pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data

Prior to statistical analysis of mass spectrometry (MS) data, quality control (QC) of the identified biomolecule peak intensities is imperative for reducing process-based sources of variation and extreme biological outliers. Without this step, statistical results can be biased. Additionally, liquid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2019-03, Vol.18 (3), p.1418-1425
Hauptverfasser: Stratton, Kelly G, Webb-Robertson, Bobbie-Jo M, McCue, Lee Ann, Stanfill, Bryan, Claborne, Daniel, Godinez, Iobani, Johansen, Thomas, Thompson, Allison M, Burnum-Johnson, Kristin E, Waters, Katrina M, Bramer, Lisa M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1425
container_issue 3
container_start_page 1418
container_title Journal of proteome research
container_volume 18
creator Stratton, Kelly G
Webb-Robertson, Bobbie-Jo M
McCue, Lee Ann
Stanfill, Bryan
Claborne, Daniel
Godinez, Iobani
Johansen, Thomas
Thompson, Allison M
Burnum-Johnson, Kristin E
Waters, Katrina M
Bramer, Lisa M
description Prior to statistical analysis of mass spectrometry (MS) data, quality control (QC) of the identified biomolecule peak intensities is imperative for reducing process-based sources of variation and extreme biological outliers. Without this step, statistical results can be biased. Additionally, liquid chromatography–MS proteomics data present inherent challenges due to large amounts of missing data that require special consideration during statistical analysis. While a number of R packages exist to address these challenges individually, there is no single R package that addresses all of them. We present pmartR, an open-source R package, for QC (filtering and normalization), exploratory data analysis (EDA), visualization, and statistical analysis robust to missing data. Example analysis using proteomics data from a mouse study comparing smoke exposure to control demonstrates the core functionality of the package and highlights the capabilities for handling missing data. In particular, using a combined quantitative and qualitative statistical test, 19 proteins whose statistical significance would have been missed by a quantitative test alone were identified. The pmartR package provides a single software tool for QC, EDA, and statistical comparisons of MS data that is robust to missing data and includes numerous visualization capabilities.
doi_str_mv 10.1021/acs.jproteome.8b00760
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6750869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179329583</sourcerecordid><originalsourceid>FETCH-LOGICAL-a480t-abb59cb07e631ab39435185560c82bd87f34168fca56aff13caaade385f6fe543</originalsourceid><addsrcrecordid>eNqFkUtPJCEUhYkZMz5mfoKGzMpN9UDTUJQLE20fM4lm4mtNblGgmKqiBMqk_71otx1dzQoSvns45x6E9iiZUDKlv0HHydMQfDK-MxNZE1IKsoG2KWe8YBUpv33cZcW20E6MT4RQXhL2HW0xIphkkm-jm6GDkG4O8fUIrUsLPPd9Cr7F0Df4NkFyMTkdsfUBX0GM-HYwOgOdSWFRnEA0DT5xvvUPTkOLTyHBD7RpoY3m5-rcRffnZ3fzP8Xlv4u_8-PLAmaSpALqmle6JqURjELNqhnjVHIuiJbTupGlZTMqpNXABVhLmQaAxmTXVljDZ2wXHS11h7HuTKNNNg6tGoLLkRbKg1NfX3r3qB78ixIlJ1JUWeDXUsDnjCpql4x-1L7vc0JFOSmzoQwdrH4J_nk0ManORW3aFnrjx6imtKzYtOKSZZQvUR18jMHYtRdK1FtpKpem1qWpVWl5bv9zkPXUR0sZoEvgfd6Poc97_Y_oK7ZLqYI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179329583</pqid></control><display><type>article</type><title>pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data</title><source>MEDLINE</source><source>ACS Publications</source><creator>Stratton, Kelly G ; Webb-Robertson, Bobbie-Jo M ; McCue, Lee Ann ; Stanfill, Bryan ; Claborne, Daniel ; Godinez, Iobani ; Johansen, Thomas ; Thompson, Allison M ; Burnum-Johnson, Kristin E ; Waters, Katrina M ; Bramer, Lisa M</creator><creatorcontrib>Stratton, Kelly G ; Webb-Robertson, Bobbie-Jo M ; McCue, Lee Ann ; Stanfill, Bryan ; Claborne, Daniel ; Godinez, Iobani ; Johansen, Thomas ; Thompson, Allison M ; Burnum-Johnson, Kristin E ; Waters, Katrina M ; Bramer, Lisa M ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Prior to statistical analysis of mass spectrometry (MS) data, quality control (QC) of the identified biomolecule peak intensities is imperative for reducing process-based sources of variation and extreme biological outliers. Without this step, statistical results can be biased. Additionally, liquid chromatography–MS proteomics data present inherent challenges due to large amounts of missing data that require special consideration during statistical