Future directions for high‐throughput splicing assays in precision medicine
Classification of variants of unknown significance is a challenging technical problem in clinical genetics. As up to one‐third of disease‐causing mutations are thought to affect pre‐mRNA splicing, it is important to accurately classify splicing mutations in patient sequencing data. Several consortia...
Gespeichert in:
Veröffentlicht in: | Human mutation 2019-09, Vol.40 (9), p.1225-1234 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1234 |
---|---|
container_issue | 9 |
container_start_page | 1225 |
container_title | Human mutation |
container_volume | 40 |
creator | Rhine, Christy L. Neil, Christopher Glidden, David T. Cygan, Kamil J. Fredericks, Alger M. Wang, Jing Walton, Nephi A. Fairbrother, William G. |
description | Classification of variants of unknown significance is a challenging technical problem in clinical genetics. As up to one‐third of disease‐causing mutations are thought to affect pre‐mRNA splicing, it is important to accurately classify splicing mutations in patient sequencing data. Several consortia and healthcare systems have conducted large‐scale patient sequencing studies, which discover novel variants faster than they can be classified. Here, we compare the advantages and limitations of several high‐throughput splicing assays aimed at mitigating this bottleneck, and describe a data set of ~5,000 variants that we analyzed using our Massively Parallel Splicing Assay (MaPSy). The Critical Assessment of Genome Interpretation group (CAGI) organized a challenge, in which participants submitted machine learning models to predict the splicing effects of variants in this data set. We discuss the winning submission of the challenge (MMSplice) which outperformed existing software. Finally, we highlight methods to overcome the limitations of MaPSy and similar assays, such as tissue‐specific splicing, the effect of surrounding sequence context, classifying intronic variants, synthesizing large exons, and amplifying complex libraries of minigene species. Further development of these assays will greatly benefit the field of clinical genetics, which lack high‐throughput methods for variant interpretation. |
doi_str_mv | 10.1002/humu.23866 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6744296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2257712408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4486-442499b922d131493919b5bbe5b27256aabc59674f24c07c6d0de941323301163</originalsourceid><addsrcrecordid>eNp9kc9O3DAQh60KVOi2lz5AFamXqlIWe2wn8aUSWvGnEogLe7Ycx7sxysbBjkF76yPwjH2SOixFwIGTLc8334z1Q-grwXOCMRy1cRPnQKui-IAOCRZVnp7Z3nTnIi9LwQ7QpxBuMMYV5_QjOqAERFkJfoguT-MYvcka640eretDtnI-a-26_fvnYWy9i-t2iGMWhs5q268zFYLahsz22ZBabEg92cY0U9F8Rvsr1QXz5emcoeXpyfXiPL-4Ovu9OL7INWNVkTMGTIhaADSEEiaoIKLmdW14DSXwQqlac1GUbAVM41IXDW6MYIQCpZiQgs7Qr513iHWarU0_etXJwduN8lvplJWvK71t5drdyeRkICbBjyeBd7fRhFFubNCm61RvXAwSgJclAYarhH5_g9646Pv0vURVogAgMFE_d5T2LgRvVs_LECynlOSUknxMKcHfXq7_jP6PJQFkB9zbzmzfUcnz5eVyJ_0HljqeUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289622128</pqid></control><display><type>article</type><title>Future directions for high‐throughput splicing assays in precision medicine</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rhine, Christy L. ; Neil, Christopher ; Glidden, David T. ; Cygan, Kamil J. ; Fredericks, Alger M. ; Wang, Jing ; Walton, Nephi A. ; Fairbrother, William G.</creator><creatorcontrib>Rhine, Christy L. ; Neil, Christopher ; Glidden, David T. ; Cygan, Kamil J. ; Fredericks, Alger M. ; Wang, Jing ; Walton, Nephi A. ; Fairbrother, William G.</creatorcontrib><description>Classification of variants of unknown significance is a challenging technical problem in clinical genetics. As up to one‐third of disease‐causing mutations are thought to affect pre‐mRNA splicing, it is important to accurately classify splicing mutations in patient sequencing data. Several consortia and healthcare systems have conducted large‐scale patient sequencing studies, which discover novel variants faster than they can be classified. Here, we compare the advantages and limitations of several high‐throughput splicing assays aimed at mitigating this bottleneck, and describe a data set of ~5,000 variants that we analyzed using our Massively Parallel Splicing Assay (MaPSy). The Critical Assessment of Genome Interpretation group (CAGI) organized a challenge, in which participants submitted machine learning models to predict the splicing effects of variants in this data set. We discuss the winning submission of the challenge (MMSplice) which outperformed existing software. Finally, we highlight methods to overcome the limitations of MaPSy and similar assays, such as tissue‐specific splicing, the effect of surrounding sequence context, classifying intronic variants, synthesizing large exons, and amplifying complex libraries of minigene species. Further development of these assays will greatly benefit the field of clinical genetics, which lack high‐throughput methods for variant interpretation.