Future directions for high‐throughput splicing assays in precision medicine

Classification of variants of unknown significance is a challenging technical problem in clinical genetics. As up to one‐third of disease‐causing mutations are thought to affect pre‐mRNA splicing, it is important to accurately classify splicing mutations in patient sequencing data. Several consortia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human mutation 2019-09, Vol.40 (9), p.1225-1234
Hauptverfasser: Rhine, Christy L., Neil, Christopher, Glidden, David T., Cygan, Kamil J., Fredericks, Alger M., Wang, Jing, Walton, Nephi A., Fairbrother, William G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1234
container_issue 9
container_start_page 1225
container_title Human mutation
container_volume 40
creator Rhine, Christy L.
Neil, Christopher
Glidden, David T.
Cygan, Kamil J.
Fredericks, Alger M.
Wang, Jing
Walton, Nephi A.
Fairbrother, William G.
description Classification of variants of unknown significance is a challenging technical problem in clinical genetics. As up to one‐third of disease‐causing mutations are thought to affect pre‐mRNA splicing, it is important to accurately classify splicing mutations in patient sequencing data. Several consortia and healthcare systems have conducted large‐scale patient sequencing studies, which discover novel variants faster than they can be classified. Here, we compare the advantages and limitations of several high‐throughput splicing assays aimed at mitigating this bottleneck, and describe a data set of ~5,000 variants that we analyzed using our Massively Parallel Splicing Assay (MaPSy). The Critical Assessment of Genome Interpretation group (CAGI) organized a challenge, in which participants submitted machine learning models to predict the splicing effects of variants in this data set. We discuss the winning submission of the challenge (MMSplice) which outperformed existing software. Finally, we highlight methods to overcome the limitations of MaPSy and similar assays, such as tissue‐specific splicing, the effect of surrounding sequence context, classifying intronic variants, synthesizing large exons, and amplifying complex libraries of minigene species. Further development of these assays will greatly benefit the field of clinical genetics, which lack high‐throughput methods for variant interpretation.
doi_str_mv 10.1002/humu.23866
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6744296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2257712408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4486-442499b922d131493919b5bbe5b27256aabc59674f24c07c6d0de941323301163</originalsourceid><addsrcrecordid>eNp9kc9O3DAQh60KVOi2lz5AFamXqlIWe2wn8aUSWvGnEogLe7Ycx7sxysbBjkF76yPwjH2SOixFwIGTLc8334z1Q-grwXOCMRy1cRPnQKui-IAOCRZVnp7Z3nTnIi9LwQ7QpxBuMMYV5_QjOqAERFkJfoguT-MYvcka640eretDtnI-a-26_fvnYWy9i-t2iGMWhs5q268zFYLahsz22ZBabEg92cY0U9F8Rvsr1QXz5emcoeXpyfXiPL-4Ovu9OL7INWNVkTMGTIhaADSEEiaoIKLmdW14DSXwQqlac1GUbAVM41IXDW6MYIQCpZiQgs7Qr513iHWarU0_etXJwduN8lvplJWvK71t5drdyeRkICbBjyeBd7fRhFFubNCm61RvXAwSgJclAYarhH5_g9646Pv0vURVogAgMFE_d5T2LgRvVs_LECynlOSUknxMKcHfXq7_jP6PJQFkB9zbzmzfUcnz5eVyJ_0HljqeUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289622128</pqid></control><display><type>article</type><title>Future directions for high‐throughput splicing assays in precision medicine</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rhine, Christy L. ; Neil, Christopher ; Glidden, David T. ; Cygan, Kamil J. ; Fredericks, Alger M. ; Wang, Jing ; Walton, Nephi A. ; Fairbrother, William G.</creator><creatorcontrib>Rhine, Christy L. ; Neil, Christopher ; Glidden, David T. ; Cygan, Kamil J. ; Fredericks, Alger M. ; Wang, Jing ; Walton, Nephi A. ; Fairbrother, William G.</creatorcontrib><description>Classification of variants of unknown significance is a challenging technical problem in clinical genetics. As up to one‐third of disease‐causing mutations are thought to affect pre‐mRNA splicing, it is important to accurately classify splicing mutations in patient sequencing data. Several consortia and healthcare systems have conducted large‐scale patient sequencing studies, which discover novel variants faster than they can be classified. Here, we compare the advantages and limitations of several high‐throughput splicing assays aimed at mitigating this bottleneck, and describe a data set of ~5,000 variants that we analyzed using our Massively Parallel Splicing Assay (MaPSy). The Critical Assessment of Genome Interpretation group (CAGI) organized a challenge, in which participants submitted machine learning models to predict the splicing effects of variants in this data set. We discuss the winning submission of the challenge (MMSplice) which outperformed existing software. Finally, we highlight methods to overcome the limitations of MaPSy and similar assays, such as tissue‐specific splicing, the effect of surrounding sequence context, classifying intronic variants, synthesizing large exons, and amplifying complex libraries of minigene species. Further development of these assays will greatly benefit the field of clinical genetics, which lack high‐throughput methods for variant interpretation.