Inhibition of Dendritic Spine Morphogenesis and Synaptic Transmission by Activity-Inducible Protein Homer1a

The postsynaptic density (PSD) proteins Shank and Homer cooperate to induce the maturation and enlargement of dendritic spines (Sala et al., 2001). Homer1a is an activity-inducible short-splice variant of Homer that lacks dimerization capacity. Here, we show that Homer1a reduces the density and size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2003-07, Vol.23 (15), p.6327-6337
Hauptverfasser: Sala, Carlo, Futai, Kensuke, Yamamoto, Kenji, Worley, Paul F, Hayashi, Yasunori, Sheng, Morgan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6337
container_issue 15
container_start_page 6327
container_title The Journal of neuroscience
container_volume 23
creator Sala, Carlo
Futai, Kensuke
Yamamoto, Kenji
Worley, Paul F
Hayashi, Yasunori
Sheng, Morgan
description The postsynaptic density (PSD) proteins Shank and Homer cooperate to induce the maturation and enlargement of dendritic spines (Sala et al., 2001). Homer1a is an activity-inducible short-splice variant of Homer that lacks dimerization capacity. Here, we show that Homer1a reduces the density and size of dendritic spines in cultured hippocampal neurons in correlation with an inhibition of Shank targeting to synapses. Expression of Homer1a also decreases the size of PSD-95 clusters, the number of NMDA receptor clusters, and the level of surface AMPA receptors, implying a negative effect on the growth of synapses. In parallel with the morphological effects on synapses, Homer1a-expressing neurons show diminished AMPA and NMDA receptor postsynaptic currents. All of these outcomes required the integrity of the Ena/VASP Homology 1 domain of Homer1a that mediates binding to the PPXXF motif in Shank and other binding partners. Overexpression of the C-terminal region of Shank containing the Homer binding site causes effects similar to those of Homer1a. These data indicate that an association between Shank and the constitutively expressed long-splice variants of Homer (e.g., Homer1b/c) is important for maintaining dendritic-spine structure and synaptic function. Because Homer1a expression is induced by synaptic activity, our results suggest that this splice variant of Homer operates in a negative feedback loop to regulate the structure and function of synapses in an activity-dependent manner.
doi_str_mv 10.1523/jneurosci.23-15-06327.2003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6740555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73484624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-c707b89f686eef113aa180d51d40fe896736829bf39e431934ab490ecbd8d8bd3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokPhFVDEAlYZ_JfYYYFUDaUdVChi2rXlODcTl4yd2klH8_ZNyIifFSvryt_5dK8OQm8IXpKMsvd3Dobgo7FLylKSpThnVCwpxuwJWoxEkVKOyVO0wFTgNOeCn6AXMd5hjAUm4jk6IVTmIiNigX6uXWNL21vvEl8nn8BVYZxMsumsg-SrD13jt-Ag2phoVyWbg9PdBNwE7eLOxjhFy0NyZnr7YPtDunbVYGzZQvI9-B6sSy79DgLRL9GzWrcRXh3fU3T7-fxmdZleXV-sV2dXqcmx7FMjsChlUecyB6gJYVoTiauMVBzXIItcsFzSoqxZAZyRgnFd8gKDKStZybJip-jj7O2GcgeVAdcH3aou2J0OB-W1Vf_-ONuorX9QueA4y7JR8PYoCP5-gNir8U4Dbasd-CEqwbjkOeX_BYksaDEbP8ygGYuLAerf2xCsplLVl2_ntz-uN6u1GgeSqV-lqqnUMfz673v-RI8tjsC7GWjsttnbACrudNuOOFH7_X4WTj72CEe4sFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18929555</pqid></control><display><type>article</type><title>Inhibition of Dendritic Spine Morphogenesis and Synaptic Transmission by Activity-Inducible Protein Homer1a</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Sala, Carlo ; Futai, Kensuke ; Yamamoto, Kenji ; Worley, Paul F ; Hayashi, Yasunori ; Sheng, Morgan</creator><creatorcontrib>Sala, Carlo ; Futai, Kensuke ; Yamamoto, Kenji ; Worley, Paul F ; Hayashi, Yasunori ; Sheng, Morgan</creatorcontrib><description>The postsynaptic density (PSD) proteins Shank and Homer cooperate to induce the maturation and enlargement of dendritic spines (Sala et al., 2001). Homer1a is an activity-inducible short-splice variant of Homer that lacks dimerization capacity. Here, we show that Homer1a reduces the density and size of dendritic spines in cultured hippocampal neurons in correlation with an inhibition of Shank targeting to synapses. Expression of Homer1a also decreases the size of PSD-95 clusters, the number of NMDA receptor clusters, and the level of surface AMPA receptors, implying a negative effect on the growth of synapses. In parallel with the morphological effects on synapses, Homer1a-expressing neurons show diminished AMPA and NMDA receptor postsynaptic currents. All of these outcomes required the integrity of the Ena/VASP Homology 1 domain of Homer1a that mediates binding to the PPXXF motif in Shank and other binding partners. Overexpression of the C-terminal region of Shank containing the Homer binding site causes effects similar to those of Homer1a. These data indicate that an association between Shank and the constitutively expressed long-splice variants of Homer (e.g., Homer1b/c) is important for maintaining dendritic-spine structure and synaptic function. Because Homer1a expression is induced by synaptic activity, our results suggest that this splice variant of Homer operates in a negative feedback loop to regulate the structure and function of synapses in an activity-dependent manner.