Inhibition of Dendritic Spine Morphogenesis and Synaptic Transmission by Activity-Inducible Protein Homer1a
The postsynaptic density (PSD) proteins Shank and Homer cooperate to induce the maturation and enlargement of dendritic spines (Sala et al., 2001). Homer1a is an activity-inducible short-splice variant of Homer that lacks dimerization capacity. Here, we show that Homer1a reduces the density and size...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2003-07, Vol.23 (15), p.6327-6337 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6337 |
---|---|
container_issue | 15 |
container_start_page | 6327 |
container_title | The Journal of neuroscience |
container_volume | 23 |
creator | Sala, Carlo Futai, Kensuke Yamamoto, Kenji Worley, Paul F Hayashi, Yasunori Sheng, Morgan |
description | The postsynaptic density (PSD) proteins Shank and Homer cooperate to induce the maturation and enlargement of dendritic spines (Sala et al., 2001). Homer1a is an activity-inducible short-splice variant of Homer that lacks dimerization capacity. Here, we show that Homer1a reduces the density and size of dendritic spines in cultured hippocampal neurons in correlation with an inhibition of Shank targeting to synapses. Expression of Homer1a also decreases the size of PSD-95 clusters, the number of NMDA receptor clusters, and the level of surface AMPA receptors, implying a negative effect on the growth of synapses. In parallel with the morphological effects on synapses, Homer1a-expressing neurons show diminished AMPA and NMDA receptor postsynaptic currents. All of these outcomes required the integrity of the Ena/VASP Homology 1 domain of Homer1a that mediates binding to the PPXXF motif in Shank and other binding partners. Overexpression of the C-terminal region of Shank containing the Homer binding site causes effects similar to those of Homer1a. These data indicate that an association between Shank and the constitutively expressed long-splice variants of Homer (e.g., Homer1b/c) is important for maintaining dendritic-spine structure and synaptic function. Because Homer1a expression is induced by synaptic activity, our results suggest that this splice variant of Homer operates in a negative feedback loop to regulate the structure and function of synapses in an activity-dependent manner. |
doi_str_mv | 10.1523/jneurosci.23-15-06327.2003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6740555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73484624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-c707b89f686eef113aa180d51d40fe896736829bf39e431934ab490ecbd8d8bd3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokPhFVDEAlYZ_JfYYYFUDaUdVChi2rXlODcTl4yd2klH8_ZNyIifFSvryt_5dK8OQm8IXpKMsvd3Dobgo7FLylKSpThnVCwpxuwJWoxEkVKOyVO0wFTgNOeCn6AXMd5hjAUm4jk6IVTmIiNigX6uXWNL21vvEl8nn8BVYZxMsumsg-SrD13jt-Ag2phoVyWbg9PdBNwE7eLOxjhFy0NyZnr7YPtDunbVYGzZQvI9-B6sSy79DgLRL9GzWrcRXh3fU3T7-fxmdZleXV-sV2dXqcmx7FMjsChlUecyB6gJYVoTiauMVBzXIItcsFzSoqxZAZyRgnFd8gKDKStZybJip-jj7O2GcgeVAdcH3aou2J0OB-W1Vf_-ONuorX9QueA4y7JR8PYoCP5-gNir8U4Dbasd-CEqwbjkOeX_BYksaDEbP8ygGYuLAerf2xCsplLVl2_ntz-uN6u1GgeSqV-lqqnUMfz673v-RI8tjsC7GWjsttnbACrudNuOOFH7_X4WTj72CEe4sFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18929555</pqid></control><display><type>article</type><title>Inhibition of Dendritic Spine Morphogenesis and Synaptic Transmission by Activity-Inducible Protein Homer1a</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Sala, Carlo ; Futai, Kensuke ; Yamamoto, Kenji ; Worley, Paul F ; Hayashi, Yasunori ; Sheng, Morgan</creator><creatorcontrib>Sala, Carlo ; Futai, Kensuke ; Yamamoto, Kenji ; Worley, Paul F ; Hayashi, Yasunori ; Sheng, Morgan</creatorcontrib><description>The postsynaptic density (PSD) proteins Shank and Homer cooperate to induce the maturation and enlargement of dendritic spines (Sala et al., 2001). Homer1a is an activity-inducible short-splice variant of Homer that lacks dimerization capacity. Here, we show that Homer1a reduces the density and size of dendritic spines in cultured hippocampal neurons in correlation with an inhibition of Shank targeting to synapses. Expression of Homer1a also decreases the size of PSD-95 clusters, the number of NMDA receptor clusters, and the level of surface AMPA receptors, implying a negative effect on the growth of synapses. In parallel with the morphological effects on synapses, Homer1a-expressing neurons show diminished AMPA and NMDA receptor postsynaptic currents. All of these outcomes required the integrity of the Ena/VASP Homology 1 domain of Homer1a that mediates binding to the PPXXF motif in Shank and other binding partners. Overexpression of the C-terminal region of Shank containing the Homer binding site causes effects similar to those of Homer1a. These data indicate that an association between Shank and the constitutively expressed long-splice variants of Homer (e.g., Homer1b/c) is important for maintaining dendritic-spine structure and synaptic function. Because Homer1a expression is induced by synaptic activity, our results suggest that this splice variant of Homer operates in a negative feedback loop to regulate the structure and function of synapses in an activity-dependent manner.