analysis. While a number of R packages exist to address these challenges individually, there is no single R package that addresses all of them. We present pmartR, an open-source R package, for QC (filtering and normalization), exploratory data analysis (EDA), visualization, and statistical analysis robust to missing data. Example analysis using proteomics data from a mouse study comparing smoke exposure to control demonstrates the core functionality of the package and highlights the capabilities for handling missing data. In particular, using a combined quantitative and qualitative statistical test, 19 proteins whose statistical significance would have been missed by a quantitative test alone were identified. The pmartR package provides a single software tool for QC, EDA, and statistical comparisons of MS data that is robust to missing data and includes numerous visualization capabilities.</description><identifier>ISSN: 1535-3893</identifier><identifier>ISSN: 1535-3907</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.8b00760</identifier><identifier>PMID: 30638385</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Chromatography, Liquid - methods ; Chromatography, Liquid - statistics &amp; numerical data ; Data Interpretation, Statistical ; Mass Spectrometry - methods ; Mass Spectrometry - statistics &amp; numerical data ; Mice ; Proteins - chemistry ; Proteins - isolation &amp; purification ; Proteomics - methods ; Proteomics - statistics &amp; numerical data ; Quality Control ; Technical Note</subject><ispartof>Journal of proteome research, 2019-03, Vol.18 (3), p.1418-1425</ispartof><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a480t-abb59cb07e631ab39435185560c82bd87f34168fca56aff13caaade385f6fe543</citedby><cites>FETCH-LOGICAL-a480t-abb59cb07e631ab39435185560c82bd87f34168fca56aff13caaade385f6fe543</cites><orcidid>0000-0003-4696-5396 ; 0000-0003-4456-517X ; 0000-0001-8808-6248 ; 0000-0002-1721-9688 ; 0000-0002-4744-2397 ; 0000-0002-8384-1926 ; 0000-0002-2722-4149 ; 0000-0001-5293-3628 ; 0000-0002-9791-4444 ; 0000-0003-0612-5333 ; 0000-0002-1710-9219 ; 000000034456517X ; 0000000217109219 ; 0000000306125333 ; 0000000217219688 ; 0000000188086248 ; 0000000227224149 ; 0000000283841926 ; 0000000346965396 ; 0000000152933628 ; 0000000297914444 ; 0000000247442397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.8b00760$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.8b00760$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30638385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1507351$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stratton, Kelly G</creatorcontrib><creatorcontrib>Webb-Robertson, Bobbie-Jo M</creatorcontrib><creatorcontrib>McCue, Lee Ann</creatorcontrib><creatorcontrib>Stanfill, Bryan</creatorcontrib><creatorcontrib>Claborne, Daniel</creatorcontrib><creatorcontrib>Godinez, Iobani</creatorcontrib><creatorcontrib>Johansen, Thomas</creatorcontrib><creatorcontrib>Thompson, Allison M</creatorcontrib><creatorcontrib>Burnum-Johnson, Kristin E</creatorcontrib><creatorcontrib>Waters, Katrina M</creatorcontrib><creatorcontrib>Bramer, Lisa M</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Prior to statistical analysis of mass spectrometry (MS) data, quality control (QC) of the identified biomolecule peak intensities is imperative for reducing process-based sources of variation and extreme biological outliers. Without this step, statistical results can be biased. Additionally, liquid chromatography–MS proteomics data present inherent challenges due to large amounts of missing data that require special consideration during statistical analysis. While a number of R packages exist to address these challenges individually, there is no single R package that addresses all of them. We present pmartR, an open-source R package, for QC (filtering and normalization), exploratory data analysis (EDA), visualization, and statistical analysis robust to missing data. Example analysis using proteomics data from a mouse study comparing smoke exposure to control demonstrates the core functionality of the package and highlights the capabilities for handling missing data. In particular, using a combined quantitative and qualitative statistical test, 19 proteins whose statistical significance would have been missed by a quantitative test alone were identified. The pmartR package provides a single software tool for QC, EDA, and statistical comparisons of MS data that is robust to missing data and includes numerous visualization capabilities.