Solving the Trivial Crossing Problem While Preserving the Nodal Symmetry of the Wave Function

In an adiabatic mixed quantum-classical simulation, the avoided crossing of weakly coupled eigenstates can lead to unphysical discontinuities in wave function dynamics, otherwise known as the trivial crossing problem. A standard solution to the trivial crossing problem eliminates spatial discontinui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2019-08, Vol.15 (8), p.4332-4343
Hauptverfasser: Lee, Elizabeth M. Y, Willard, Adam P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4343
container_issue 8
container_start_page 4332
container_title Journal of chemical theory and computation
container_volume 15
creator Lee, Elizabeth M. Y
Willard, Adam P
description In an adiabatic mixed quantum-classical simulation, the avoided crossing of weakly coupled eigenstates can lead to unphysical discontinuities in wave function dynamics, otherwise known as the trivial crossing problem. A standard solution to the trivial crossing problem eliminates spatial discontinuities in wave function dynamics by imposing changes to the eigenstate of the wave function. In this paper, we show that this solution has the side effect of introducing transient discontinuities in the nodal symmetry of the wave function. We present an alternative solution to the trivial crossing problem that preserves both the spatial and nodal structure of the adiabatic wave function. By considering a model of exciton dynamics on conjugated polymer systems, we show that failure to preserve wave function symmetry yields exciton dynamics that depends unphysically on polymer system size. We demonstrate that our symmetry-preserving solution to the trivial crossing problem yields more realistic dynamics and can thus improve the accuracy of simulations of larger systems that are prone to the trivial crossing problem.
doi_str_mv 10.1021/acs.jctc.9b00302
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6750758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2279794979</sourcerecordid><originalsourceid>FETCH-LOGICAL-a488t-cc1c834c05e63c2f84059f3dde3c00b6a71c4098782066519c53bafffa48a85d3</originalsourceid><addsrcrecordid>eNp1kc9rFDEUx4MotlbvnmTQiwd3zY_JJLkIslgVigqt9CQh8ybTzTKTtElmYf97M93tooKBkOTl830veV-EXhK8JJiS9wbScgMZlqrFmGH6CJ0SXquFamjz-Lgn8gQ9S2lTEFZT9hSdMMIwV0qcol-XYdg6f1Plta2uots6M1SrGFKagz9iaAc7VtdrN9hyssnGI_0tdIW93I2jzXFXhf4-em22tjqfPGQX_HP0pDdDsi8O6xn6ef7pavVlcfH989fVx4uFqaXMCwACktWAuW0Y0F7W5XU96zrLAOO2MYJAjZUUkuKm4UQBZ63p-77IjeQdO0Mf9nlvp3a0HVifoxn0bXSjiTsdjNN_33i31jdhqxvBseCyJHi9TxBSdjqByxbWELy3kDXhXFDCCvT2UCWGu8mmrEeXwA6D8TZMSVPKpajnUdA3_6CbMEVfelAooYSqyywU3lMwNzza_vhigvVssC4G69lgfTC4SF79-dOj4MHRArzbA_fSh6L_zfcbVo2yHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2279794979</pqid></control><display><type>article</type><title>Solving the Trivial Crossing Problem While Preserving the Nodal Symmetry of the Wave Function</title><source>American Chemical Society Publications</source><creator>Lee, Elizabeth M. Y ; Willard, Adam P</creator><creatorcontrib>Lee, Elizabeth M. Y ; Willard, Adam P ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>In an adiabatic mixed quantum-classical simulation, the avoided crossing of weakly coupled eigenstates can lead to unphysical discontinuities in wave function dynamics, otherwise known as the trivial crossing problem. A standard solution to the trivial crossing problem eliminates spatial discontinuities in wave function dynamics by imposing changes to the eigenstate of the wave function. In this paper, we show that this solution has the side effect of introducing transient discontinuities in the nodal symmetry of the wave function. We present an alternative solution to the trivial crossing problem that preserves both the spatial and nodal structure of the adiabatic wave function. By considering a model of exciton dynamics on conjugated polymer systems, we show that failure to preserve wave function symmetry yields exciton dynamics that depends unphysically on polymer system size. We demonstrate that our symmetry-preserving solution to the trivial crossing problem yields more realistic dynamics and can thus improve the accuracy of simulations of larger systems that are prone to the trivial crossing problem.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.9b00302</identifier><identifier>PMID: 31305997</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adiabatic flow ; ATOMIC AND MOLECULAR PHYSICS ; Computer simulation ; Dynamics ; Eigenvectors ; Electrons ; Excitons ; Helium ; Polymers ; Symmetry</subject><ispartof>Journal of chemical theory and computation, 2019-08, Vol.15 (8), p.4332-4343</ispartof><rights>Copyright American Chemical Society Aug 13, 2019</rights><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a488t-cc1c834c05e63c2f84059f3dde3c00b6a71c4098782066519c53bafffa48a85d3</citedby><cites>FETCH-LOGICAL-a488t-cc1c834c05e63c2f84059f3dde3c00b6a71c4098782066519c53bafffa48a85d3</cites><orcidid>0000-0001-9143-3140 ; 0000-0002-0934-4737 ; 0000000191433140 ; 0000000209344737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.9b00302$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.9b00302$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31305997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1557213$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Elizabeth M. Y</creatorcontrib><creatorcontrib>Willard, Adam P</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Solving the Trivial Crossing Problem While Preserving the Nodal Symmetry of the Wave Function</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>In an adiabatic mixed quantum-classical simulation, the avoided crossing of weakly coupled eigenstates can lead to unphysical discontinuities in wave function dynamics, otherwise known as the trivial