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.23-15-06327.2003</identifier><identifier>PMID: 12867517</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Adaptor Proteins, Signal Transducing ; Amino Acid Motifs - physiology ; Animals ; Biolistics ; Carrier Proteins - biosynthesis ; Carrier Proteins - genetics ; Carrier Proteins - pharmacology ; Cells, Cultured ; Cellular/Molecular ; COS Cells ; Dendrites - drug effects ; Dendrites - ultrastructure ; Disks Large Homolog 4 Protein ; Excitatory Postsynaptic Potentials - drug effects ; Excitatory Postsynaptic Potentials - physiology ; Feedback, Physiological - physiology ; Green Fluorescent Proteins ; Hippocampus - cytology ; Hippocampus - drug effects ; Hippocampus - physiology ; Homer protein ; Homer Scaffolding Proteins ; In Vitro Techniques ; Intracellular Signaling Peptides and Proteins ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Membrane Proteins ; Morphogenesis ; Nerve Tissue Proteins - metabolism ; Neurons - drug effects ; Neurons - physiology ; Neurons - ultrastructure ; Neuropeptides - biosynthesis ; Neuropeptides - genetics ; Neuropeptides - pharmacology ; Patch-Clamp Techniques ; postsynaptic density 95 protein ; Protein Isoforms - biosynthesis ; Protein Isoforms - genetics ; Protein Isoforms - pharmacology ; Protein Structure, Tertiary - physiology ; Protein Transport - physiology ; Rats ; Receptors, AMPA - metabolism ; Receptors, N-Methyl-D-Aspartate - metabolism ; Synapses - metabolism ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology</subject><ispartof>The Journal of neuroscience, 2003-07, Vol.23 (15), p.6327-6337</ispartof><rights>Copyright © 2003 Society for Neuroscience 0270-6474/03/236327-11.00/0 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-c707b89f686eef113aa180d51d40fe896736829bf39e431934ab490ecbd8d8bd3</citedby><cites>FETCH-LOGICAL-c608t-c707b89f686eef113aa180d51d40fe896736829bf39e431934ab490ecbd8d8bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6740555/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6740555/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12867517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sala, Carlo</creatorcontrib><creatorcontrib>Futai, Kensuke</creatorcontrib><creatorcontrib>Yamamoto, Kenji</creatorcontrib><creatorcontrib>Worley, Paul F</creatorcontrib><creatorcontrib>Hayashi, Yasunori</creatorcontrib><creatorcontrib>Sheng, Morgan</creatorcontrib><title>Inhibition of Dendritic Spine Morphogenesis and Synaptic Transmission by Activity-Inducible Protein Homer1a</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The postsynaptic density (PSD) proteins Shank and Homer cooperate to induce the maturation and enlargement of dendritic spines (Sala et al., 2001). Homer1a is an activity-inducible short-splice variant of Homer that lacks dimerization capacity. Here, we show that Homer1a reduces the density and size of dendritic spines in cultured hippocampal neurons in correlation with an inhibition of Shank targeting to synapses. Expression of Homer1a also decreases the size of PSD-95 clusters, the number of NMDA receptor clusters, and the level of surface AMPA receptors, implying a negative effect on the growth of synapses. In parallel with the morphological effects on synapses, Homer1a-expressing neurons show diminished AMPA and NMDA receptor postsynaptic currents. All of these outcomes required the integrity of the Ena/VASP Homology 1 domain of Homer1a that mediates binding to the PPXXF motif in Shank and other binding partners. Overexpression of the C-terminal region of Shank containing the Homer binding site causes effects similar to those of Homer1a. These data indicate that an association between Shank and the constitutively expressed long-splice variants of Homer (e.g., Homer1b/c) is important for maintaining dendritic-spine structure and synaptic function. Because Homer1a expression is induced by synaptic activity, our results suggest that this splice variant of Homer operates in a negative feedback loop to regulate the structure and function of synapses in an activity-dependent manner.