Burst-Induced Synaptic Depression and Its Modulation Contribute to Information Transfer at Aplysia Sensorimotor Synapses: Empirical and Computational Analyses

The Aplysia sensorimotor synapse is a key site of plasticity for several simple forms of learning. Plasticity of this synapse has been extensively studied, albeit primarily with individual action potentials elicited at low frequencies. Yet, the mechanosensory neurons fire high-frequency bursts in re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2003-09, Vol.23 (23), p.8392-8401
Hauptverfasser: Phares, Gregg A, Antzoulatos, Evangelos G, Baxter, Douglas A, Byrne, John H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8401
container_issue 23
container_start_page 8392
container_title The Journal of neuroscience
container_volume 23
creator Phares, Gregg A
Antzoulatos, Evangelos G
Baxter, Douglas A
Byrne, John H
description The Aplysia sensorimotor synapse is a key site of plasticity for several simple forms of learning. Plasticity of this synapse has been extensively studied, albeit primarily with individual action potentials elicited at low frequencies. Yet, the mechanosensory neurons fire high-frequency bursts in response to even moderate tactile stimuli delivered to the skin. In the present study, we extend this analysis to show that sensory neurons also fire bursts in the range of 1-60 Hz in response to electrical stimuli similar to those used in behavioral studies of sensitization. Intracellular stimulation of sensory neurons to fire a burst of action potentials at 10 Hz for 1 sec led to significant homosynaptic depression of postsynaptic responses. The depression was transient and fully recovered within 10 min. During the burst, the steady-state depressed phase of the postsynaptic response, which was only 20% of the initial EPSP of the burst, still contributed to firing the motor neuron. To explore the functional contribution of transient homosynaptic depression to the response of the motor neuron, computer simulations of the sensorimotor synapse with and without depression were compared. Depression allowed the motor neuron to produce graded responses over a wide range of presynaptic input strength. In addition, enhancement of synaptic transmission throughout a burst increased motor neuron output substantially more than did preferential enhancement of the initial phase of a burst. Thus, synaptic depression increased the dynamic range of the sensorimotor synapse and can, in principle, have a profound effect on information processing.
doi_str_mv 10.1523/jneurosci.23-23-08392.2003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6740707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18950426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-a0e5a03f85a14168189e5e87e52c20a75fb29f6d98163b7968e5e9898d6cbc623</originalsourceid><addsrcrecordid>eNqFkttu1DAQhi0EotvCKyCLC7jK4kMOTi-QlrBAUKES215bjuN0XSV2ajus9mX6rHg3Kw5XSJYtz3zzz4w9ALzGaIkzQt_dGzU566VeEprEhRgtyZIgRJ-ARSTKhKQIPwULRAqU5GmRnoFz7-8RQgXCxXNwhkmZM4TwAjx-mJwPSW3aSaoWbvZGjEFL-FGNTnmvrYHCtLAOHn6z7dSLcDBV1gSnmykoGCysTWfdMHtunDC-Uw6KAFdjv_dawI0y3jo92GDdnMErfwnXw6idlqI_ZqjsME7hKBItq7jtI_UCPOtE79XL03kBbj-tb6ovydX157paXSUypTQkAqlMINqxTOAU5wyzUmWKFSojkiBRZF1Dyi5vS4Zz2hSx-eguWcnaXDYyJ_QCvJ91x6kZVCtV7E_0fIxVC7fnVmj-r8foLb-zP3lepPFRiyjw5iTg7MOkfOCD9lL1vTDKTp4XNMdpych_wVh6hlKSR_ByBmX8a-9U97sajPhhDvjX7-vbH9ebqubxEtdxDvhhDmLwq7_7-RN6-vgIvJ2Brb7b7rRT3A-i7yOO-W63mwUPevQXvtLDXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18950426</pqid></control><display><type>article</type><title>Burst-Induced Synaptic Depression and Its Modulation Contribute to Information Transfer at Aplysia Sensorimotor Synapses: Empirical and Computational Analyses</title><source>MEDLINE</source><source>NCBI_PubMed Central(免费)</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Phares, Gregg A ; Antzoulatos, Evangelos G ; Baxter, Douglas A ; Byrne, John H</creator><creatorcontrib>Phares, Gregg A ; Antzoulatos, Evangelos G ; Baxter, Douglas A ; Byrne, John H</creatorcontrib><description>The Aplysia sensorimotor synapse is a key site of plasticity for several simple forms of learning. Plasticity of this synapse has been extensively studied, albeit primarily with individual action potentials elicited at low frequencies. Yet, the mechanosensory neurons fire high-frequency bursts in response to even moderate tactile stimuli delivered to the skin. In the present study, we extend this analysis to show that sensory neurons also fire bursts in the range of 1-60 Hz in response to electrical stimuli similar to those used in behavioral studies of sensitization. Intracellular stimulation of sensory neurons to fire a burst of action potentials at 10 Hz for 1 sec led to significant homosynaptic depression of postsynaptic responses. The depression was transient and fully recovered within 10 min. During the burst, the steady-state depressed phase of the postsynaptic response, which was only 20% of the initial EPSP of the burst, still contributed to firing the motor neuron. To explore the functional contribution of transient homosynaptic depression to the response of the motor neuron, computer simulations of the sensorimotor synapse with and without depression were compared. Depression allowed the motor neuron to produce graded responses over a wide range of presynaptic input strength. In addition, enhancement of synaptic transmission throughout a burst increased motor neuron output substantially more than did preferential enhancement of the initial phase of a burst. Thus, synaptic depression increased the dynamic range of the sensorimotor synapse and can, in principle, have a profound effect on information processing.