Developing 9,10-anthracene Derivatives: Optical, Electrochemical, Thermal, and Electrical Characterization

Anthracene-based semiconductors are a class of molecules that have attracted interest due to their air stability, planarity, potential for strong intermolecular interactions, and favorable frontier molecular orbital energy levels. In this study seven novel 9,10-anthracene-based molecules were synthe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2019-08, Vol.12 (17), p.2726
Hauptverfasser: Vorona, Mikhail Y, Yutronkie, Nathan J, Melville, Owen A, Daszczynski, Andrew J, Agyei, Kwame T, Ovens, Jeffrey S, Brusso, Jaclyn L, Lessard, Benoît H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 2726
container_title Materials
container_volume 12
creator Vorona, Mikhail Y
Yutronkie, Nathan J
Melville, Owen A
Daszczynski, Andrew J
Agyei, Kwame T
Ovens, Jeffrey S
Brusso, Jaclyn L
Lessard, Benoît H
description Anthracene-based semiconductors are a class of molecules that have attracted interest due to their air stability, planarity, potential for strong intermolecular interactions, and favorable frontier molecular orbital energy levels. In this study seven novel 9,10-anthracene-based molecules were synthesized and their optical, electrochemical, and thermal properties were characterized, along with their single crystal arrangement. We found that functionalization of the 9,10-positions with different phenyl derivatives resulted in negligible variation in the optical properties with minor (±0.10 eV) changes in electrochemical behavior, while the choice of phenyl derivative greatly affected the thermal stability ( > 258 °C). Preliminary organic thin film transistors (OTFTs) were fabricated and characterized using the 9,10-anthracene-based molecules as the semiconductor layer. These findings suggest that functionalization of the 9,10-position of anthracene leads to an effective handle for tuning of the thermal stability, while having little to no effect on the optical properties and the solid-state arrangement.
doi_str_mv 10.3390/ma12172726
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6747803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548730577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-1c06e2bc0d41f6088df3106b43ed72f693779326bcfdd0a01ca2ecabedd932103</originalsourceid><addsrcrecordid>eNpdkVtLAzEQhYMoVqov_gBZ8EXE1dy62fggSL2C4Et9Dtlktrtld1OTbUF_vSmt9ZKXDHM-DjNzEDom-JIxia9aTSgRVNBsBx0QKbOUSM53f9UDdBTCDMfHGMmp3EcDRviI5zk_QLM7WELj5nU3TeQFwanu-sprAx0kd-Drpe7rJYTr5HXe10Y3F8l9A6b3zlTQrhuTCny7KnRnN-pKSMaVjkZ9NPmMJq47RHulbgIcbf4henu4n4yf0pfXx-fx7UtquKB9SgzOgBYGW07KDOe5LRnBWcEZWEHLTDIhJKNZYUprscbEaApGF2BtbBPMhuhm7TtfFC3YuErvdaPmvm61_1BO1-qv0tWVmrqlygQXeTzSEJ1tDLx7X0DoVVsHA02jO3CLoCjNSc6kwKOInv5DZ27hu7ieovHCguGREJE6X1PGuxA8lNthCFarFNVPihE--T3-Fv3OjH0BUvKYSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548730577</pqid></control><display><type>article</type><title>Developing 9,10-anthracene Derivatives: Optical, Electrochemical, Thermal, and Electrical Characterization</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Vorona, Mikhail Y ; Yutronkie, Nathan J ; Melville, Owen A ; Daszczynski, Andrew J ; Agyei, Kwame T ; Ovens, Jeffrey S ; Brusso, Jaclyn L ; Lessard, Benoît H</creator><creatorcontrib>Vorona, Mikhail Y ; Yutronkie, Nathan J ; Melville, Owen A ; Daszczynski, Andrew J ; Agyei, Kwame T ; Ovens, Jeffrey S ; Brusso, Jaclyn L ; Lessard, Benoît H</creatorcontrib><description>Anthracene-based semiconductors are a class of molecules that have attracted interest due to their air stability, planarity, potential for strong intermolecular interactions, and favorable frontier molecular orbital energy levels. In this study seven novel 9,10-anthracene-based molecules were synthesized and their optical, electrochemical, and thermal properties were characterized, along with their single crystal arrangement. We found that functionalization of the 9,10-positions with different phenyl derivatives resulted in negligible variation in the optical properties with minor (±0.10 eV) changes in electrochemical behavior, while the choice of phenyl derivative greatly affected the thermal stability ( &gt; 258 °C). Preliminary organic thin film transistors (OTFTs) were fabricated and characterized using the 9,10-anthracene-based molecules as the semiconductor layer. These findings suggest that functionalization of the 9,10-position of anthracene leads to an effective handle for tuning of the thermal stability, while having little to no effect on the optical properties and the solid-state arrangement.