Developing 9,10-anthracene Derivatives: Optical, Electrochemical, Thermal, and Electrical Characterization
Anthracene-based semiconductors are a class of molecules that have attracted interest due to their air stability, planarity, potential for strong intermolecular interactions, and favorable frontier molecular orbital energy levels. In this study seven novel 9,10-anthracene-based molecules were synthe...
Gespeichert in:
Veröffentlicht in: | Materials 2019-08, Vol.12 (17), p.2726 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | 2726 |
container_title | Materials |
container_volume | 12 |
creator | Vorona, Mikhail Y Yutronkie, Nathan J Melville, Owen A Daszczynski, Andrew J Agyei, Kwame T Ovens, Jeffrey S Brusso, Jaclyn L Lessard, Benoît H |
description | Anthracene-based semiconductors are a class of molecules that have attracted interest due to their air stability, planarity, potential for strong intermolecular interactions, and favorable frontier molecular orbital energy levels. In this study seven novel 9,10-anthracene-based molecules were synthesized and their optical, electrochemical, and thermal properties were characterized, along with their single crystal arrangement. We found that functionalization of the 9,10-positions with different phenyl derivatives resulted in negligible variation in the optical properties with minor (±0.10 eV) changes in electrochemical behavior, while the choice of phenyl derivative greatly affected the thermal stability (
> 258 °C). Preliminary organic thin film transistors (OTFTs) were fabricated and characterized using the 9,10-anthracene-based molecules as the semiconductor layer. These findings suggest that functionalization of the 9,10-position of anthracene leads to an effective handle for tuning of the thermal stability, while having little to no effect on the optical properties and the solid-state arrangement. |
doi_str_mv | 10.3390/ma12172726 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6747803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548730577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-1c06e2bc0d41f6088df3106b43ed72f693779326bcfdd0a01ca2ecabedd932103</originalsourceid><addsrcrecordid>eNpdkVtLAzEQhYMoVqov_gBZ8EXE1dy62fggSL2C4Et9Dtlktrtld1OTbUF_vSmt9ZKXDHM-DjNzEDom-JIxia9aTSgRVNBsBx0QKbOUSM53f9UDdBTCDMfHGMmp3EcDRviI5zk_QLM7WELj5nU3TeQFwanu-sprAx0kd-Drpe7rJYTr5HXe10Y3F8l9A6b3zlTQrhuTCny7KnRnN-pKSMaVjkZ9NPmMJq47RHulbgIcbf4henu4n4yf0pfXx-fx7UtquKB9SgzOgBYGW07KDOe5LRnBWcEZWEHLTDIhJKNZYUprscbEaApGF2BtbBPMhuhm7TtfFC3YuErvdaPmvm61_1BO1-qv0tWVmrqlygQXeTzSEJ1tDLx7X0DoVVsHA02jO3CLoCjNSc6kwKOInv5DZ27hu7ieovHCguGREJE6X1PGuxA8lNthCFarFNVPihE--T3-Fv3OjH0BUvKYSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548730577</pqid></control><display><type>article</type><title>Developing 9,10-anthracene Derivatives: Optical, Electrochemical, Thermal, and Electrical Characterization</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Vorona, Mikhail Y ; Yutronkie, Nathan J ; Melville, Owen A ; Daszczynski, Andrew J ; Agyei, Kwame T ; Ovens, Jeffrey S ; Brusso, Jaclyn L ; Lessard, Benoît H</creator><creatorcontrib>Vorona, Mikhail Y ; Yutronkie, Nathan J ; Melville, Owen A ; Daszczynski, Andrew J ; Agyei, Kwame T ; Ovens, Jeffrey S ; Brusso, Jaclyn L ; Lessard, Benoît H</creatorcontrib><description>Anthracene-based semiconductors are a class of molecules that have attracted interest due to their air stability, planarity, potential for strong intermolecular interactions, and favorable frontier molecular orbital energy levels. In this study seven novel 9,10-anthracene-based molecules were synthesized and their optical, electrochemical, and thermal properties were characterized, along with their single crystal arrangement. We found that functionalization of the 9,10-positions with different phenyl derivatives resulted in negligible variation in the optical properties with minor (±0.10 eV) changes in electrochemical behavior, while the choice of phenyl derivative greatly affected the thermal stability (