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.23-23-08392.2003</identifier><identifier>PMID: 12968001</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Action Potentials - physiology ; Animals ; Aplysia ; Aplysia - physiology ; Behavioral/Systems/Cognitive ; Computer Simulation ; Electric Stimulation ; Excitatory Postsynaptic Potentials - physiology ; Long-Term Synaptic Depression - physiology ; Models, Neurological ; Motor Neurons - physiology ; Neural Inhibition - physiology ; Neural Networks (Computer) ; Neurons, Afferent - physiology ; Synapses - physiology ; Synaptic Transmission - physiology</subject><ispartof>The Journal of neuroscience, 2003-09, Vol.23 (23), p.8392-8401</ispartof><rights>Copyright © 2003 Society for Neuroscience 0270-6474/03/238392-10.00/0 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-a0e5a03f85a14168189e5e87e52c20a75fb29f6d98163b7968e5e9898d6cbc623</citedby><cites>FETCH-LOGICAL-c433t-a0e5a03f85a14168189e5e87e52c20a75fb29f6d98163b7968e5e9898d6cbc623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6740707/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6740707/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12968001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Phares, Gregg A</creatorcontrib><creatorcontrib>Antzoulatos, Evangelos G</creatorcontrib><creatorcontrib>Baxter, Douglas A</creatorcontrib><creatorcontrib>Byrne, John H</creatorcontrib><title>Burst-Induced Synaptic Depression and Its Modulation Contribute to Information Transfer at Aplysia Sensorimotor Synapses: Empirical and Computational Analyses</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The Aplysia sensorimotor synapse is a key site of plasticity for several simple forms of learning. Plasticity of this synapse has been extensively studied, albeit primarily with individual action potentials elicited at low frequencies. Yet, the mechanosensory neurons fire high-frequency bursts in response to even moderate tactile stimuli delivered to the skin. In the present study, we extend this analysis to show that sensory neurons also fire bursts in the range of 1-60 Hz in response to electrical stimuli similar to those used in behavioral studies of sensitization. Intracellular stimulation of sensory neurons to fire a burst of action potentials at 10 Hz for 1 sec led to significant homosynaptic depression of postsynaptic responses. The depression was transient and fully recovered within 10 min. During the burst, the steady-state depressed phase of the postsynaptic response, which was only 20% of the initial EPSP of the burst, still contributed to firing the motor neuron. To explore the functional contribution of transient homosynaptic depression to the response of the motor neuron, computer simulations of the sensorimotor synapse with and without depression were compared. Depression allowed the motor neuron to produce graded responses over a wide range of presynaptic input strength. In addition, enhancement of synaptic transmission throughout a burst increased motor neuron output substantially more than did preferential enhancement of the initial phase of a burst. Thus, synaptic depression increased the dynamic range of the sensorimotor synapse and can, in principle, have a profound effect on information processing.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Aplysia</subject><subject>Aplysia - physiology</subject><subject>Behavioral/Systems/Cognitive</subject><subject>Computer Simulation</subject><subject>Electric Stimulation</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Long-Term Synaptic Depression - physiology</subject><subject>Models, Neurological</subject><subject>Motor Neurons - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Neural Networks (Computer)</subject><subject>Neurons, Afferent - physiology</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkttu1DAQhi0EotvCKyCLC7jK4kMOTi-QlrBAUKES215bjuN0XSV2ajus9mX6rHg3Kw5XSJYtz3zzz4w9ALzGaIkzQt_dGzU566VeEprEhRgtyZIgRJ-ARSTKhKQIPwULRAqU5GmRnoFz7-8RQgXCxXNwhkmZM4TwAjx-mJwPSW3aSaoWbvZGjEFL-FGNTnmvrYHCtLAOHn6z7dSLcDBV1gSnmykoGCysTWfdMHtunDC-Uw6KAFdjv_dawI0y3jo92GDdnMErfwnXw6idlqI_ZqjsME7hKBItq7jtI_UCPOtE79XL03kBbj-tb6ovydX157paXSUypTQkAqlMINqxTOAU5wyzUmWKFSojkiBRZF1Dyi5vS4Zz2hSx-eguWcnaXDYyJ_QCvJ91x6kZVCtV7E_0fIxVC7fnVmj-r8foLb-zP3lepPFRiyjw5iTg7MOkfOCD9lL1vTDKTp4XNMdpych_wVh6hlKSR_ByBmX8a-9U97sajPhhDvjX7-vbH9ebqubxEtdxDvhhDmLwq7_7-RN6-vgIvJ2Brb7b7rRT3A-i7yOO-W63mwUPevQXvtLDXQ</recordid><startdate>20030910</startdate><enddate>20030910</enddate><creator>Phares, Gregg