Anaerobic growth of Saccharomyces cerevisiae CEN.PK113-7D does not depend on synthesis or supplementation of unsaturated fatty acids

ABSTRACT In Saccharomyces cerevisiae, acyl-coenzyme A desaturation by Ole1 requires molecular oxygen. Tween 80, a poly-ethoxylated sorbitan-oleate ester, is therefore routinely included in anaerobic growth media as a source of unsaturated fatty acids (UFAs). During optimization of protocols for anae...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS yeast research 2019-09, Vol.19 (6), p.1
Hauptverfasser: Dekker, Wijb J C, Wiersma, Sanne J, Bouwknegt, Jonna, Mooiman, Christiaan, Pronk, Jack T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1
container_title FEMS yeast research
container_volume 19
creator Dekker, Wijb J C
Wiersma, Sanne J
Bouwknegt, Jonna
Mooiman, Christiaan
Pronk, Jack T
description ABSTRACT In Saccharomyces cerevisiae, acyl-coenzyme A desaturation by Ole1 requires molecular oxygen. Tween 80, a poly-ethoxylated sorbitan-oleate ester, is therefore routinely included in anaerobic growth media as a source of unsaturated fatty acids (UFAs). During optimization of protocols for anaerobic bioreactor cultivation of this yeast, we consistently observed growth of the laboratory strain S. cerevisiae CEN.PK113-7D in media that contained the anaerobic growth factor ergosterol, but lacked UFAs. To minimize oxygen contamination, additional experiments were performed in an anaerobic chamber. After anaerobic precultivation without ergosterol and Tween 80, strain CEN.PK113-7D and a congenic ole1Δ strain both grew during three consecutive batch-cultivation cycles on medium that contained ergosterol, but not Tween 80. During these three cycles, no UFAs were detected in biomass of cultures grown without Tween 80, while contents of C10 to C14 saturated fatty acids were higher than in biomass from Tween 80-supplemented cultures. In contrast to its UFA-independent anaerobic growth, aerobic growth of the ole1Δ strain strictly depended on Tween 80 supplementation. This study shows that the requirement of anaerobic cultures of S. cerevisiae for UFA supplementation is not absolute and provides a basis for further research on the effects of lipid composition on yeast viability and robustness. Saccharomyces cerevisiae CEN.PK113-7D and a congenic ole1 null mutant grow anaerobically without supplementation of unsaturated fatty acids, which have long been considered as essential anaerobic growth factors for this yeast.
doi_str_mv 10.1093/femsyr/foz060
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6750169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615911795</galeid><oup_id>10.1093/femsyr/foz060</oup_id><sourcerecordid>A615911795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-7a09f0a7f563f52c73d319890feed845b297719c1dc5f0185bb46a85fa716e3a3</originalsourceid><addsrcrecordid>eNqFksFvFCEUxidGY2v16NWQeNHDtDAMsFxMNmvVxkaN1TNhmccuzQxMgamuZ_9wabZuXWMiHCC83_uAL19VPSX4mGBJTywMaRNPbPiBOb5XHRLGRU0ob-_v9owfVI9SusSYCIxnD6sDStqGcUwPq59zryGGpTNoFcO3vEbBogttzFrHMGwMJGQgwrVLTgNanH44_vSeEFqL16gLpehDRh2M4DsUPEobn9eQXEIhojSNYw8D-KyzK8UiPPmk8xR1hg5ZnfMGaeO69Lh6YHWf4MntelR9fXP6ZfGuPv_49mwxP68Na2WuhcbSYi0s49SyxgjaUSJnEluAbtayZSOFINKQzjCLyYwtly3XM2a1IByopkfVq63uOC0H6Ex5WtS9GqMbdNyooJ3ar3i3VqtwrbhgmHBZBF7cCsRwNUHKanDJQN9rD2FKqmlkIyUXmBT0-V_oZZiiL99TTYvLYC1t7qiV7kE5b0O519yIqjknTBIiJCvU8T-oMjsYnAkerCvnew0v9xoKk-F7XukpJXV28XmfrbesiSGlCHbnB8HqJmJqGzG1jVjhn_1p4o7-nak7k8I0_kfrFzrS3DU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400005432</pqid></control><display><type>article</type><title>Anaerobic growth of Saccharomyces cerevisiae CEN.PK113-7D does not depend on synthesis or supplementation of unsaturated fatty acids</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Dekker, Wijb J C ; Wiersma, Sanne J ; Bouwknegt, Jonna ; Mooiman, Christiaan ; Pronk, Jack T</creator><creatorcontrib>Dekker, Wijb J C ; Wiersma, Sanne J ; Bouwknegt, Jonna ; Mooiman, Christiaan ; Pronk, Jack T</creatorcontrib><description>ABSTRACT In Saccharomyces cerevisiae, acyl-coenzyme A desaturation by Ole1 requires molecular oxygen. Tween 80, a poly-ethoxylated sorbitan-oleate ester, is therefore routinely included in anaerobic growth media as a source of unsaturated fatty acids (UFAs). During optimization of protocols for anaerobic bioreactor cultivation of this yeast, we consistently observed growth of the laboratory strain S. cerevisiae CEN.PK113-7D in media that contained the anaerobic growth factor ergosterol, but lacked UFAs. To minimize oxygen contamination, additional experiments were performed in an anaerobic chamber. After anaerobic precultivation without ergosterol and Tween 80, strain CEN.PK113-7D and a congenic ole1Δ strain both grew during three consecutive batch-cultivation cycles on medium that contained ergosterol, but not Tween 80. During these three cycles, no UFAs were detected in biomass of cultures grown without Tween 80, while contents of C10 to C14 saturated fatty acids were higher than in biomass from Tween 80-supplemented cultures. In contrast to its UFA-independent anaerobic growth, aerobic growth of the ole1Δ strain strictly depended on Tween 80 supplementation. This study shows that the requirement of anaerobic cultures of S. cerevisiae for UFA supplementation is not absolute and provides a basis for further research on the effects of lipid composition on yeast viability and robustness. Saccharomyces cerevisiae CEN.PK113-7D and a congenic ole1 null mutant grow anaerobically without supplementation of unsaturated fatty acids, which have long been considered as essential anaerobic growth factors for this yeast.</description><identifier>ISSN: 1567-1356</identifier><identifier>EISSN: 1567-1364</identifier><identifier>DOI: 10.1093/femsyr/foz060</identifier><identifier>PMID: 31425603</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Biomass ; Bioreactors ; Brewer's yeast ; Coenzyme A ; Contamination ; Culture media ; Ergosterol ; Fatty acids ; Growth ; Lipid composition ; Oxygen ; Physiological aspects ; Saccharomyces cerevisiae ; Sorbitan ; Supplements ; Unsaturated fatty acids ; Yeast</subject><ispartof>FEMS yeast research, 2019-09, Vol.19 (6), p.1</ispartof><rights>FEMS 2019. 2019</rights><rights>FEMS 2019.</rights><rights>COPYRIGHT 2019 Oxford University Press</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of FEMS. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-7a09f0a7f563f52c73d319890feed845b297719c1dc5f0185bb46a85fa716e3a3</citedby><cites>FETCH-LOGICAL-c549t-7a09f0a7f563f52c73d319890feed845b297719c1dc5f0185bb46a85fa716e3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750169/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750169/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31425603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dekker, Wijb J C</creatorcontrib><creatorcontrib>Wiersma, Sanne J</creatorcontrib><creatorcontrib>Bouwknegt, Jonna</creatorcontrib><creatorcontrib>Mooiman, Christiaan</creatorcontrib><creatorcontrib>Pronk, Jack T</creatorcontrib><title>Anaerobic growth of Saccharomyces cerevisiae CEN.PK113-7D does not depend on synthesis or supplementation of unsaturated fatty acids</title><title>FEMS yeast research</title><addtitle>FEMS Yeast Res</addtitle><description>ABSTRACT In Saccharomyces cerevisiae, acyl-coenzyme A desaturation by Ole1 requires molecular oxygen. Tween 80, a poly-ethoxylated sorbitan-oleate ester, is therefore routinely included in anaerobic growth media as a source of unsaturated fatty acids (UFAs). During optimization of protocols for anaerobic bioreactor