</description><subject>Animals</subject><subject>Chromatography, Liquid - methods</subject><subject>Chromatography, Liquid - statistics &amp; numerical data</subject><subject>Data Interpretation, Statistical</subject><subject>Mass Spectrometry - methods</subject><subject>Mass Spectrometry - statistics &amp; numerical data</subject><subject>Mice</subject><subject>Proteins - chemistry</subject><subject>Proteins - isolation &amp; purification</subject><subject>Proteomics - methods</subject><subject>Proteomics - statistics &amp; numerical data</subject><subject>Quality Control</subject><subject>Technical Note</subject><issn>1535-3893</issn><issn>1535-3907</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtPJCEUhYkZMz5mfoKGzMpN9UDTUJQLE20fM4lm4mtNblGgmKqiBMqk_71otx1dzQoSvns45x6E9iiZUDKlv0HHydMQfDK-MxNZE1IKsoG2KWe8YBUpv33cZcW20E6MT4RQXhL2HW0xIphkkm-jm6GDkG4O8fUIrUsLPPd9Cr7F0Df4NkFyMTkdsfUBX0GM-HYwOgOdSWFRnEA0DT5xvvUPTkOLTyHBD7RpoY3m5-rcRffnZ3fzP8Xlv4u_8-PLAmaSpALqmle6JqURjELNqhnjVHIuiJbTupGlZTMqpNXABVhLmQaAxmTXVljDZ2wXHS11h7HuTKNNNg6tGoLLkRbKg1NfX3r3qB78ixIlJ1JUWeDXUsDnjCpql4x-1L7vc0JFOSmzoQwdrH4J_nk0ManORW3aFnrjx6imtKzYtOKSZZQvUR18jMHYtRdK1FtpKpem1qWpVWl5bv9zkPXUR0sZoEvgfd6Poc97_Y_oK7ZLqYI</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Stratton, Kelly G</creator><creator>Webb-Robertson, Bobbie-Jo M</creator><creator>McCue, Lee Ann</creator><creator>Stanfill, Bryan</creator><creator>Claborne, Daniel</creator><creator>Godinez, Iobani</creator><creator>Johansen, Thomas</creator><creator>Thompson, Allison M</creator><creator>Burnum-Johnson, Kristin E</creator><creator>Waters, Katrina M</creator><creator>Bramer, Lisa M</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4696-5396</orcidid><orcidid>https://orcid.org/0000-0003-4456-517X</orcidid><orcidid>https://orcid.org/0000-0001-8808-6248</orcidid><orcidid>https://orcid.org/0000-0002-1721-9688</orcidid><orcidid>https://orcid.org/0000-0002-4744-2397</orcidid><orcidid>https://orcid.org/0000-0002-8384-1926</orcidid><orcidid>https://orcid.org/0000-0002-2722-4149</orcidid><orcidid>https://orcid.org/0000-0001-5293-3628</orcidid><orcidid>https://orcid.org/0000-0002-9791-4444</orcidid><orcidid>https://orcid.org/0000-0003-0612-5333</orcidid><orcidid>https://orcid.org/0000-0002-1710-9219</orcidid><orcidid>https://orcid.org/000000034456517X</orcidid><orcidid>https://orcid.org/0000000217109219</orcidid><orcidid>https://orcid.org/0000000306125333</orcidid><orcidid>https://orcid.org/0000000217219688</orcidid><orcidid>https://orcid.org/0000000188086248</orcidid><orcidid>https://orcid.org/0000000227224149</orcidid><orcidid>https://orcid.org/0000000283841926</orcidid><orcidid>https://orcid.org/0000000346965396</orcidid><orcidid>https://orcid.org/0000000152933628</orcidid><orcidid>https://orcid.org/0000000297914444</orcidid><orcidid>https://orcid.org/0000000247442397</orcidid></search><sort><creationdate>20190301</creationdate><title>pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data</title><author>Stratton, Kelly G ; Webb-Robertson, Bobbie-Jo M ; McCue, Lee Ann ; Stanfill, Bryan ; Claborne, Daniel ; Godinez, Iobani ; Johansen, Thomas ; Thompson, Allison M ; Burnum-Johnson, Kristin E ; Waters, Katrina M ; Bramer, Lisa M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a480t-abb59cb07e631ab39435185560c82bd87f34168fca56aff13caaade385f6fe543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Chromatography, Liquid - methods</topic><topic>Chromatography, Liquid - statistics &amp; numerical data</topic><topic>Data Interpretation, Statistical</topic><topic>Mass Spectrometry - methods</topic><topic>Mass Spectrometry - statistics &amp; numerical data</topic><topic>Mice</topic><topic>Proteins - chemistry</topic><topic>Proteins - isolation &amp; purification</topic><topic>Proteomics - methods</topic><topic>Proteomics - statistics &amp; numerical data</topic><topic>Quality Control</topic><topic>Technical Note</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stratton, Kelly G</creatorcontrib><creatorcontrib>Webb-Robertson, Bobbie-Jo M</creatorcontrib><creatorcontrib>McCue, Lee Ann</creatorcontrib><creatorcontrib>Stanfill, Bryan</creatorcontrib><creatorcontrib>Claborne, Daniel</creatorcontrib><creatorcontrib>Godinez, Iobani</creatorcontrib><creatorcontrib>Johansen, Thomas</creatorcontrib><creatorcontrib>Thompson, Allison M</creatorcontrib><creatorcontrib>Burnum-Johnson, Kristin