><issn>1535-3893</issn><issn>1535-3907</issn><eissn>1535-3907</eissn><abstract>Prior to statistical analysis of mass spectrometry (MS) data, quality control (QC) of the identified biomolecule peak intensities is imperative for reducing process-based sources of variation and extreme biological outliers. Without this step, statistical results can be biased. Additionally, liquid chromatography–MS proteomics data present inherent challenges due to large amounts of missing data that require special consideration during statistical analysis. While a number of R packages exist to address these challenges individually, there is no single R package that addresses all of them. We present pmartR, an open-source R package, for QC (filtering and normalization), exploratory data analysis (EDA), visualization, and statistical analysis robust to missing data. Example analysis using proteomics data from a mouse study comparing smoke exposure to control demonstrates the core functionality of the package and highlights the capabilities for handling missing data. In particular, using a combined quantitative and qualitative statistical test, 19 proteins whose statistical significance would have been missed by a quantitative test alone were identified. The pmartR package provides a single software tool for QC, EDA, and statistical comparisons of MS data that is robust to missing data and includes numerous visualization capabilities.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30638385</pmid><doi>10.1021/acs.jproteome.8b00760</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4696-5396</orcidid><orcidid>https://orcid.org/0000-0003-4456-517X</orcidid><orcidid>https://orcid.org/0000-0001-8808-6248</orcidid><orcidid>https://orcid.org/0000-0002-1721-9688</orcidid><orcidid>https://orcid.org/0000-0002-4744-2397</orcidid><orcidid>https://orcid.org/0000-0002-8384-1926</orcidid><orcidid>https://orcid.org/0000-0002-2722-4149</orcidid><orcidid>https://orcid.org/0000-0001-5293-3628</orcidid><orcidid>https://orcid.org/0000-0002-9791-4444</orcidid><orcidid>https://orcid.org/0000-0003-0612-5333</orcidid><orcidid>https://orcid.org/0000-0002-1710-9219</orcidid><orcidid>https://orcid.org/000000034456517X</orcidid><orcidid>https://orcid.org/0000000217109219</orcidid><orcidid>https://orcid.org/0000000306125333</orcidid><orcidid>https://orcid.org/0000000217219688</orcidid><orcidid>https://orcid.org/0000000188086248</orcidid><orcidid>https://orcid.org/0000000227224149</orcidid><orcidid>https://orcid.org/0000000283841926</orcidid><orcidid>https://orcid.org/0000000346965396</orcidid><orcidid>https://orcid.org/0000000152933628</orcidid><orcidid>https://orcid.org/0000000297914444</orcidid><orcidid>https://orcid.org/0000000247442397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3893 |
ispartof | Journal of proteome research, 2019-03, Vol.18 (3), p.1418-1425 |
issn | 1535-3893 1535-3907 1535-3907 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6750869 |
source | MEDLINE; ACS Publications |
subjects | Animals Chromatography, Liquid - methods Chromatography, Liquid - statistics & numerical data Data Interpretation, Statistical Mass Spectrometry - methods Mass Spectrometry - statistics & numerical data Mice Proteins - chemistry Proteins - isolation & purification Proteomics - methods Proteomics - statistics & numerical data Quality Control Technical Note |
title | pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pmartR:%20Quality%20Control%20and%20Statistics%20for%20Mass%20Spectrometry-Based%20Biological%20Data&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Stratton,%20Kelly%20G&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2019-03-01&rft.volume=18&rft.issue=3&rft.spage=1418&rft.epage=1425&rft.pages=1418-1425&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.8b00760&rft_dat=%3Cproquest_pubme%3E2179329583%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179329583&rft_id=info:pmid/30638385&rfr_iscdi=true |