Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements

Silk and cellulose are biopolymers that show strong potential as future sustainable materials. They also have complementary properties, suitable for combination in composite materials where cellulose would form the reinforcing component and silk the tough matrix. A major challenge concerns balancing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2019-09, Vol.5 (9), p.eaaw2541-eaaw2541
Hauptverfasser: Mohammadi, Pezhman, Aranko, A Sesilja, Landowski, Christopher P, Ikkala, Olli, Jaudzems, Kristaps, Wagermaier, Wolfgang, Linder, Markus B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eaaw2541
container_issue 9
container_start_page eaaw2541
container_title Science advances
container_volume 5
creator Mohammadi, Pezhman
Aranko, A Sesilja
Landowski, Christopher P
Ikkala, Olli
Jaudzems, Kristaps
Wagermaier, Wolfgang
Linder, Markus B
description Silk and cellulose are biopolymers that show strong potential as future sustainable materials. They also have complementary properties, suitable for combination in composite materials where cellulose would form the reinforcing component and silk the tough matrix. A major challenge concerns balancing structure and functional properties in the assembly process. We used recombinant proteins with triblock architecture, combining structurally modified spider silk with terminal cellulose affinity modules. Flow alignment of cellulose nanofibrils and triblock protein allowed continuous fiber production. Protein assembly involved phase separation into concentrated coacervates, with subsequent conformational switching from disordered structures into β sheets. This process gave the matrix a tough adhesiveness, forming a new composite material with high strength and stiffness combined with increased toughness. We show that versatile design possibilities in protein engineering enable new fully biological materials and emphasize the key role of controlled assembly at multiple length scales for realization.
doi_str_mv 10.1126/sciadv.aaw2541
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6744269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2296658600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-107efcfb2dffb43d77f2bab40ff725b0cde7b2a30d6f94e165e85708a96d30d83</originalsourceid><addsrcrecordid>eNpVUU1PxCAUJEbjGvXq0XD00hVoS9uLiRq_EhMveiYUHrtoCxVajQf_u2x23eiF9zIzzIM3CJ1QMqeU8fOorNQfcyk_WVnQHXTA8qrMUl_v_uln6DjGV0IILTgvabOPZjlNeFOzA_R9ZX1vexitwsr3g492hIg_7bjE4JbSKdB49NNiCc66BZ7i6oy2e8usi4MNKzrYtvPqDQ_Bj5BgLJ3GsrMLl1gnnVfQdVPnI-CQeOODgh7cGI_QnpFdhONNPUQvtzfP1_fZ49Pdw_XlY6byhowZJRUYZVqmjWmLXFeVYa1sC2JMxcqWKA1Vy2RONDdNAZSXUJcVqWXDdQLr_BBdrH2Hqe1BqzQ7yE4MwfYyfAkvrfjPOLsUC_8heFUUjDfJ4GxjEPz7BHEUvY2rX0kHfoqCsSbttuaEJOl8LVXBxxjAbMdQIlaxiXVsYhNbunD693Fb-W9I-Q8J-Jut</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296658600</pqid></control><display><type>article</type><title>Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Mohammadi, Pezhman ; Aranko, A Sesilja ; Landowski, Christopher P ; Ikkala, Olli ; Jaudzems, Kristaps ; Wagermaier, Wolfgang ; Linder, Markus B</creator><creatorcontrib>Mohammadi, Pezhman ; Aranko, A Sesilja ; Landowski, Christopher P ; Ikkala, Olli ; Jaudzems, Kristaps ; Wagermaier, Wolfgang ; Linder, Markus B</creatorcontrib><description>Silk and cellulose are biopolymers that show strong potential as future sustainable materials. They also have complementary properties, suitable for combination in composite materials where cellulose would form the reinforcing component and silk the tough matrix. A major challenge concerns balancing structure and functional properties in the assembly process. We used recombinant proteins with triblock architecture, combining structurally modified spider silk with terminal cellulose affinity modules. Flow alignment of cellulose nanofibrils and triblock protein allowed continuous fiber production. Protein assembly involved phase separation into concentrated coacervates, with subsequent conformational switching from disordered structures into β sheets. This process gave the matrix a tough adhesiveness, forming a new composite material with high strength and stiffness combined with increased toughness. We show that versatile design possibilities in protein engineering enable new fully biological materials and emphasize the key role of controlled assembly at multiple length scales for realization.