crossing problem. A standard solution to the trivial crossing problem eliminates spatial discontinuities in wave function dynamics by imposing changes to the eigenstate of the wave function. In this paper, we show that this solution has the side effect of introducing transient discontinuities in the nodal symmetry of the wave function. We present an alternative solution to the trivial crossing problem that preserves both the spatial and nodal structure of the adiabatic wave function. By considering a model of exciton dynamics on conjugated polymer systems, we show that failure to preserve wave function symmetry yields exciton dynamics that depends unphysically on polymer system size. We demonstrate that our symmetry-preserving solution to the trivial crossing problem yields more realistic dynamics and can thus improve the accuracy of simulations of larger systems that are prone to the trivial crossing problem.</description><subject>Adiabatic flow</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Computer simulation</subject><subject>Dynamics</subject><subject>Eigenvectors</subject><subject>Electrons</subject><subject>Excitons</subject><subject>Helium</subject><subject>Polymers</subject><subject>Symmetry</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc9rFDEUx4MotlbvnmTQiwd3zY_JJLkIslgVigqt9CQh8ybTzTKTtElmYf97M93tooKBkOTl830veV-EXhK8JJiS9wbScgMZlqrFmGH6CJ0SXquFamjz-Lgn8gQ9S2lTEFZT9hSdMMIwV0qcol-XYdg6f1Plta2uots6M1SrGFKagz9iaAc7VtdrN9hyssnGI_0tdIW93I2jzXFXhf4-em22tjqfPGQX_HP0pDdDsi8O6xn6ef7pavVlcfH989fVx4uFqaXMCwACktWAuW0Y0F7W5XU96zrLAOO2MYJAjZUUkuKm4UQBZ63p-77IjeQdO0Mf9nlvp3a0HVifoxn0bXSjiTsdjNN_33i31jdhqxvBseCyJHi9TxBSdjqByxbWELy3kDXhXFDCCvT2UCWGu8mmrEeXwA6D8TZMSVPKpajnUdA3_6CbMEVfelAooYSqyywU3lMwNzza_vhigvVssC4G69lgfTC4SF79-dOj4MHRArzbA_fSh6L_zfcbVo2yHQ</recordid><startdate>20190813</startdate><enddate>20190813</enddate><creator>Lee, Elizabeth M. Y</creator><creator>Willard, Adam P</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9143-3140</orcidid><orcidid>https://orcid.org/0000-0002-0934-4737</orcidid><orcidid>https://orcid.org/0000000191433140</orcidid><orcidid>https://orcid.org/0000000209344737</orcidid></search><sort><creationdate>20190813</creationdate><title>Solving the Trivial Crossing Problem While Preserving the Nodal Symmetry of the Wave Function</title><author>Lee, Elizabeth M. Y ; Willard, Adam P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a488t-cc1c834c05e63c2f84059f3dde3c00b6a71c4098782066519c53bafffa48a85d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adiabatic flow</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Computer simulation</topic><topic>Dynamics</topic><topic>Eigenvectors</topic><topic>Electrons</topic><topic>Excitons</topic><topic>Helium</topic><topic>Polymers</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Elizabeth M. Y</creatorcontrib><creatorcontrib>Willard, Adam P</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Elizabeth M. Y</au><au>Willard, Adam P</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the Trivial Crossing Problem While Preserving the Nodal Symmetry of the Wave Function</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2019-08-13</date><risdate>2019</risdate><volume>15</volume><issue>8</issue><spage>4332</spage><epage>4343</epage><pages>4332-4343</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>In an adiabatic mixed quantum-classical simulation, the avoided crossing of weakly coupled eigenstates can lead to unphysical discontinuities in wave function dynamics, otherwise known as the trivial crossing problem. A standard solution to the trivial crossing problem eliminates spatial discontinuities in wave function dynamics by imposing changes to the eigenstate of the wave function. In this paper, we show that this solution has the side effect of introducing transient discontinuities in the nodal symmetry of the wave function. We present an alternative solution to the trivial crossing problem that preserves both the spatial and nodal structure of the adiabatic wave function. By considering a model of exciton dynamics on conjugated polymer systems, we show that failure to preserve wave function symmetry yields exciton dynamics that depends unphysically on polymer system size. We demonstrate that our symmetry-preserving solution to the trivial crossing problem yields more realistic dynamics and can thus improve the accuracy of simulations of larger systems that are prone to the trivial crossing problem.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31305997</pmid><doi>10.1021/acs.jctc.9b00302</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9143-3140</orcidid><orcidid>https://orcid.org/0000-0002-0934-4737</orcidid><orcidid>https://orcid.org/0000000191433140</orcidid><orcidid>https://orcid.org/0000000209344737</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2019-08, Vol.15 (8), p.4332-4343
issn 1549-9618
1549-9626
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6750758
source American Chemical Society Publications
subjects Adiabatic flow
ATOMIC AND MOLECULAR PHYSICS
Computer simulation
Dynamics
Eigenvectors
Electrons
Excitons
Helium
Polymers
Symmetry
title Solving the Trivial Crossing Problem While Preserving the Nodal Symmetry of the Wave Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20Trivial%20Crossing%20Problem%20While%20Preserving%20the%20Nodal%20Symmetry%20of%20the%20Wave%20Function&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Lee,%20Elizabeth%20M.%20Y&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2019-08-13&rft.volume=15&rft.issue=8&rft.spage=4332&rft.epage=4343&rft.pages=4332-4343&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.9b00302&rft_dat=%3Cproquest_pubme%3E2279794979%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2279794979&rft_id=info:pmid/31305997&rfr_iscdi=true