cultivation of this yeast, we consistently observed growth of the laboratory strain S. cerevisiae CEN.PK113-7D in media that contained the anaerobic growth factor ergosterol, but lacked UFAs. To minimize oxygen contamination, additional experiments were performed in an anaerobic chamber. After anaerobic precultivation without ergosterol and Tween 80, strain CEN.PK113-7D and a congenic ole1Δ strain both grew during three consecutive batch-cultivation cycles on medium that contained ergosterol, but not Tween 80. During these three cycles, no UFAs were detected in biomass of cultures grown without Tween 80, while contents of C10 to C14 saturated fatty acids were higher than in biomass from Tween 80-supplemented cultures. In contrast to its UFA-independent anaerobic growth, aerobic growth of the ole1Δ strain strictly depended on Tween 80 supplementation. This study shows that the requirement of anaerobic cultures of S. cerevisiae for UFA supplementation is not absolute and provides a basis for further research on the effects of lipid composition on yeast viability and robustness. Saccharomyces cerevisiae CEN.PK113-7D and a congenic ole1 null mutant grow anaerobically without supplementation of unsaturated fatty acids, which have long been considered as essential anaerobic growth factors for this yeast.</description><subject>Biomass</subject><subject>Bioreactors</subject><subject>Brewer's yeast</subject><subject>Coenzyme A</subject><subject>Contamination</subject><subject>Culture media</subject><subject>Ergosterol</subject><subject>Fatty acids</subject><subject>Growth</subject><subject>Lipid composition</subject><subject>Oxygen</subject><subject>Physiological aspects</subject><subject>Saccharomyces cerevisiae</subject><subject>Sorbitan</subject><subject>Supplements</subject><subject>Unsaturated fatty acids</subject><subject>Yeast</subject><issn>1567-1356</issn><issn>1567-1364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFksFvFCEUxidGY2v16NWQeNHDtDAMsFxMNmvVxkaN1TNhmccuzQxMgamuZ_9wabZuXWMiHCC83_uAL19VPSX4mGBJTywMaRNPbPiBOb5XHRLGRU0ob-_v9owfVI9SusSYCIxnD6sDStqGcUwPq59zryGGpTNoFcO3vEbBogttzFrHMGwMJGQgwrVLTgNanH44_vSeEFqL16gLpehDRh2M4DsUPEobn9eQXEIhojSNYw8D-KyzK8UiPPmk8xR1hg5ZnfMGaeO69Lh6YHWf4MntelR9fXP6ZfGuPv_49mwxP68Na2WuhcbSYi0s49SyxgjaUSJnEluAbtayZSOFINKQzjCLyYwtly3XM2a1IByopkfVq63uOC0H6Ex5WtS9GqMbdNyooJ3ar3i3VqtwrbhgmHBZBF7cCsRwNUHKanDJQN9rD2FKqmlkIyUXmBT0-V_oZZiiL99TTYvLYC1t7qiV7kE5b0O519yIqjknTBIiJCvU8T-oMjsYnAkerCvnew0v9xoKk-F7XukpJXV28XmfrbesiSGlCHbnB8HqJmJqGzG1jVjhn_1p4o7-nak7k8I0_kfrFzrS3DU</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Dekker, Wijb J C</creator><creator>Wiersma, Sanne J</creator><creator>Bouwknegt, Jonna</creator><creator>Mooiman, Christiaan</creator><creator>Pronk, Jack T</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190901</creationdate><title>Anaerobic growth of Saccharomyces cerevisiae CEN.PK113-7D does not depend on synthesis or supplementation of unsaturated fatty acids</title><author>Dekker, Wijb J C ; Wiersma, Sanne J ; Bouwknegt, Jonna ; Mooiman, Christiaan ; Pronk, Jack T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-7a09f0a7f563f52c73d319890feed845b297719c1dc5f0185bb46a85fa716e3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomass</topic><topic>Bioreactors</topic><topic>Brewer's yeast</topic><topic>Coenzyme A</topic><topic>Contamination</topic><topic>Culture media</topic><topic>Ergosterol</topic><topic>Fatty acids</topic><topic>Growth</topic><topic>Lipid composition</topic><topic>Oxygen</topic><topic>Physiological aspects</topic><topic>Saccharomyces cerevisiae</topic><topic>Sorbitan</topic><topic>Supplements</topic><topic>Unsaturated fatty acids</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dekker, Wijb J C</creatorcontrib><creatorcontrib>Wiersma, Sanne