The mitochondrial retrograde signaling regulates Wnt signaling to promote tumorigenesis in colon cancer

Cancer cells are known to upregulate aerobic glycolysis to promote growth, proliferation, and survival. However, the role of mitochondrial respiration in tumorigenesis remains elusive. Here we report that inhibition of mitochondrial function by silencing TFAM, a key transcription factor essential fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2019-10, Vol.26 (10), p.1955-1969
Hauptverfasser: Wen, Yang-An, Xiong, Xiaopeng, Scott, Timothy, Li, Austin T., Wang, Chi, Weiss, Heidi L., Tan, Li, Bradford, Emily, Fan, Teresa W. M., Chandel, Navdeep S., Barrett, Terrence A., Gao, Tianyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1969
container_issue 10
container_start_page 1955
container_title Cell death and differentiation
container_volume 26
creator Wen, Yang-An
Xiong, Xiaopeng
Scott, Timothy
Li, Austin T.
Wang, Chi
Weiss, Heidi L.
Tan, Li
Bradford, Emily
Fan, Teresa W. M.
Chandel, Navdeep S.
Barrett, Terrence A.
Gao, Tianyan
description Cancer cells are known to upregulate aerobic glycolysis to promote growth, proliferation, and survival. However, the role of mitochondrial respiration in tumorigenesis remains elusive. Here we report that inhibition of mitochondrial function by silencing TFAM, a key transcription factor essential for mitochondrial DNA (mtDNA) replication and the transcription of mtDNA-encoded genes, markedly reduced tumor-initiating potential of colon cancer cells. Knockdown of TFAM significantly decreased mitochondrial respiration in colon cancer cells; however, the cellular levels of ATP remained largely unchanged as a result of increased glycolysis. This metabolic alteration rendered cancer cells highly susceptible to glucose deprivation. Interestingly, upregulation of glycolysis was independent of hypoxia-inducible factor-1 (HIF1) as TFAM knockdown cells fail to stabilize HIF1α under hypoxic conditions. Moreover, knockdown of TFAM results in decreased expression of genes-associated cancer stem cells downstream of Wnt/β-catenin signaling. Metabolic analysis reveals that the level of α-ketoglutarate (α-KG) was significantly upregulated in TFAM knockout cells. Silencing of prolyl hydroxylase domain-containing protein 2 (PHD2), a α-KG-dependent dioxyenase, rescued the expression of target genes of both HIF1α and Wnt/β-catenin. Furthermore, intestinal-specific knockout of TFAM prevents tumor formation in Apc-mutant mouse models of colon cancer. Taken together, our findings identify a novel role of mitochondria-mediated retrograde signaling in regulating Wnt signaling and tumor initiation in colon cancer.
doi_str_mv 10.1038/s41418-018-0265-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6748256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2285076042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-cae2ccb55ecb7a0bf78ae69425958b553a6bbc11b62522a145c9a983096d98e43</originalsourceid><addsrcrecordid>eNp1kUtLxDAUhYMovn-AGym4rubdZiOI-ALBjeIypJk7nUibjEkq-O_NMD4XLm4Szj35bsJB6IjgU4JZe5Y44aSt8aqoFLXcQLuEN7IWHLPNcmYC1wrzZgftpfSCMZaNkttoh2EpFGViF_WPC6hGl4NdBD-LzgxVhBxDH80MquR6bwbn-yL202AypOrZ5196DtUyhjFkqPI0huh68JBcqpyvbBhCWY23EA_Q1twMCQ4_9330dH31eHlb3z_c3F1e3NdWMJlra4Ba2wkBtmsM7uZNa0AqToUSbZGZkV1nCekkFZQawoVVRrUMKzlTLXC2j87X3OXUjTCz4HM0g15GN5r4roNx-m_Hu4Xuw5uWDW-pkAVw8gmI4XWClPVLmGL5bdKUtgI3EnNaXGTtsjGkFGH-PYFgvcpGr7PReFUlG70iH_9-2veNrzCKga4NqbR8D_Fn9P_UDynZnR0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285076042</pqid></control><display><type>article</type><title>The mitochondrial retrograde signaling regulates Wnt signaling to promote tumorigenesis in colon cancer</title><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wen, Yang-An ; Xiong, Xiaopeng ; Scott, Timothy ; Li, Austin T. ; Wang, Chi ; Weiss, Heidi L. ; Tan, Li ; Bradford, Emily ; Fan, Teresa W. M. ; Chandel, Navdeep S. ; Barrett, Terrence A. ; Gao, Tianyan</creator><creatorcontrib>Wen, Yang-An ; Xiong, Xiaopeng ; Scott, Timothy ; Li, Austin T. ; Wang, Chi ; Weiss, Heidi L. ; Tan, Li ; Bradford, Emily ; Fan, Teresa W. M. ; Chandel, Navdeep S. ; Barrett, Terrence A. ; Gao, Tianyan</creatorcontrib><description>Cancer cells are known to upregulate aerobic glycolysis to promote growth, proliferation, and survival. However, the role of mitochondrial respiration in tumorigenesis remains elusive. Here we