A</creator><creator>Antzoulatos, Evangelos G</creator><creator>Baxter, Douglas A</creator><creator>Byrne, John H</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030910</creationdate><title>Burst-Induced Synaptic Depression and Its Modulation Contribute to Information Transfer at Aplysia Sensorimotor Synapses: Empirical and Computational Analyses</title><author>Phares, Gregg A ; Antzoulatos, Evangelos G ; Baxter, Douglas A ; Byrne, John H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-a0e5a03f85a14168189e5e87e52c20a75fb29f6d98163b7968e5e9898d6cbc623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Aplysia</topic><topic>Aplysia - physiology</topic><topic>Behavioral/Systems/Cognitive</topic><topic>Computer Simulation</topic><topic>Electric Stimulation</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Long-Term Synaptic Depression - physiology</topic><topic>Models, Neurological</topic><topic>Motor Neurons - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Neural Networks (Computer)</topic><topic>Neurons, Afferent - physiology</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phares, Gregg A</creatorcontrib><creatorcontrib>Antzoulatos, Evangelos G</creatorcontrib><creatorcontrib>Baxter, Douglas A</creatorcontrib><creatorcontrib>Byrne, John H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phares, Gregg A</au><au>Antzoulatos, Evangelos G</au><au>Baxter, Douglas A</au><au>Byrne, John H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Burst-Induced Synaptic Depression and Its Modulation Contribute to Information Transfer at Aplysia Sensorimotor Synapses: Empirical and Computational Analyses</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2003-09-10</date><risdate>2003</risdate><volume>23</volume><issue>23</issue><spage>8392</spage><epage>8401</epage><pages>8392-8401</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The Aplysia sensorimotor synapse is a key site of plasticity for several simple forms of learning. Plasticity of this synapse has been extensively studied, albeit primarily with individual action potentials elicited at low frequencies. Yet, the mechanosensory neurons fire high-frequency bursts in response to even moderate tactile stimuli delivered to the skin. In the present study, we extend this analysis to show that sensory neurons also fire bursts in the range of 1-60 Hz in response to electrical stimuli similar to those used in behavioral studies of sensitization. Intracellular stimulation of sensory neurons to fire a burst of action potentials at 10 Hz for 1 sec led to significant homosynaptic depression of postsynaptic responses. The depression was transient and fully recovered within 10 min. During the burst, the steady-state depressed phase of the postsynaptic response, which was only 20% of the initial EPSP of the burst, still contributed to firing the motor neuron. To explore the functional contribution of transient homosynaptic depression to the response of the motor neuron, computer simulations of the sensorimotor synapse with and without depression were compared. Depression allowed the motor neuron to produce graded responses over a wide range of presynaptic input strength. In addition, enhancement of synaptic transmission throughout a burst increased motor neuron output substantially more than did preferential enhancement of the initial phase of a burst. Thus, synaptic depression increased the dynamic range of the sensorimotor synapse and can, in principle, have a profound effect on information processing.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>12968001</pmid><doi>10.1523/jneurosci.23-23-08392.2003</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2003-09, Vol.23 (23), p.8392-8401
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6740707
source MEDLINE; NCBI_PubMed Central(免费); Free E-Journal (出版社公開部分のみ)
subjects Action Potentials - physiology
Animals
Aplysia
Aplysia - physiology
Behavioral/Systems/Cognitive
Computer Simulation
Electric Stimulation
Excitatory Postsynaptic Potentials - physiology
Long-Term Synaptic Depression - physiology
Models, Neurological
Motor Neurons - physiology
Neural Inhibition - physiology
Neural Networks (Computer)
Neurons, Afferent - physiology
Synapses - physiology
Synaptic Transmission - physiology
title Burst-Induced Synaptic Depression and Its Modulation Contribute to Information Transfer at Aplysia Sensorimotor Synapses: Empirical and Computational Analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Burst-Induced%20Synaptic%20Depression%20and%20Its%20Modulation%20Contribute%20to%20Information%20Transfer%20at%20Aplysia%20Sensorimotor%20Synapses:%20Empirical%20and%20Computational%20Analyses&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Phares,%20Gregg%20A&rft.date=2003-09-10&rft.volume=23&rft.issue=23&rft.spage=8392&rft.epage=8401&rft.pages=8392-8401&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.23-23-08392.2003&rft_dat=%3Cproquest_pubme%3E18950426%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18950426&rft_id=info:pmid/12968001&rfr_iscdi=true