J</creatorcontrib><creatorcontrib>Bouwknegt, Jonna</creatorcontrib><creatorcontrib>Mooiman, Christiaan</creatorcontrib><creatorcontrib>Pronk, Jack T</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>FEMS yeast research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dekker, Wijb J C</au><au>Wiersma, Sanne J</au><au>Bouwknegt, Jonna</au><au>Mooiman, Christiaan</au><au>Pronk, Jack T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anaerobic growth of Saccharomyces cerevisiae CEN.PK113-7D does not depend on synthesis or supplementation of unsaturated fatty acids</atitle><jtitle>FEMS yeast research</jtitle><addtitle>FEMS Yeast Res</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>19</volume><issue>6</issue><spage>1</spage><pages>1-</pages><issn>1567-1356</issn><eissn>1567-1364</eissn><abstract>ABSTRACT In Saccharomyces cerevisiae, acyl-coenzyme A desaturation by Ole1 requires molecular oxygen. Tween 80, a poly-ethoxylated sorbitan-oleate ester, is therefore routinely included in anaerobic growth media as a source of unsaturated fatty acids (UFAs). During optimization of protocols for anaerobic bioreactor cultivation of this yeast, we consistently observed growth of the laboratory strain S. cerevisiae CEN.PK113-7D in media that contained the anaerobic growth factor ergosterol, but lacked UFAs. To minimize oxygen contamination, additional experiments were performed in an anaerobic chamber. After anaerobic precultivation without ergosterol and Tween 80, strain CEN.PK113-7D and a congenic ole1Δ strain both grew during three consecutive batch-cultivation cycles on medium that contained ergosterol, but not Tween 80. During these three cycles, no UFAs were detected in biomass of cultures grown without Tween 80, while contents of C10 to C14 saturated fatty acids were higher than in biomass from Tween 80-supplemented cultures. In contrast to its UFA-independent anaerobic growth, aerobic growth of the ole1Δ strain strictly depended on Tween 80 supplementation. This study shows that the requirement of anaerobic cultures of S. cerevisiae for UFA supplementation is not absolute and provides a basis for further research on the effects of lipid composition on yeast viability and robustness. Saccharomyces cerevisiae CEN.PK113-7D and a congenic ole1 null mutant grow anaerobically without supplementation of unsaturated fatty acids, which have long been considered as essential anaerobic growth factors for this yeast.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31425603</pmid><doi>10.1093/femsyr/foz060</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1567-1356
ispartof FEMS yeast research, 2019-09, Vol.19 (6), p.1
issn 1567-1356
1567-1364
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6750169
source Oxford Journals Open Access Collection; PubMed Central
subjects Biomass
Bioreactors
Brewer's yeast
Coenzyme A
Contamination
Culture media
Ergosterol
Fatty acids
Growth
Lipid composition
Oxygen
Physiological aspects
Saccharomyces cerevisiae
Sorbitan
Supplements
Unsaturated fatty acids
Yeast
title Anaerobic growth of Saccharomyces cerevisiae CEN.PK113-7D does not depend on synthesis or supplementation of unsaturated fatty acids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anaerobic%20growth%20of%20Saccharomyces%20cerevisiae%20CEN.PK113-7D%20does%20not%20depend%20on%20synthesis%20or%20supplementation%20of%20unsaturated%20fatty%20acids&rft.jtitle=FEMS%20yeast%20research&rft.au=Dekker,%20Wijb%20J%20C&rft.date=2019-09-01&rft.volume=19&rft.issue=6&rft.spage=1&rft.pages=1-&rft.issn=1567-1356&rft.eissn=1567-1364&rft_id=info:doi/10.1093/femsyr/foz060&rft_dat=%3Cgale_pubme%3EA615911795%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400005432&rft_id=info:pmid/31425603&rft_galeid=A615911795&rft_oup_id=10.1093/femsyr/foz060&rfr_iscdi=true