> 258 °C). Preliminary organic thin film transistors (OTFTs) were fabricated and characterized using the 9,10-anthracene-based molecules as the semiconductor layer. These findings suggest that functionalization of the 9,10-position of anthracene leads to an effective handle for tuning of the thermal stability, while having little to no effect on the optical properties and the solid-state arrangement.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12172726</identifier><identifier>PMID: 31454884</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Anthracene ; Chemical synthesis ; Decomposition ; Electrical properties ; Electrochemical analysis ; Energy ; Energy levels ; Molecular orbitals ; Optical properties ; Organic light emitting diodes ; Phase transitions ; Semiconductor devices ; Single crystals ; Solvents ; Spectrum analysis ; Thermal stability ; Thermodynamic properties ; Thermogravimetric analysis ; Thin film transistors ; Thin films ; Transistors</subject><ispartof>Materials, 2019-08, Vol.12 (17), p.2726</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-1c06e2bc0d41f6088df3106b43ed72f693779326bcfdd0a01ca2ecabedd932103</citedby><cites>FETCH-LOGICAL-c472t-1c06e2bc0d41f6088df3106b43ed72f693779326bcfdd0a01ca2ecabedd932103</cites><orcidid>0000-0002-9863-7039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747803/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747803/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31454884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vorona, Mikhail Y</creatorcontrib><creatorcontrib>Yutronkie, Nathan J</creatorcontrib><creatorcontrib>Melville, Owen A</creatorcontrib><creatorcontrib>Daszczynski, Andrew J</creatorcontrib><creatorcontrib>Agyei, Kwame T</creatorcontrib><creatorcontrib>Ovens, Jeffrey S</creatorcontrib><creatorcontrib>Brusso, Jaclyn L</creatorcontrib><creatorcontrib>Lessard, Benoît H</creatorcontrib><title>Developing 9,10-anthracene Derivatives: Optical, Electrochemical, Thermal, and Electrical Characterization</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Anthracene-based semiconductors are a class of molecules that have attracted interest due to their air stability, planarity, potential for strong intermolecular interactions, and favorable frontier molecular orbital energy levels. In this study seven novel 9,10-anthracene-based molecules were synthesized and their optical, electrochemical, and thermal properties were characterized, along with their single crystal arrangement. We found that functionalization of the 9,10-positions with different phenyl derivatives resulted in negligible variation in the optical properties with minor (±0.10 eV) changes in electrochemical behavior, while the choice of phenyl derivative greatly affected the thermal stability (
> 258 °C). Preliminary organic thin film transistors (OTFTs) were fabricated and characterized using the 9,10-anthracene-based molecules as the semiconductor layer. These findings suggest that functionalization of the 9,10-position of anthracene leads to an effective handle for tuning of the thermal stability, while having little to no effect on the optical properties and the solid-state arrangement.</description><subject>Anthracene</subject><subject>Chemical synthesis</subject><subject>Decomposition</subject><subject>Electrical properties</subject><subject>Electrochemical analysis</subject><subject>Energy</subject><subject>Energy levels</subject><subject>Molecular orbitals</subject><subject>Optical properties</subject><subject>Organic light emitting diodes</subject><subject>Phase transitions</subject><subject>Semiconductor devices</subject><subject>Single crystals</subject><subject>Solvents</subject><subject>Spectrum analysis</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>Thin film transistors</subject><subject>Thin films</subject><subject>Transistors</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVtLAzEQhYMoVqov_gBZ8EXE1dy62fggSL2C4Et9Dtlktrtld1OTbUF_vSmt9ZKXDHM-DjNzEDom-JIxia9aTSgRVNBsBx0QKbOUSM53f9UDdBTCDMfHGMmp3EcDRviI5zk_QLM7WELj5nU3TeQFwanu-sprAx0kd-Drpe7rJYTr5HXe10Y3F8l9A6b3zlTQrhuTCny7KnRnN-pKSMaVjkZ9NPmMJq47RHulbgIcbf4henu4n4yf0pfXx-fx7UtquKB9SgzOgBYGW07KDOe5LRnBWcEZWEHLTDIhJKNZYUprscbEaApGF2BtbBPMhuhm7TtfFC3YuErvdaPmvm61_1BO1-qv0tWVmrqlygQXeTzSEJ1tDLx7X0DoVVsHA02jO3CLoCjNSc6kwKOInv5DZ27hu7ieovHCguGREJE6X1PGuxA8lNthCFarFNVPihE--T3-Fv3OjH0BUvKYSw</recordid><startdate>20190826</startdate><enddate>20190826</enddate><creator>Vorona, Mikhail Y</creator><creator>Yutronkie, Nathan J</creator><creator>Melville, Owen A</creator><creator>Daszczynski, Andrew J</creator><creator>Agyei, Kwame T</creator><creator>Ovens, Jeffrey S</creator><creator>Brusso, Jaclyn L</creator><creator>Lessard, Benoît H</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9863-7039</orcidid></search><sort><creationdate>20190826</creationdate><title>Developing 