report that inhibition of mitochondrial function by silencing TFAM, a key transcription factor essential for mitochondrial DNA (mtDNA) replication and the transcription of mtDNA-encoded genes, markedly reduced tumor-initiating potential of colon cancer cells. Knockdown of TFAM significantly decreased mitochondrial respiration in colon cancer cells; however, the cellular levels of ATP remained largely unchanged as a result of increased glycolysis. This metabolic alteration rendered cancer cells highly susceptible to glucose deprivation. Interestingly, upregulation of glycolysis was independent of hypoxia-inducible factor-1 (HIF1) as TFAM knockdown cells fail to stabilize HIF1α under hypoxic conditions. Moreover, knockdown of TFAM results in decreased expression of genes-associated cancer stem cells downstream of Wnt/β-catenin signaling. Metabolic analysis reveals that the level of α-ketoglutarate (α-KG) was significantly upregulated in TFAM knockout cells. Silencing of prolyl hydroxylase domain-containing protein 2 (PHD2), a α-KG-dependent dioxyenase, rescued the expression of target genes of both HIF1α and Wnt/β-catenin. Furthermore, intestinal-specific knockout of TFAM prevents tumor formation in Apc-mutant mouse models of colon cancer. Taken together, our findings identify a novel role of mitochondria-mediated retrograde signaling in regulating Wnt signaling and tumor initiation in colon cancer.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/s41418-018-0265-6</identifier><identifier>PMID: 30659235</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/89 ; 13/95 ; 38/39 ; 631/67/2327 ; 64/60 ; 692/308/1426 ; 82/80 ; Adenomatous polyposis coli ; Animal models ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Cycle Analysis ; Cell proliferation ; Colon cancer ; Colorectal cancer ; DNA biosynthesis ; Electron transport ; Gene silencing ; Glycolysis ; Hypoxia-inducible factor 1 ; Hypoxia-inducible factor 1a ; Intestine ; Ketoglutaric acid ; Life Sciences ; Metabolism ; Mitochondrial DNA ; Prolyl hydroxylase ; Respiration ; Retrograde transport ; Stem cell transplantation ; Stem Cells ; Tumorigenesis ; Wnt protein ; β-Catenin</subject><ispartof>Cell death and differentiation, 2019-10, Vol.26 (10), p.1955-1969</ispartof><rights>ADMC Associazione Differenziamento e Morte Cellulare 2019</rights><rights>2019© ADMC Associazione Differenziamento e Morte Cellulare 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-cae2ccb55ecb7a0bf78ae69425958b553a6bbc11b62522a145c9a983096d98e43</citedby><cites>FETCH-LOGICAL-c536t-cae2ccb55ecb7a0bf78ae69425958b553a6bbc11b62522a145c9a983096d98e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748256/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748256/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30659235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, Yang-An</creatorcontrib><creatorcontrib>Xiong, Xiaopeng</creatorcontrib><creatorcontrib>Scott, Timothy</creatorcontrib><creatorcontrib>Li, Austin T.</creatorcontrib><creatorcontrib>Wang, Chi</creatorcontrib><creatorcontrib>Weiss, Heidi L.</creatorcontrib><creatorcontrib>Tan, Li</creatorcontrib><creatorcontrib>Bradford, Emily</creatorcontrib><creatorcontrib>Fan, Teresa W. M.</creatorcontrib><creatorcontrib>Chandel, Navdeep S.</creatorcontrib><creatorcontrib>Barrett, Terrence A.</creatorcontrib><creatorcontrib>Gao, Tianyan</creatorcontrib><title>The mitochondrial retrograde signaling regulates Wnt signaling to promote tumorigenesis in colon cancer</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>Cancer cells are known to upregulate aerobic glycolysis to promote growth, proliferation, and survival. However, the role of mitochondrial respiration in tumorigenesis remains elusive. Here we report that inhibition of mitochondrial function by silencing TFAM, a key transcription factor essential for mitochondrial DNA (mtDNA) replication and the transcription of mtDNA-encoded genes, markedly reduced tumor-initiating potential of colon cancer cells. Knockdown of TFAM significantly decreased mitochondrial respiration in colon cancer cells; however, the cellular levels of ATP remained largely unchanged as a result of increased glycolysis. This metabolic alteration rendered cancer cells highly susceptible to glucose deprivation. Interestingly, upregulation of glycolysis was independent of hypoxia-inducible