</description><identifier>ISSN: 1059-7794</identifier><identifier>EISSN: 1098-1004</identifier><identifier>DOI: 10.1002/humu.23866</identifier><identifier>PMID: 31297895</identifier><language>eng</language><publisher>United States: Hindawi Limited</publisher><subject>assay ; Computational Biology - methods ; disease ; Exons ; Genomes ; High-Throughput Nucleotide Sequencing - methods ; high‐throughput ; Humans ; Learning algorithms ; Machine Learning ; mRNA ; Mutation ; Precision Medicine ; RNA Precursors - genetics ; RNA Splicing ; Sequence Analysis, RNA ; Software ; Splicing ; variant</subject><ispartof>Human mutation, 2019-09, Vol.40 (9), p.1225-1234</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4486-442499b922d131493919b5bbe5b27256aabc59674f24c07c6d0de941323301163</citedby><cites>FETCH-LOGICAL-c4486-442499b922d131493919b5bbe5b27256aabc59674f24c07c6d0de941323301163</cites><orcidid>0000-0002-2742-9531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhumu.23866$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhumu.23866$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31297895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rhine, Christy L.</creatorcontrib><creatorcontrib>Neil, Christopher</creatorcontrib><creatorcontrib>Glidden, David T.</creatorcontrib><creatorcontrib>Cygan, Kamil J.</creatorcontrib><creatorcontrib>Fredericks, Alger M.</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Walton, Nephi A.</creatorcontrib><creatorcontrib>Fairbrother, William G.</creatorcontrib><title>Future directions for high‐throughput splicing assays in precision medicine</title><title>Human mutation</title><addtitle>Hum Mutat</addtitle><description>Classification of variants of unknown significance is a challenging technical problem in clinical genetics. As up to one‐third of disease‐causing mutations are thought to affect pre‐mRNA splicing, it is important to accurately classify splicing mutations in patient sequencing data. Several consortia and healthcare systems have conducted large‐scale patient sequencing studies, which discover novel variants faster than they can be classified. Here, we compare the advantages and limitations of several high‐throughput splicing assays aimed at mitigating this bottleneck, and describe a data set of ~5,000 variants that we analyzed using our Massively Parallel Splicing Assay (MaPSy). The Critical Assessment of Genome Interpretation group (CAGI) organized a challenge, in which participants submitted machine learning models to predict the splicing effects of variants in this data set. We discuss the winning submission of the challenge (MMSplice) which outperformed existing software. Finally, we highlight methods to overcome the limitations of MaPSy and similar assays, such as tissue‐specific splicing, the effect of surrounding sequence context, classifying intronic variants, synthesizing large exons, and amplifying complex libraries of minigene species. Further development of these assays will greatly benefit the field of clinical genetics, which lack high‐throughput methods for variant interpretation.</description><subject>assay</subject><subject>Computational Biology - methods</subject><subject>disease</subject><subject>Exons</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>high‐throughput</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>mRNA</subject><subject>Mutation</subject><subject>Precision Medicine</subject><subject>RNA Precursors - genetics</subject><subject>RNA Splicing</subject><subject>Sequence Analysis, RNA</subject><subject>Software</subject><subject>Splicing</subject><subject>variant</subject><issn>1059-7794</issn><issn>1098-1004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9O3DAQh60KVOi2lz5AFamXqlIWe2wn8aUSWvGnEogLe7Ycx7sxysbBjkF76yPwjH2SOixFwIGTLc8334z1Q-grwXOCMRy1cRPnQKui-IAOCRZVnp7Z3nTnIi9LwQ7QpxBuMMYV5_QjOqAERFkJfoguT-MYvcka640eretDtnI-a-26_fvnYWy9i-t2iGMWhs5q268zFYLahsz22ZBabEg92cY0U9F8Rvsr1QXz5emcoeXpyfXiPL-4Ovu9OL7INWNVkTMGTIhaADSEEiaoIKLmdW14DSXwQqlac1GUbAVM41IXDW6MYIQCpZiQgs7Qr513iHWarU0_etXJwduN8lvplJWvK71t5drdyeRkICbBjyeBd7fRhFFubNCm61RvXAwSgJclAYarhH5_g9646Pv0vURVogAgMFE_d5T2LgRvVs_LECynlOSUknxMKcHfXq7_jP6PJQFkB9zbzmzfUcnz5eVyJ_0HljqeUg</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Rhine, Christy L.</creator><creator>Neil, Christopher</creator><creator>Glidden, David T.</creator><creator>Cygan, Kamil J.</creator><creator>Fredericks, Alger M.</creator><creator>Wang, Jing</creator><creator>Walton, Nephi A.</creator><creator>Fairbrother, William G.