</description><identifier>ISSN: 1059-7794</identifier><identifier>EISSN: 1098-1004</identifier><identifier>DOI: 10.1002/humu.23866</identifier><identifier>PMID: 31297895</identifier><language>eng</language><publisher>United States: Hindawi Limited</publisher><subject>assay ; Computational Biology - methods ; disease ; Exons ; Genomes ; High-Throughput Nucleotide Sequencing - methods ; high‐throughput ; Humans ; Learning algorithms ; Machine Learning ; mRNA ; Mutation ; Precision Medicine ; RNA Precursors - genetics ; RNA Splicing ; Sequence Analysis, RNA ; Software ; Splicing ; variant</subject><ispartof>Human mutation, 2019-09, Vol.40 (9), p.1225-1234</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4486-442499b922d131493919b5bbe5b27256aabc59674f24c07c6d0de941323301163</citedby><cites>FETCH-LOGICAL-c4486-442499b922d131493919b5bbe5b27256aabc59674f24c07c6d0de941323301163</cites><orcidid>0000-0002-2742-9531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhumu.23866$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhumu.23866$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31297895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rhine, Christy L.</creatorcontrib><creatorcontrib>Neil, Christopher</creatorcontrib><creatorcontrib>Glidden, David T.</creatorcontrib><creatorcontrib>Cygan, Kamil J.</creatorcontrib><creatorcontrib>Fredericks, Alger M.</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Walton, Nephi A.</creatorcontrib><creatorcontrib>Fairbrother, William G.</creatorcontrib><title>Future directions for high‐throughput splicing assays in precision medicine</title><title>Human mutation</title><addtitle>Hum Mutat</addtitle><description>Classification of variants of unknown significance is a challenging technical problem in clinical genetics. As up to one‐third of disease‐causing mutations are thought to affect pre‐mRNA splicing, it is important to accurately classify splicing mutations in patient sequencing data. Several consortia and healthcare systems have conducted large‐scale patient sequencing studies, which discover novel variants faster than they can be classified. Here, we compare the advantages and limitations of several high‐throughput splicing assays aimed at mitigating this bottleneck, and describe a data set of ~5,000 variants that we analyzed using our Massively Parallel Splicing Assay (MaPSy). The Critical Assessment of Genome Interpretation group (CAGI) organized a challenge, in which participants submitted machine learning models to predict the splicing effects of variants in this data set. We discuss the winning submission of the challenge (MMSplice) which outperformed existing software. Finally, we highlight methods to overcome the limitations of MaPSy and similar assays, such as tissue‐specific splicing, the effect of surrounding sequence context, classifying intronic variants, synthesizing large exons, and amplifying complex libraries of minigene species. Further development of these assays will greatly benefit the field of clinical genetics, which lack high‐throughput methods for variant interpretation.</description><subject>assay</subject><subject>Computational Biology - methods</subject><subject>disease</subject><subject>Exons</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>high‐throughput</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>mRNA</subject><subject>Mutation</subject><subject>Precision Medicine</subject><subject>RNA Precursors - genetics</subject><subject>RNA Splicing</subject><subject>Sequence Analysis, RNA</subject><subject>Software</subject><subject>Splicing</subject><subject>variant</subject><issn>1059-7794</issn><issn>1098-1004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9O3DAQh60KVOi2lz5AFamXqlIWe2wn8aUSWvGnEogLe7Ycx7sxysbBjkF76yPwjH2SOixFwIGTLc8334z1Q-grwXOCMRy1cRPnQKui-IAOCRZVnp7Z3nTnIi9LwQ7QpxBuMMYV5_QjOqAERFkJfoguT-MYvcka640eretDtnI-a-26_fvnYWy9i-t2iGMWhs5q268zFYLahsz22ZBabEg92cY0U9F8Rvsr1QXz5emcoeXpyfXiPL-4Ovu9OL7INWNVkTMGTIhaADSEEiaoIKLmdW14DSXwQqlac1GUbAVM41IXDW6MYIQCpZiQgs7Qr513iHWarU0_etXJwduN8lvplJWvK71t5drdyeRkICbBjyeBd7fRhFFubNCm61RvXAwSgJclAYarhH5_g9646Pv0vURVogAgMFE_d5T2LgRvVs_LECynlOSUknxMKcHfXq7_jP6PJQFkB9zbzmzfUcnz5eVyJ_0HljqeUg</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Rhine, Christy L.</creator><creator>Neil, Christopher</creator><creator>Glidden, David T.</creator><creator>Cygan, Kamil J.</creator><creator>Fredericks, Alger M.</creator><creator>Wang, Jing</creator><creator>Walton, Nephi A.</creator><creator>Fairbrother, William G.