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aaw2541</identifier><identifier>PMID: 31548982</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biomimetic Materials - chemistry ; Cellulose - chemistry ; Life Sciences ; Materials Science ; Protein Engineering ; Recombinant Proteins ; SciAdv r-articles ; Silk - chemistry</subject><ispartof>Science advances, 2019-09, Vol.5 (9), p.eaaw2541-eaaw2541</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2019 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-107efcfb2dffb43d77f2bab40ff725b0cde7b2a30d6f94e165e85708a96d30d83</citedby><cites>FETCH-LOGICAL-c390t-107efcfb2dffb43d77f2bab40ff725b0cde7b2a30d6f94e165e85708a96d30d83</cites><orcidid>0000-0003-3922-2447 ; 0000-0003-4593-5371 ; 0000-0002-7271-6441 ; 0000-0001-9425-3524 ; 0000-0002-4283-8464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744269/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744269/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31548982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohammadi, Pezhman</creatorcontrib><creatorcontrib>Aranko, A Sesilja</creatorcontrib><creatorcontrib>Landowski, Christopher P</creatorcontrib><creatorcontrib>Ikkala, Olli</creatorcontrib><creatorcontrib>Jaudzems, Kristaps</creatorcontrib><creatorcontrib>Wagermaier, Wolfgang</creatorcontrib><creatorcontrib>Linder, Markus B</creatorcontrib><title>Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Silk and cellulose are biopolymers that show strong potential as future sustainable materials. They also have complementary properties, suitable for combination in composite materials where cellulose would form the reinforcing component and silk the tough matrix. A major challenge concerns balancing structure and functional properties in the assembly process. We used recombinant proteins with triblock architecture, combining structurally modified spider silk with terminal cellulose affinity modules. Flow alignment of cellulose nanofibrils and triblock protein allowed continuous fiber production. Protein assembly involved phase separation into concentrated coacervates, with subsequent conformational switching from disordered structures into β sheets. This process gave the matrix a tough adhesiveness, forming a new composite material with high strength and stiffness combined with increased toughness. We show that versatile design possibilities in protein engineering enable new fully biological materials and emphasize the key role of controlled assembly at multiple length scales for realization.</description><subject>Biomimetic Materials - chemistry</subject><subject>Cellulose - chemistry</subject><subject>Life Sciences</subject><subject>Materials Science</subject><subject>Protein Engineering</subject><subject>Recombinant Proteins</subject><subject>SciAdv r-articles</subject><subject>Silk - chemistry</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1PxCAUJEbjGvXq0XD00hVoS9uLiRq_EhMveiYUHrtoCxVajQf_u2x23eiF9zIzzIM3CJ1QMqeU8fOorNQfcyk_WVnQHXTA8qrMUl_v_uln6DjGV0IILTgvabOPZjlNeFOzA_R9ZX1vexitwsr3g492hIg_7bjE4JbSKdB49NNiCc66BZ7i6oy2e8usi4MNKzrYtvPqDQ_Bj5BgLJ3GsrMLl1gnnVfQdVPnI-CQeOODgh7cGI_QnpFdhONNPUQvtzfP1_fZ49Pdw_XlY6byhowZJRUYZVqmjWmLXFeVYa1sC2JMxcqWKA1Vy2RONDdNAZSXUJcVqWXDdQLr_BBdrH2Hqe1BqzQ7yE4MwfYyfAkvrfjPOLsUC_8heFUUjDfJ4GxjEPz7BHEUvY2rX0kHfoqCsSbttuaEJOl8LVXBxxjAbMdQIlaxiXVsYhNbunD693Fb-W9I-Q8J-Jut</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Mohammadi, Pezhman</creator><creator>Aranko, A Sesilja</creator><creator>Landowski, Christopher P</creator><creator>Ikkala, Olli</creator><creator>Jaudzems, Kristaps</creator><creator>Wagermaier, Wolfgang</creator><creator>Linder, Markus