</description><subject>Adaptor Proteins, Signal Transducing</subject><subject>Amino Acid Motifs - physiology</subject><subject>Animals</subject><subject>Biolistics</subject><subject>Carrier Proteins - biosynthesis</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - pharmacology</subject><subject>Cells, Cultured</subject><subject>Cellular/Molecular</subject><subject>COS Cells</subject><subject>Dendrites - drug effects</subject><subject>Dendrites - ultrastructure</subject><subject>Disks Large Homolog 4 Protein</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Feedback, Physiological - physiology</subject><subject>Green Fluorescent Proteins</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - physiology</subject><subject>Homer protein</subject><subject>Homer Scaffolding Proteins</subject><subject>In Vitro Techniques</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Membrane Proteins</subject><subject>Morphogenesis</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Neurons - ultrastructure</subject><subject>Neuropeptides - biosynthesis</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - pharmacology</subject><subject>Patch-Clamp Techniques</subject><subject>postsynaptic density 95 protein</subject><subject>Protein Isoforms - biosynthesis</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - pharmacology</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Protein Transport - physiology</subject><subject>Rats</subject><subject>Receptors, AMPA - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Synapses - metabolism</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EokPhFVDEAlYZ_JfYYYFUDaUdVChi2rXlODcTl4yd2klH8_ZNyIifFSvryt_5dK8OQm8IXpKMsvd3Dobgo7FLylKSpThnVCwpxuwJWoxEkVKOyVO0wFTgNOeCn6AXMd5hjAUm4jk6IVTmIiNigX6uXWNL21vvEl8nn8BVYZxMsumsg-SrD13jt-Ag2phoVyWbg9PdBNwE7eLOxjhFy0NyZnr7YPtDunbVYGzZQvI9-B6sSy79DgLRL9GzWrcRXh3fU3T7-fxmdZleXV-sV2dXqcmx7FMjsChlUecyB6gJYVoTiauMVBzXIItcsFzSoqxZAZyRgnFd8gKDKStZybJip-jj7O2GcgeVAdcH3aou2J0OB-W1Vf_-ONuorX9QueA4y7JR8PYoCP5-gNir8U4Dbasd-CEqwbjkOeX_BYksaDEbP8ygGYuLAerf2xCsplLVl2_ntz-uN6u1GgeSqV-lqqnUMfz673v-RI8tjsC7GWjsttnbACrudNuOOFH7_X4WTj72CEe4sFQ</recordid><startdate>20030716</startdate><enddate>20030716</enddate><creator>Sala, Carlo</creator><creator>Futai, Kensuke</creator><creator>Yamamoto, Kenji</creator><creator>Worley, Paul F</creator><creator>Hayashi, Yasunori</creator><creator>Sheng, Morgan</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030716</creationdate><title>Inhibition of Dendritic Spine Morphogenesis and Synaptic Transmission by Activity-Inducible Protein Homer1a</title><author>Sala, Carlo ; Futai, Kensuke ; Yamamoto, Kenji ; Worley, Paul F ; Hayashi, Yasunori ; Sheng, Morgan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-c707b89f686eef113aa180d51d40fe896736829bf39e431934ab490ecbd8d8bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adaptor Proteins, Signal Transducing</topic><topic>Amino Acid Motifs - physiology</topic><topic>Animals</topic><topic>Biolistics</topic><topic>Carrier Proteins - biosynthesis</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - pharmacology</topic><topic>Cells, Cultured</topic><topic>Cellular/Molecular</topic><topic>COS Cells</topic><topic>Dendrites - drug effects</topic><topic>Dendrites - ultrastructure</topic><topic>Disks Large Homolog 4 Protein</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Feedback, Physiological - physiology</topic><topic>Green Fluorescent Proteins</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - physiology</topic><topic>Homer protein</topic><topic>Homer Scaffolding Proteins</topic><topic>In Vitro Techniques</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Membrane Proteins</topic><topic>Morphogenesis</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Neurons - ultrastructure</topic><topic>Neuropeptides - biosynthesis</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - pharmacology</topic><topic>Patch-Clamp Techniques</topic><topic>postsynaptic density 95 protein</topic><topic>Protein Isoforms - biosynthesis</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - pharmacology</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Protein Transport - physiology</topic><topic>Rats</topic><topic>Receptors, AMPA - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Synapses - metabolism</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sala, Carlo</creatorcontrib><creatorcontrib>Futai, Kensuke</creatorcontrib><creatorcontrib>Yamamoto, Kenji</creatorcontrib><creatorcontrib>Worley, Paul