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.23-15-06327.2003</identifier><identifier>PMID: 12867517</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Adaptor Proteins, Signal Transducing ; Amino Acid Motifs - physiology ; Animals ; Biolistics ; Carrier Proteins - biosynthesis ; Carrier Proteins - genetics ; Carrier Proteins - pharmacology ; Cells, Cultured ; Cellular/Molecular ; COS Cells ; Dendrites - drug effects ; Dendrites - ultrastructure ; Disks Large Homolog 4 Protein ; Excitatory Postsynaptic Potentials - drug effects ; Excitatory Postsynaptic Potentials - physiology ; Feedback, Physiological - physiology ; Green Fluorescent Proteins ; Hippocampus - cytology ; Hippocampus - drug effects ; Hippocampus - physiology ; Homer protein ; Homer Scaffolding Proteins ; In Vitro Techniques ; Intracellular Signaling Peptides and Proteins ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Membrane Proteins ; Morphogenesis ; Nerve Tissue Proteins - metabolism ; Neurons - drug effects ; Neurons - physiology ; Neurons - ultrastructure ; Neuropeptides - biosynthesis ; Neuropeptides - genetics ; Neuropeptides - pharmacology ; Patch-Clamp Techniques ; postsynaptic density 95 protein ; Protein Isoforms - biosynthesis ; Protein Isoforms - genetics ; Protein Isoforms - pharmacology ; Protein Structure, Tertiary - physiology ; Protein Transport - physiology ; Rats ; Receptors, AMPA - metabolism ; Receptors, N-Methyl-D-Aspartate - metabolism ; Synapses - metabolism ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology</subject><ispartof>The Journal of neuroscience, 2003-07, Vol.23 (15), p.6327-6337</ispartof><rights>Copyright © 2003 Society for Neuroscience 0270-6474/03/236327-11.00/0 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-c707b89f686eef113aa180d51d40fe896736829bf39e431934ab490ecbd8d8bd3</citedby><cites>FETCH-LOGICAL-c608t-c707b89f686eef113aa180d51d40fe896736829bf39e431934ab490ecbd8d8bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6740555/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6740555/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12867517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sala, Carlo</creatorcontrib><creatorcontrib>Futai, Kensuke</creatorcontrib><creatorcontrib>Yamamoto, Kenji</creatorcontrib><creatorcontrib>Worley, Paul F</creatorcontrib><creatorcontrib>Hayashi, Yasunori</creatorcontrib><creatorcontrib>Sheng, Morgan</creatorcontrib><title>Inhibition of Dendritic Spine Morphogenesis and Synaptic Transmission by Activity-Inducible Protein Homer1a</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The postsynaptic density (PSD) proteins Shank and Homer cooperate to induce the maturation and enlargement of dendritic spines (Sala et al., 2001). Homer1a is an activity-inducible short-splice variant of Homer that lacks dimerization capacity. Here, we show that Homer1a reduces the density and size of dendritic spines in cultured hippocampal neurons in correlation with an inhibition of Shank targeting to synapses. Expression of Homer1a also decreases the size of PSD-95 clusters, the number of NMDA receptor clusters, and the level of surface AMPA receptors, implying a negative effect on the growth of synapses. In parallel with the morphological effects on synapses, Homer1a-expressing neurons show diminished AMPA and NMDA receptor postsynaptic currents. All of these outcomes required the integrity of the Ena/VASP Homology 1 domain of Homer1a that mediates binding to the PPXXF motif in Shank and other binding partners. Overexpression of the C-terminal region of Shank containing the Homer binding site causes effects similar to those of Homer1a. These data indicate that an association between Shank and the constitutively expressed long-splice variants of Homer (e.g., Homer1b/c) is important for maintaining dendritic-spine structure and synaptic function. Because Homer1a expression is induced by synaptic activity, our results suggest that this splice variant of Homer operates in a negative feedback loop to regulate the structure and function of synapses in an activity-dependent manner.