B</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3922-2447</orcidid><orcidid>https://orcid.org/0000-0003-4593-5371</orcidid><orcidid>https://orcid.org/0000-0002-7271-6441</orcidid><orcidid>https://orcid.org/0000-0001-9425-3524</orcidid><orcidid>https://orcid.org/0000-0002-4283-8464</orcidid></search><sort><creationdate>20190901</creationdate><title>Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements</title><author>Mohammadi, Pezhman ; Aranko, A Sesilja ; Landowski, Christopher P ; Ikkala, Olli ; Jaudzems, Kristaps ; Wagermaier, Wolfgang ; Linder, Markus B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-107efcfb2dffb43d77f2bab40ff725b0cde7b2a30d6f94e165e85708a96d30d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomimetic Materials - chemistry</topic><topic>Cellulose - chemistry</topic><topic>Life Sciences</topic><topic>Materials Science</topic><topic>Protein Engineering</topic><topic>Recombinant Proteins</topic><topic>SciAdv r-articles</topic><topic>Silk - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammadi, Pezhman</creatorcontrib><creatorcontrib>Aranko, A Sesilja</creatorcontrib><creatorcontrib>Landowski, Christopher P</creatorcontrib><creatorcontrib>Ikkala, Olli</creatorcontrib><creatorcontrib>Jaudzems, Kristaps</creatorcontrib><creatorcontrib>Wagermaier, Wolfgang</creatorcontrib><creatorcontrib>Linder, Markus B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammadi, Pezhman</au><au>Aranko, A Sesilja</au><au>Landowski, Christopher P</au><au>Ikkala, Olli</au><au>Jaudzems, Kristaps</au><au>Wagermaier, Wolfgang</au><au>Linder, Markus B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>5</volume><issue>9</issue><spage>eaaw2541</spage><epage>eaaw2541</epage><pages>eaaw2541-eaaw2541</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Silk and cellulose are biopolymers that show strong potential as future sustainable materials. They also have complementary properties, suitable for combination in composite materials where cellulose would form the reinforcing component and silk the tough matrix. A major challenge concerns balancing structure and functional properties in the assembly process. We used recombinant proteins with triblock architecture, combining structurally modified spider silk with terminal cellulose affinity modules. Flow alignment of cellulose nanofibrils and triblock protein allowed continuous fiber production. Protein assembly involved phase separation into concentrated coacervates, with subsequent conformational switching from disordered structures into β sheets. This process gave the matrix a tough adhesiveness, forming a new composite material with high strength and stiffness combined with increased toughness. We show that versatile design possibilities in protein engineering enable new fully biological materials and emphasize the key role of controlled assembly at multiple length scales for realization.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>31548982</pmid><doi>10.1126/sciadv.aaw2541</doi><orcidid>https://orcid.org/0000-0003-3922-2447</orcidid><orcidid>https://orcid.org/0000-0003-4593-5371</orcidid><orcidid>https://orcid.org/0000-0002-7271-6441</orcidid><orcidid>https://orcid.org/0000-0001-9425-3524</orcidid><orcidid>https://orcid.org/0000-0002-4283-8464</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2019-09, Vol.5 (9), p.eaaw2541-eaaw2541
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6744269
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Biomimetic Materials - chemistry
Cellulose - chemistry
Life Sciences
Materials Science
Protein Engineering
Recombinant Proteins
SciAdv r-articles
Silk - chemistry
title Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20composites%20with%20enhanced%20toughening%20using%20silk-inspired%20triblock%20proteins%20and%20aligned%20nanocellulose%20reinforcements&rft.jtitle=Science%20advances&rft.au=Mohammadi,%20Pezhman&rft.date=2019-09-01&rft.volume=5&rft.issue=9&rft.spage=eaaw2541&rft.epage=eaaw2541&rft.pages=eaaw2541-eaaw2541&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aaw2541&rft_dat=%3Cproquest_pubme%3E2296658600%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296658600&rft_id=info:pmid/31548982&rfr_iscdi=true