E</creatorcontrib><creatorcontrib>Waters, Katrina M</creatorcontrib><creatorcontrib>Bramer, Lisa M</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stratton, Kelly G</au><au>Webb-Robertson, Bobbie-Jo M</au><au>McCue, Lee Ann</au><au>Stanfill, Bryan</au><au>Claborne, Daniel</au><au>Godinez, Iobani</au><au>Johansen, Thomas</au><au>Thompson, Allison M</au><au>Burnum-Johnson, Kristin E</au><au>Waters, Katrina M</au><au>Bramer, Lisa M</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>18</volume><issue>3</issue><spage>1418</spage><epage>1425</epage><pages>1418-1425</pages><issn>1535-3893</issn><issn>1535-3907</issn><eissn>1535-3907</eissn><abstract>Prior to statistical analysis of mass spectrometry (MS) data, quality control (QC) of the identified biomolecule peak intensities is imperative for reducing process-based sources of variation and extreme biological outliers. Without this step, statistical results can be biased. Additionally, liquid chromatography–MS proteomics data present inherent challenges due to large amounts of missing data that require special consideration during statistical analysis. While a number of R packages exist to address these challenges individually, there is no single R package that addresses all of them. We present pmartR, an open-source R package, for QC (filtering and normalization), exploratory data analysis (EDA), visualization, and statistical analysis robust to missing data. Example analysis using proteomics data from a mouse study comparing smoke exposure to control demonstrates the core functionality of the package and highlights the capabilities for handling missing data. In particular, using a combined quantitative and qualitative statistical test, 19 proteins whose statistical significance would have been missed by a quantitative test alone were identified. The pmartR package provides a single software tool for QC, EDA, and statistical comparisons of MS data that is robust to missing data and includes numerous visualization capabilities.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30638385</pmid><doi>10.1021/acs.jproteome.8b00760</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4696-5396</orcidid><orcidid>https://orcid.org/0000-0003-4456-517X</orcidid><orcidid>https://orcid.org/0000-0001-8808-6248</orcidid><orcidid>https://orcid.org/0000-0002-1721-9688</orcidid><orcidid>https://orcid.org/0000-0002-4744-2397</orcidid><orcidid>https://orcid.org/0000-0002-8384-1926</orcidid><orcidid>https://orcid.org/0000-0002-2722-4149</orcidid><orcidid>https://orcid.org/0000-0001-5293-3628</orcidid><orcidid>https://orcid.org/0000-0002-9791-4444</orcidid><orcidid>https://orcid.org/0000-0003-0612-5333</orcidid><orcidid>https://orcid.org/0000-0002-1710-9219</orcidid><orcidid>https://orcid.org/000000034456517X</orcidid><orcidid>https://orcid.org/0000000217109219</orcidid><orcidid>https://orcid.org/0000000306125333</orcidid><orcidid>https://orcid.org/0000000217219688</orcidid><orcidid>https://orcid.org/0000000188086248</orcidid><orcidid>https://orcid.org/0000000227224149</orcidid><orcidid>https://orcid.org/0000000283841926</orcidid><orcidid>https://orcid.org/0000000346965396</orcidid><orcidid>https://orcid.org/0000000152933628</orcidid><orcidid>https://orcid.org/0000000297914444</orcidid><orcidid>https://orcid.org/0000000247442397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2019-03, Vol.18 (3), p.1418-1425
issn 1535-3893
1535-3907
1535-3907
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6750869
source MEDLINE; ACS Publications
subjects Animals
Chromatography, Liquid - methods
Chromatography, Liquid - statistics & numerical data
Data Interpretation, Statistical
Mass Spectrometry - methods
Mass Spectrometry - statistics & numerical data
Mice
Proteins - chemistry
Proteins - isolation & purification
Proteomics - methods
Proteomics - statistics & numerical data
Quality Control
Technical Note
title pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pmartR:%20Quality%20Control%20and%20Statistics%20for%20Mass%20Spectrometry-Based%20Biological%20Data&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Stratton,%20Kelly%20G&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2019-03-01&rft.volume=18&rft.issue=3&rft.spage=1418&rft.epage=1425&rft.pages=1418-1425&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.8b00760&rft_dat=%3Cproquest_pubme%3E2179329583%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179329583&rft_id=info:pmid/30638385&rfr_iscdi=true