factor-1 (HIF1) as TFAM knockdown cells fail to stabilize HIF1α under hypoxic conditions. Moreover, knockdown of TFAM results in decreased expression of genes-associated cancer stem cells downstream of Wnt/β-catenin signaling. Metabolic analysis reveals that the level of α-ketoglutarate (α-KG) was significantly upregulated in TFAM knockout cells. Silencing of prolyl hydroxylase domain-containing protein 2 (PHD2), a α-KG-dependent dioxyenase, rescued the expression of target genes of both HIF1α and Wnt/β-catenin. Furthermore, intestinal-specific knockout of TFAM prevents tumor formation in Apc-mutant mouse models of colon cancer. Taken together, our findings identify a novel role of mitochondria-mediated retrograde signaling in regulating Wnt signaling and tumor initiation in colon cancer.</description><subject>13/106</subject><subject>13/89</subject><subject>13/95</subject><subject>38/39</subject><subject>631/67/2327</subject><subject>64/60</subject><subject>692/308/1426</subject><subject>82/80</subject><subject>Adenomatous polyposis coli</subject><subject>Animal models</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell proliferation</subject><subject>Colon cancer</subject><subject>Colorectal cancer</subject><subject>DNA biosynthesis</subject><subject>Electron transport</subject><subject>Gene silencing</subject><subject>Glycolysis</subject><subject>Hypoxia-inducible factor 1</subject><subject>Hypoxia-inducible factor 1a</subject><subject>Intestine</subject><subject>Ketoglutaric acid</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Mitochondrial DNA</subject><subject>Prolyl hydroxylase</subject><subject>Respiration</subject><subject>Retrograde transport</subject><subject>Stem cell transplantation</subject><subject>Stem Cells</subject><subject>Tumorigenesis</subject><subject>Wnt protein</subject><subject>β-Catenin</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kUtLxDAUhYMovn-AGym4rubdZiOI-ALBjeIypJk7nUibjEkq-O_NMD4XLm4Szj35bsJB6IjgU4JZe5Y44aSt8aqoFLXcQLuEN7IWHLPNcmYC1wrzZgftpfSCMZaNkttoh2EpFGViF_WPC6hGl4NdBD-LzgxVhBxDH80MquR6bwbn-yL202AypOrZ5196DtUyhjFkqPI0huh68JBcqpyvbBhCWY23EA_Q1twMCQ4_9330dH31eHlb3z_c3F1e3NdWMJlra4Ba2wkBtmsM7uZNa0AqToUSbZGZkV1nCekkFZQawoVVRrUMKzlTLXC2j87X3OXUjTCz4HM0g15GN5r4roNx-m_Hu4Xuw5uWDW-pkAVw8gmI4XWClPVLmGL5bdKUtgI3EnNaXGTtsjGkFGH-PYFgvcpGr7PReFUlG70iH_9-2veNrzCKga4NqbR8D_Fn9P_UDynZnR0</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Wen, Yang-An</creator><creator>Xiong, Xiaopeng</creator><creator>Scott, Timothy</creator><creator>Li, Austin T.</creator><creator>Wang, Chi</creator><creator>Weiss, Heidi L.</creator><creator>Tan, Li</creator><creator>Bradford, Emily</creator><creator>Fan, Teresa W. M.</creator><creator>Chandel, Navdeep S.</creator><creator>Barrett, Terrence A.</creator><creator>Gao, Tianyan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20191001</creationdate><title>The mitochondrial retrograde signaling regulates Wnt signaling to promote tumorigenesis in colon cancer</title><author>Wen, Yang-An ; Xiong, Xiaopeng ; Scott, Timothy ; Li, Austin T. ; Wang, Chi ; Weiss, Heidi L. ; Tan, Li ; Bradford, Emily ; Fan, Teresa W. M. ; Chandel, Navdeep S. ; Barrett, Terrence A. ; Gao, Tianyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-cae2ccb55ecb7a0bf78ae69425958b553a6bbc11b62522a145c9a983096d98e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/106</topic><topic>13/89</topic><topic>13/95</topic><topic>38/39</topic><topic>631/67/2327</topic><topic>64/60</topic><topic>692/308/1426</topic><topic>82/80</topic><topic>Adenomatous polyposis coli</topic><topic>Animal models</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell proliferation</topic><topic>Colon cancer</topic><topic>Colorectal cancer</topic><topic>DNA biosynthesis</topic><topic>Electron transport</topic><topic>Gene silencing</topic><topic>Glycolysis</topic><topic>Hypoxia-inducible factor 1</topic><topic>Hypoxia-inducible factor 1a</topic><topic>Intestine</topic><topic>Ketoglutaric acid</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Mitochondrial DNA</topic><topic>Prolyl hydroxylase</topic><topic>Respiration</topic><topic>Retrograde transport</topic><topic>Stem cell transplantation</topic><topic>Stem Cells</topic><topic>Tumorigenesis</topic><topic>Wnt protein</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Yang-An</creatorcontrib><creatorcontrib>Xiong, Xiaopeng</creatorcontrib><creatorcontrib>Scott, Timothy</creatorcontrib><creatorcontrib>Li, Austin T.