</creator><general>Hindawi Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2742-9531</orcidid></search><sort><creationdate>201909</creationdate><title>Future directions for high‐throughput splicing assays in precision medicine</title><author>Rhine, Christy L. ; Neil, Christopher ; Glidden, David T. ; Cygan, Kamil J. ; Fredericks, Alger M. ; Wang, Jing ; Walton, Nephi A. ; Fairbrother, William G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4486-442499b922d131493919b5bbe5b27256aabc59674f24c07c6d0de941323301163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>assay</topic><topic>Computational Biology - methods</topic><topic>disease</topic><topic>Exons</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>high‐throughput</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>mRNA</topic><topic>Mutation</topic><topic>Precision Medicine</topic><topic>RNA Precursors - genetics</topic><topic>RNA Splicing</topic><topic>Sequence Analysis, RNA</topic><topic>Software</topic><topic>Splicing</topic><topic>variant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rhine, Christy L.</creatorcontrib><creatorcontrib>Neil, Christopher</creatorcontrib><creatorcontrib>Glidden, David T.</creatorcontrib><creatorcontrib>Cygan, Kamil J.</creatorcontrib><creatorcontrib>Fredericks, Alger M.</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Walton, Nephi A.</creatorcontrib><creatorcontrib>Fairbrother, William G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human mutation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rhine, Christy L.</au><au>Neil, Christopher</au><au>Glidden, David T.</au><au>Cygan, Kamil J.</au><au>Fredericks, Alger M.</au><au>Wang, Jing</au><au>Walton, Nephi A.</au><au>Fairbrother, William G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Future directions for high‐throughput splicing assays in precision medicine</atitle><jtitle>Human mutation</jtitle><addtitle>Hum Mutat</addtitle><date>2019-09</date><risdate>2019</risdate><volume>40</volume><issue>9</issue><spage>1225</spage><epage>1234</epage><pages>1225-1234</pages><issn>1059-7794</issn><eissn>1098-1004</eissn><abstract>Classification of variants of unknown significance is a challenging technical problem in clinical genetics. As up to one‐third of disease‐causing mutations are thought to affect pre‐mRNA splicing, it is important to accurately classify splicing mutations in patient sequencing data. Several consortia and healthcare systems have conducted large‐scale patient sequencing studies, which discover novel variants faster than they can be classified. Here, we compare the advantages and limitations of several high‐throughput splicing assays aimed at mitigating this bottleneck, and describe a data set of ~5,000 variants that we analyzed using our Massively Parallel Splicing Assay (MaPSy). The Critical Assessment of Genome Interpretation group (CAGI) organized a challenge, in which participants submitted machine learning models to predict the splicing effects of variants in this data set. We discuss the winning submission of the challenge (MMSplice) which outperformed existing software. Finally, we highlight methods to overcome the limitations of MaPSy and similar assays, such as tissue‐specific splicing, the effect of surrounding sequence context, classifying intronic variants, synthesizing large exons, and amplifying complex libraries of minigene species. Further development of these assays will greatly benefit the field of clinical genetics, which lack high‐throughput methods for variant interpretation.</abstract><cop>United States</cop><pub>Hindawi Limited</pub><pmid>31297895</pmid><doi>10.1002/humu.23866</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2742-9531</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-7794
ispartof Human mutation, 2019-09, Vol.40 (9), p.1225-1234
issn 1059-7794
1098-1004
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6744296
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects assay
Computational Biology - methods
disease
Exons
Genomes
High-Throughput Nucleotide Sequencing - methods
high‐throughput
Humans
Learning algorithms
Machine Learning
mRNA
Mutation
Precision Medicine
RNA Precursors - genetics
RNA Splicing
Sequence Analysis, RNA
Software
Splicing
variant
title Future directions for high‐throughput splicing assays in precision medicine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Future%20directions%20for%20high%E2%80%90throughput%20splicing%20assays%20in%20precision%20medicine&rft.jtitle=Human%20mutation&rft.au=Rhine,%20Christy%20L.&rft.date=2019-09&rft.volume=40&rft.issue=9&rft.spage=1225&rft.epage=1234&rft.pages=1225-1234&rft.issn=1059-7794&rft.eissn=1098-1004&rft_id=info:doi/10.1002/humu.23866&rft_dat=%3Cproquest_pubme%3E2257712408%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289622128&rft_id=info:pmid/31297895&rfr_iscdi=true