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12172726</identifier><identifier>PMID: 31454884</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Anthracene ; Chemical synthesis ; Decomposition ; Electrical properties ; Electrochemical analysis ; Energy ; Energy levels ; Molecular orbitals ; Optical properties ; Organic light emitting diodes ; Phase transitions ; Semiconductor devices ; Single crystals ; Solvents ; Spectrum analysis ; Thermal stability ; Thermodynamic properties ; Thermogravimetric analysis ; Thin film transistors ; Thin films ; Transistors</subject><ispartof>Materials, 2019-08, Vol.12 (17), p.2726</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-1c06e2bc0d41f6088df3106b43ed72f693779326bcfdd0a01ca2ecabedd932103</citedby><cites>FETCH-LOGICAL-c472t-1c06e2bc0d41f6088df3106b43ed72f693779326bcfdd0a01ca2ecabedd932103</cites><orcidid>0000-0002-9863-7039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747803/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747803/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31454884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vorona, Mikhail Y</creatorcontrib><creatorcontrib>Yutronkie, Nathan J</creatorcontrib><creatorcontrib>Melville, Owen A</creatorcontrib><creatorcontrib>Daszczynski, Andrew J</creatorcontrib><creatorcontrib>Agyei, Kwame T</creatorcontrib><creatorcontrib>Ovens, Jeffrey S</creatorcontrib><creatorcontrib>Brusso, Jaclyn L</creatorcontrib><creatorcontrib>Lessard, Benoît H</creatorcontrib><title>Developing 9,10-anthracene Derivatives: Optical, Electrochemical, Thermal, and Electrical Characterization</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Anthracene-based semiconductors are a class of molecules that have attracted interest due to their air stability, planarity, potential for strong intermolecular interactions, and favorable frontier molecular orbital energy levels. In this study seven novel 9,10-anthracene-based molecules were synthesized and their optical, electrochemical, and thermal properties were characterized, along with their single crystal arrangement. We found that functionalization of the 9,10-positions with different phenyl derivatives resulted in negligible variation in the optical properties with minor (±0.10 eV) changes in electrochemical behavior, while the choice of phenyl derivative greatly affected the thermal stability ( &gt; 258 °C). Preliminary organic thin film transistors (OTFTs) were fabricated and characterized using the 9,10-anthracene-based molecules as the semiconductor layer. These findings suggest that functionalization of the 9,10-position of anthracene leads to an effective handle for tuning of the thermal stability, while having little to no effect on the optical properties and the solid-state arrangement.</description><subject>Anthracene</subject><subject>Chemical synthesis</subject><subject>Decomposition</subject><subject>Electrical properties</subject><subject>Electrochemical analysis</subject><subject>Energy</subject><subject>Energy levels</subject><subject>Molecular orbitals</subject><subject>Optical properties</subject><subject>Organic light emitting diodes</subject><subject>Phase transitions</subject><subject>Semiconductor devices</subject><subject>Single crystals</subject><subject>Solvents</subject><subject>Spectrum analysis</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>Thin film transistors</subject><subject>Thin films</subject><subject>Transistors</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVtLAzEQhYMoVqov_gBZ8EXE1dy62fggSL2C4Et9Dtlktrtld1OTbUF_vSmt9ZKXDHM-DjNzEDom-JIxia9aTSgRVNBsBx0QKbOUSM53f9UDdBTCDMfHGMmp3EcDRviI5zk_QLM7WELj5nU3TeQFwanu-sprAx0kd-Drpe7rJYTr5HXe10Y3F8l9A6b3zlTQrhuTCny7KnRnN-pKSMaVjkZ9NPmMJq47RHulbgIcbf4henu4n4yf0pfXx-fx7UtquKB9SgzOgBYGW07KDOe5LRnBWcEZWEHLTDIhJKNZYUprscbEaApGF2BtbBPMhuhm7TtfFC3YuErvdaPmvm61_1BO1-qv0tWVmrqlygQXeTzSEJ1tDLx7X0DoVVsHA02jO3CLoCjNSc6kwKOInv5DZ27hu7ieovHCguGREJE6X1PGuxA8lNthCFarFNVPihE--T3-Fv3OjH0BUvKYSw</recordid><startdate>20190826</startdate><enddate>20190826</enddate><creator>Vorona, Mikhail Y</creator><creator>Yutronkie, Nathan J</creator><creator>Melville, Owen A</creator><creator>Daszczynski, Andrew J</creator><creator>Agyei, Kwame T</creator><creator>Ovens, Jeffrey S</creator><creator>Brusso, Jaclyn L</creator><creator>Lessard, Benoît H</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9863-7039</orcidid></search><sort><creationdate>20190826</creationdate><title>Developing 