</creatorcontrib><creatorcontrib>Wang, Chi</creatorcontrib><creatorcontrib>Weiss, Heidi L.</creatorcontrib><creatorcontrib>Tan, Li</creatorcontrib><creatorcontrib>Bradford, Emily</creatorcontrib><creatorcontrib>Fan, Teresa W. M.</creatorcontrib><creatorcontrib>Chandel, Navdeep S.</creatorcontrib><creatorcontrib>Barrett, Terrence A.</creatorcontrib><creatorcontrib>Gao, Tianyan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Yang-An</au><au>Xiong, Xiaopeng</au><au>Scott, Timothy</au><au>Li, Austin T.</au><au>Wang, Chi</au><au>Weiss, Heidi L.</au><au>Tan, Li</au><au>Bradford, Emily</au><au>Fan, Teresa W. M.</au><au>Chandel, Navdeep S.</au><au>Barrett, Terrence A.</au><au>Gao, Tianyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mitochondrial retrograde signaling regulates Wnt signaling to promote tumorigenesis in colon cancer</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>26</volume><issue>10</issue><spage>1955</spage><epage>1969</epage><pages>1955-1969</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>Cancer cells are known to upregulate aerobic glycolysis to promote growth, proliferation, and survival. However, the role of mitochondrial respiration in tumorigenesis remains elusive. Here we report that inhibition of mitochondrial function by silencing TFAM, a key transcription factor essential for mitochondrial DNA (mtDNA) replication and the transcription of mtDNA-encoded genes, markedly reduced tumor-initiating potential of colon cancer cells. Knockdown of TFAM significantly decreased mitochondrial respiration in colon cancer cells; however, the cellular levels of ATP remained largely unchanged as a result of increased glycolysis. This metabolic alteration rendered cancer cells highly susceptible to glucose deprivation. Interestingly, upregulation of glycolysis was independent of hypoxia-inducible factor-1 (HIF1) as TFAM knockdown cells fail to stabilize HIF1α under hypoxic conditions. Moreover, knockdown of TFAM results in decreased expression of genes-associated cancer stem cells downstream of Wnt/β-catenin signaling. Metabolic analysis reveals that the level of α-ketoglutarate (α-KG) was significantly upregulated in TFAM knockout cells. Silencing of prolyl hydroxylase domain-containing protein 2 (PHD2), a α-KG-dependent dioxyenase, rescued the expression of target genes of both HIF1α and Wnt/β-catenin. Furthermore, intestinal-specific knockout of TFAM prevents tumor formation in Apc-mutant mouse models of colon cancer. Taken together, our findings identify a novel role of mitochondria-mediated retrograde signaling in regulating Wnt signaling and tumor initiation in colon cancer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30659235</pmid><doi>10.1038/s41418-018-0265-6</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-9047
ispartof Cell death and differentiation, 2019-10, Vol.26 (10), p.1955-1969
issn 1350-9047
1476-5403
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6748256
source SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 13/106
13/89
13/95
38/39
631/67/2327
64/60
692/308/1426
82/80
Adenomatous polyposis coli
Animal models
Apoptosis
Biochemistry
Biomedical and Life Sciences
Cell Biology
Cell Cycle Analysis
Cell proliferation
Colon cancer
Colorectal cancer
DNA biosynthesis
Electron transport
Gene silencing
Glycolysis
Hypoxia-inducible factor 1
Hypoxia-inducible factor 1a
Intestine
Ketoglutaric acid
Life Sciences
Metabolism
Mitochondrial DNA
Prolyl hydroxylase
Respiration
Retrograde transport
Stem cell transplantation
Stem Cells
Tumorigenesis
Wnt protein
β-Catenin
title The mitochondrial retrograde signaling regulates Wnt signaling to promote tumorigenesis in colon cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T07%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mitochondrial%20retrograde%20signaling%20regulates%20Wnt%20signaling%20to%20promote%20tumorigenesis%20in%20colon%20cancer&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Wen,%20Yang-An&rft.date=2019-10-01&rft.volume=26&rft.issue=10&rft.spage=1955&rft.epage=1969&rft.pages=1955-1969&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/s41418-018-0265-6&rft_dat=%3Cproquest_pubme%3E2285076042%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285076042&rft_id=info:pmid/30659235&rfr_iscdi=true