</description><subject>Adaptor Proteins, Signal Transducing</subject><subject>Amino Acid Motifs - physiology</subject><subject>Animals</subject><subject>Biolistics</subject><subject>Carrier Proteins - biosynthesis</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - pharmacology</subject><subject>Cells, Cultured</subject><subject>Cellular/Molecular</subject><subject>COS Cells</subject><subject>Dendrites - drug effects</subject><subject>Dendrites - ultrastructure</subject><subject>Disks Large Homolog 4 Protein</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Feedback, Physiological - physiology</subject><subject>Green Fluorescent Proteins</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - physiology</subject><subject>Homer protein</subject><subject>Homer Scaffolding Proteins</subject><subject>In Vitro Techniques</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Membrane Proteins</subject><subject>Morphogenesis</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Neurons - ultrastructure</subject><subject>Neuropeptides - biosynthesis</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - pharmacology</subject><subject>Patch-Clamp Techniques</subject><subject>postsynaptic density 95 protein</subject><subject>Protein Isoforms - biosynthesis</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - pharmacology</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Protein Transport - physiology</subject><subject>Rats</subject><subject>Receptors, AMPA - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Synapses - metabolism</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EokPhFVDEAlYZ_JfYYYFUDaUdVChi2rXlODcTl4yd2klH8_ZNyIifFSvryt_5dK8OQm8IXpKMsvd3Dobgo7FLylKSpThnVCwpxuwJWoxEkVKOyVO0wFTgNOeCn6AXMd5hjAUm4jk6IVTmIiNigX6uXWNL21vvEl8nn8BVYZxMsumsg-SrD13jt-Ag2phoVyWbg9PdBNwE7eLOxjhFy0NyZnr7YPtDunbVYGzZQvI9-B6sSy79DgLRL9GzWrcRXh3fU3T7-fxmdZleXV-sV2dXqcmx7FMjsChlUecyB6gJYVoTiauMVBzXIItcsFzSoqxZAZyRgnFd8gKDKStZybJip-jj7O2GcgeVAdcH3aou2J0OB-W1Vf_-ONuorX9QueA4y7JR8PYoCP5-gNir8U4Dbasd-CEqwbjkOeX_BYksaDEbP8ygGYuLAerf2xCsplLVl2_ntz-uN6u1GgeSqV-lqqnUMfz673v-RI8tjsC7GWjsttnbACrudNuOOFH7_X4WTj72CEe4sFQ</recordid><startdate>20030716</startdate><enddate>20030716</enddate><creator>Sala, Carlo</creator><creator>Futai, Kensuke</creator><creator>Yamamoto, Kenji</creator><creator>Worley, Paul F</creator><creator>Hayashi, Yasunori</creator><creator>Sheng, Morgan</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030716</creationdate><title>Inhibition of Dendritic Spine Morphogenesis and Synaptic Transmission by Activity-Inducible Protein Homer1a</title><author>Sala, Carlo ; Futai, Kensuke ; Yamamoto, Kenji ; Worley, Paul F ; Hayashi, Yasunori ; Sheng, Morgan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-c707b89f686eef113aa180d51d40fe896736829bf39e431934ab490ecbd8d8bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adaptor Proteins, Signal Transducing</topic><topic>Amino Acid Motifs - physiology</topic><topic>Animals</topic><topic>Biolistics</topic><topic>Carrier Proteins - biosynthesis</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - pharmacology</topic><topic>Cells, Cultured</topic><topic>Cellular/Molecular</topic><topic>COS Cells</topic><topic>Dendrites - drug effects</topic><topic>Dendrites - ultrastructure</topic><topic>Disks Large Homolog 4 Protein</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Feedback, Physiological - physiology</topic><topic>Green Fluorescent Proteins</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - physiology</topic><topic>Homer protein</topic><topic>Homer Scaffolding Proteins</topic><topic>In Vitro Techniques</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Membrane Proteins</topic><topic>Morphogenesis</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Neurons - ultrastructure</topic><topic>Neuropeptides - biosynthesis</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - pharmacology</topic><topic>Patch-Clamp Techniques</topic><topic>postsynaptic density 95 protein</topic><topic>Protein Isoforms - biosynthesis</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - pharmacology</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Protein Transport - physiology</topic><topic>Rats</topic><topic>Receptors, AMPA - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Synapses - metabolism</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sala, Carlo</creatorcontrib><creatorcontrib>Futai, Kensuke</creatorcontrib><creatorcontrib>Yamamoto, Kenji</creatorcontrib><creatorcontrib>Worley, Paul F</creatorcontrib><creatorcontrib>Hayashi, Yasunori</creatorcontrib><creatorcontrib>Sheng, Morgan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sala, Carlo</au><au>Futai, Kensuke</au><au>Yamamoto, Kenji</au><au>Worley, Paul F</au><au>Hayashi, Yasunori</au><au>Sheng, Morgan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of Dendritic Spine Morphogenesis and Synaptic Transmission by Activity-Inducible Protein Homer1a</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2003-07-16</date><risdate>2003</risdate><volume>23</volume><issue>15</issue><spage>6327</spage><epage>6337</epage><pages>6327-6337</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The postsynaptic density (PSD) proteins Shank and Homer cooperate to induce the maturation and enlargement of dendritic spines (Sala et al., 2001). Homer1a is an activity-inducible short-splice variant of Homer that lacks dimerization capacity. Here, we show that Homer1a reduces the density and size of dendritic spines in cultured hippocampal neurons in correlation with an inhibition of Shank targeting to synapses. Expression of Homer1a also decreases the size of PSD-95 clusters, the number of NMDA receptor clusters, and the level of surface AMPA receptors, implying a negative effect on the growth of synapses. In parallel with the morphological effects on synapses, Homer1a-expressing neurons show diminished AMPA and NMDA receptor postsynaptic currents. All of these outcomes required the integrity of the Ena/VASP Homology 1 domain of Homer1a that mediates binding to the PPXXF motif in Shank and other binding partners. Overexpression of the C-terminal region of Shank containing the Homer binding site causes effects similar to those of Homer1a. These data indicate that an association between Shank and the constitutively expressed long-splice variants of Homer (e.g., Homer1b/c) is important for maintaining dendritic-spine structure and synaptic function. Because Homer1a expression is induced by synaptic activity, our results suggest that this splice variant of Homer operates in a negative feedback loop to regulate the structure and function of synapses in an activity-dependent manner.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>12867517</pmid><doi>10.1523/jneurosci.23-15-06327.2003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2003-07, Vol.23 (15), p.6327-6337
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6740555
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adaptor Proteins, Signal Transducing
Amino Acid Motifs - physiology
Animals
Biolistics
Carrier Proteins - biosynthesis
Carrier Proteins - genetics
Carrier Proteins - pharmacology
Cells, Cultured
Cellular/Molecular
COS Cells
Dendrites - drug effects
Dendrites - ultrastructure
Disks Large Homolog 4 Protein
Excitatory Postsynaptic Potentials - drug effects
Excitatory Postsynaptic Potentials - physiology
Feedback, Physiological - physiology
Green Fluorescent Proteins
Hippocampus - cytology
Hippocampus - drug effects
Hippocampus - physiology
Homer protein
Homer Scaffolding Proteins
In Vitro Techniques
Intracellular Signaling Peptides and Proteins
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Membrane Proteins
Morphogenesis
Nerve Tissue Proteins - metabolism
Neurons - drug effects
Neurons - physiology
Neurons - ultrastructure
Neuropeptides - biosynthesis
Neuropeptides - genetics
Neuropeptides - pharmacology
Patch-Clamp Techniques
postsynaptic density 95 protein
Protein Isoforms - biosynthesis
Protein Isoforms - genetics
Protein Isoforms - pharmacology
Protein Structure, Tertiary - physiology
Protein Transport - physiology
Rats
Receptors, AMPA - metabolism
Receptors, N-Methyl-D-Aspartate - metabolism
Synapses - metabolism
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
title Inhibition of Dendritic Spine Morphogenesis and Synaptic Transmission by Activity-Inducible Protein Homer1a
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A09%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20Dendritic%20Spine%20Morphogenesis%20and%20Synaptic%20Transmission%20by%20Activity-Inducible%20Protein%20Homer1a&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Sala,%20Carlo&rft.date=2003-07-16&rft.volume=23&rft.issue=15&rft.spage=6327&rft.epage=6337&rft.pages=6327-6337&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.23-15-06327.2003&rft_dat=%3Cproquest_pubme%3E73484624%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18929555&rft_id=info:pmid/12867517&rfr_iscdi=true