F</creatorcontrib><creatorcontrib>Hayashi, Yasunori</creatorcontrib><creatorcontrib>Sheng, Morgan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sala, Carlo</au><au>Futai, Kensuke</au><au>Yamamoto, Kenji</au><au>Worley, Paul F</au><au>Hayashi, Yasunori</au><au>Sheng, Morgan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of Dendritic Spine Morphogenesis and Synaptic Transmission by Activity-Inducible Protein Homer1a</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2003-07-16</date><risdate>2003</risdate><volume>23</volume><issue>15</issue><spage>6327</spage><epage>6337</epage><pages>6327-6337</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The postsynaptic density (PSD) proteins Shank and Homer cooperate to induce the maturation and enlargement of dendritic spines (Sala et al., 2001). Homer1a is an activity-inducible short-splice variant of Homer that lacks dimerization capacity. Here, we show that Homer1a reduces the density and size of dendritic spines in cultured hippocampal neurons in correlation with an inhibition of Shank targeting to synapses. Expression of Homer1a also decreases the size of PSD-95 clusters, the number of NMDA receptor clusters, and the level of surface AMPA receptors, implying a negative effect on the growth of synapses. In parallel with the morphological effects on synapses, Homer1a-expressing neurons show diminished AMPA and NMDA receptor postsynaptic currents. All of these outcomes required the integrity of the Ena/VASP Homology 1 domain of Homer1a that mediates binding to the PPXXF motif in Shank and other binding partners. Overexpression of the C-terminal region of Shank containing the Homer binding site causes effects similar to those of Homer1a. These data indicate that an association between Shank and the constitutively expressed long-splice variants of Homer (e.g., Homer1b/c) is important for maintaining dendritic-spine structure and synaptic function. Because Homer1a expression is induced by synaptic activity, our results suggest that this splice variant of Homer operates in a negative feedback loop to regulate the structure and function of synapses in an activity-dependent manner.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>12867517</pmid><doi>10.1523/jneurosci.23-15-06327.2003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2003-07, Vol.23 (15), p.6327-6337 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6740555 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adaptor Proteins, Signal Transducing Amino Acid Motifs - physiology Animals Biolistics Carrier Proteins - biosynthesis Carrier Proteins - genetics Carrier Proteins - pharmacology Cells, Cultured Cellular/Molecular COS Cells Dendrites - drug effects Dendrites - ultrastructure Disks Large Homolog 4 Protein Excitatory Postsynaptic Potentials - drug effects Excitatory Postsynaptic Potentials - physiology Feedback, Physiological - physiology Green Fluorescent Proteins Hippocampus - cytology Hippocampus - drug effects Hippocampus - physiology Homer protein Homer Scaffolding Proteins In Vitro Techniques Intracellular Signaling Peptides and Proteins Luminescent Proteins - genetics Luminescent Proteins - metabolism Membrane Proteins Morphogenesis Nerve Tissue Proteins - metabolism Neurons - drug effects Neurons - physiology Neurons - ultrastructure Neuropeptides - biosynthesis Neuropeptides - genetics Neuropeptides - pharmacology Patch-Clamp Techniques postsynaptic density 95 protein Protein Isoforms - biosynthesis Protein Isoforms - genetics Protein Isoforms - pharmacology Protein Structure, Tertiary - physiology Protein Transport - physiology Rats Receptors, AMPA - metabolism Receptors, N-Methyl-D-Aspartate - metabolism Synapses - metabolism Synaptic Transmission - drug effects Synaptic Transmission - physiology |
title | Inhibition of Dendritic Spine Morphogenesis and Synaptic Transmission by Activity-Inducible Protein Homer1a |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A09%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20Dendritic%20Spine%20Morphogenesis%20and%20Synaptic%20Transmission%20by%20Activity-Inducible%20Protein%20Homer1a&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Sala,%20Carlo&rft.date=2003-07-16&rft.volume=23&rft.issue=15&rft.spage=6327&rft.epage=6337&rft.pages=6327-6337&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.23-15-06327.2003&rft_dat=%3Cproquest_pubme%3E73484624%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18929555&rft_id=info:pmid/12867517&rfr_iscdi=true |