9,10-anthracene Derivatives: Optical, Electrochemical, Thermal, and Electrical Characterization</title><author>Vorona, Mikhail Y ; Yutronkie, Nathan J ; Melville, Owen A ; Daszczynski, Andrew J ; Agyei, Kwame T ; Ovens, Jeffrey S ; Brusso, Jaclyn L ; Lessard, Benoît H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-1c06e2bc0d41f6088df3106b43ed72f693779326bcfdd0a01ca2ecabedd932103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anthracene</topic><topic>Chemical synthesis</topic><topic>Decomposition</topic><topic>Electrical properties</topic><topic>Electrochemical analysis</topic><topic>Energy</topic><topic>Energy levels</topic><topic>Molecular orbitals</topic><topic>Optical properties</topic><topic>Organic light emitting diodes</topic><topic>Phase transitions</topic><topic>Semiconductor devices</topic><topic>Single crystals</topic><topic>Solvents</topic><topic>Spectrum analysis</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>Thin film transistors</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vorona, Mikhail Y</creatorcontrib><creatorcontrib>Yutronkie, Nathan J</creatorcontrib><creatorcontrib>Melville, Owen A</creatorcontrib><creatorcontrib>Daszczynski, Andrew J</creatorcontrib><creatorcontrib>Agyei, Kwame T</creatorcontrib><creatorcontrib>Ovens, Jeffrey S</creatorcontrib><creatorcontrib>Brusso, Jaclyn L</creatorcontrib><creatorcontrib>Lessard, Benoît H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vorona, Mikhail Y</au><au>Yutronkie, Nathan J</au><au>Melville, Owen A</au><au>Daszczynski, Andrew J</au><au>Agyei, Kwame T</au><au>Ovens, Jeffrey S</au><au>Brusso, Jaclyn L</au><au>Lessard, Benoît H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing 9,10-anthracene Derivatives: Optical, Electrochemical, Thermal, and Electrical Characterization</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-08-26</date><risdate>2019</risdate><volume>12</volume><issue>17</issue><spage>2726</spage><pages>2726-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Anthracene-based semiconductors are a class of molecules that have attracted interest due to their air stability, planarity, potential for strong intermolecular interactions, and favorable frontier molecular orbital energy levels. In this study seven novel 9,10-anthracene-based molecules were synthesized and their optical, electrochemical, and thermal properties were characterized, along with their single crystal arrangement. We found that functionalization of the 9,10-positions with different phenyl derivatives resulted in negligible variation in the optical properties with minor (±0.10 eV) changes in electrochemical behavior, while the choice of phenyl derivative greatly affected the thermal stability (
> 258 °C). Preliminary organic thin film transistors (OTFTs) were fabricated and characterized using the 9,10-anthracene-based molecules as the semiconductor layer. These findings suggest that functionalization of the 9,10-position of anthracene leads to an effective handle for tuning of the thermal stability, while having little to no effect on the optical properties and the solid-state arrangement.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31454884</pmid><doi>10.3390/ma12172726</doi><orcidid>https://orcid.org/0000-0002-9863-7039</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2019-08, Vol.12 (17), p.2726 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6747803 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Anthracene Chemical synthesis Decomposition Electrical properties Electrochemical analysis Energy Energy levels Molecular orbitals Optical properties Organic light emitting diodes Phase transitions Semiconductor devices Single crystals Solvents Spectrum analysis Thermal stability Thermodynamic properties Thermogravimetric analysis Thin film transistors Thin films Transistors |
title | Developing 9,10-anthracene Derivatives: Optical, Electrochemical, Thermal, and Electrical Characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%209,10-anthracene%20Derivatives:%20Optical,%20Electrochemical,%20Thermal,%20and%20Electrical%20Characterization&rft.jtitle=Materials&rft.au=Vorona,%20Mikhail%20Y&rft.date=2019-08-26&rft.volume=12&rft.issue=17&rft.spage=2726&rft.pages=2726-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12172726&rft_dat=%3Cproquest_pubme%3E2548730577%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548730577&rft_id=info:pmid/31454884&rfr_iscdi=true |