</creator><general>Hindawi Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2742-9531</orcidid></search><sort><creationdate>201909</creationdate><title>Future directions for high‐throughput splicing assays in precision medicine</title><author>Rhine, Christy L. ; Neil, Christopher ; Glidden, David T. ; Cygan, Kamil J. ; Fredericks, Alger M. ; Wang, Jing ; Walton, Nephi A. ; Fairbrother, William G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4486-442499b922d131493919b5bbe5b27256aabc59674f24c07c6d0de941323301163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>assay</topic><topic>Computational Biology - methods</topic><topic>disease</topic><topic>Exons</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>high‐throughput</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>mRNA</topic><topic>Mutation</topic><topic>Precision Medicine</topic><topic>RNA Precursors - genetics</topic><topic>RNA Splicing</topic><topic>Sequence Analysis, RNA</topic><topic>Software</topic><topic>Splicing</topic><topic>variant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rhine, Christy L.</creatorcontrib><creatorcontrib>Neil, Christopher</creatorcontrib><creatorcontrib>Glidden, David T.</creatorcontrib><creatorcontrib>Cygan, Kamil J.</creatorcontrib><creatorcontrib>Fredericks, Alger M.</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Walton, Nephi A.</creatorcontrib><creatorcontrib>Fairbrother, William G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human mutation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rhine, Christy L.</au><au>Neil, Christopher</au><au>Glidden, David T.</au><au>Cygan, Kamil J.</au><au>Fredericks, Alger M.</au><au>Wang, Jing</au><au>Walton, Nephi A.</au><au>Fairbrother, William G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Future directions for high‐throughput splicing assays in precision medicine</atitle><jtitle>Human mutation</jtitle><addtitle>Hum Mutat</addtitle><date>2019-09</date><risdate>2019</risdate><volume>40</volume><issue>9</issue><spage>1225</spage><epage>1234</epage><pages>1225-1234</pages><issn>1059-7794</issn><eissn>1098-1004</eissn><abstract>Classification of variants of unknown significance is a challenging technical problem in clinical genetics. As up to one‐third of disease‐causing mutations are thought to affect pre‐mRNA splicing, it is important to accurately classify splicing mutations in patient sequencing data. Several consortia and healthcare systems have conducted large‐scale patient sequencing studies, which discover novel variants faster than they can be classified. Here, we compare the advantages and limitations of several high‐throughput splicing assays aimed at mitigating this bottleneck, and describe a data set of ~5,000 variants that we analyzed using our Massively Parallel Splicing Assay (MaPSy). The Critical Assessment of Genome Interpretation group (CAGI) organized a challenge, in which participants submitted machine learning models to predict the splicing effects of variants in this data set. We discuss the winning submission of the challenge (MMSplice) which outperformed existing software. Finally, we highlight methods to overcome the limitations of MaPSy and similar assays, such as tissue‐specific splicing, the effect of surrounding sequence context, classifying intronic variants, synthesizing large exons, and amplifying complex libraries of minigene species. Further development of these assays will greatly benefit the field of clinical genetics, which lack high‐throughput methods for variant interpretation.</abstract><cop>United States</cop><pub>Hindawi Limited</pub><pmid>31297895</pmid><doi>10.1002/humu.23866</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2742-9531</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-7794 |
ispartof | Human mutation, 2019-09, Vol.40 (9), p.1225-1234 |
issn | 1059-7794 1098-1004 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6744296 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | assay Computational Biology - methods disease Exons Genomes High-Throughput Nucleotide Sequencing - methods high‐throughput Humans Learning algorithms Machine Learning mRNA Mutation Precision Medicine RNA Precursors - genetics RNA Splicing Sequence Analysis, RNA Software Splicing variant |
title | Future directions for high‐throughput splicing assays in precision medicine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Future%20directions%20for%20high%E2%80%90throughput%20splicing%20assays%20in%20precision%20medicine&rft.jtitle=Human%20mutation&rft.au=Rhine,%20Christy%20L.&rft.date=2019-09&rft.volume=40&rft.issue=9&rft.spage=1225&rft.epage=1234&rft.pages=1225-1234&rft.issn=1059-7794&rft.eissn=1098-1004&rft_id=info:doi/10.1002/humu.23866&rft_dat=%3Cproquest_pubme%3E2257712408%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289622128&rft_id=info:pmid/31297895&rfr_iscdi=true |