9,10-anthracene Derivatives: Optical, Electrochemical, Thermal, and Electrical Characterization</title><author>Vorona, Mikhail Y ; Yutronkie, Nathan J ; Melville, Owen A ; Daszczynski, Andrew J ; Agyei, Kwame T ; Ovens, Jeffrey S ; Brusso, Jaclyn L ; Lessard, Benoît H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-1c06e2bc0d41f6088df3106b43ed72f693779326bcfdd0a01ca2ecabedd932103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anthracene</topic><topic>Chemical synthesis</topic><topic>Decomposition</topic><topic>Electrical properties</topic><topic>Electrochemical analysis</topic><topic>Energy</topic><topic>Energy levels</topic><topic>Molecular orbitals</topic><topic>Optical properties</topic><topic>Organic light emitting diodes</topic><topic>Phase transitions</topic><topic>Semiconductor devices</topic><topic>Single crystals</topic><topic>Solvents</topic><topic>Spectrum analysis</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>Thin film transistors</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vorona, Mikhail Y</creatorcontrib><creatorcontrib>Yutronkie, Nathan J</creatorcontrib><creatorcontrib>Melville, Owen A</creatorcontrib><creatorcontrib>Daszczynski, Andrew J</creatorcontrib><creatorcontrib>Agyei, Kwame T</creatorcontrib><creatorcontrib>Ovens, Jeffrey S</creatorcontrib><creatorcontrib>Brusso, Jaclyn L</creatorcontrib><creatorcontrib>Lessard, Benoît H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vorona, Mikhail Y</au><au>Yutronkie, Nathan J</au><au>Melville, Owen A</au><au>Daszczynski, Andrew J</au><au>Agyei, Kwame T</au><au>Ovens, Jeffrey S</au><au>Brusso, Jaclyn L</au><au>Lessard, Benoît H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing 9,10-anthracene Derivatives: Optical, Electrochemical, Thermal, and Electrical Characterization</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-08-26</date><risdate>2019</risdate><volume>12</volume><issue>17</issue><spage>2726</spage><pages>2726-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Anthracene-based semiconductors are a class of molecules that have attracted interest due to their air stability, planarity, potential for strong intermolecular interactions, and favorable frontier molecular orbital energy levels. In this study seven novel 9,10-anthracene-based molecules were synthesized and their optical, electrochemical, and thermal properties were characterized, along with their single crystal arrangement. We found that functionalization of the 9,10-positions with different phenyl derivatives resulted in negligible variation in the optical properties with minor (±0.10 eV) changes in electrochemical behavior, while the choice of phenyl derivative greatly affected the thermal stability ( &gt; 258 °C). Preliminary organic thin film transistors (OTFTs) were fabricated and characterized using the 9,10-anthracene-based molecules as the semiconductor layer. These findings suggest that functionalization of the 9,10-position of anthracene leads to an effective handle for tuning of the thermal stability, while having little to no effect on the optical properties and the solid-state arrangement.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31454884</pmid><doi>10.3390/ma12172726</doi><orcidid>https://orcid.org/0000-0002-9863-7039</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2019-08, Vol.12 (17), p.2726
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6747803
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Anthracene
Chemical synthesis
Decomposition
Electrical properties
Electrochemical analysis
Energy
Energy levels
Molecular orbitals
Optical properties
Organic light emitting diodes
Phase transitions
Semiconductor devices
Single crystals
Solvents
Spectrum analysis
Thermal stability
Thermodynamic properties
Thermogravimetric analysis
Thin film transistors
Thin films
Transistors
title Developing 9,10-anthracene Derivatives: Optical, Electrochemical, Thermal, and Electrical Characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%209,10-anthracene%20Derivatives:%20Optical,%20Electrochemical,%20Thermal,%20and%20Electrical%20Characterization&rft.jtitle=Materials&rft.au=Vorona,%20Mikhail%20Y&rft.date=2019-08-26&rft.volume=12&rft.issue=17&rft.spage=2726&rft.pages=2726-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12172726&rft_dat=%3Cproquest_pubme%3E2548730577%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548730577&rft_id=info:pmid/31454884&rfr_iscdi=true