A simple model for determining affinity from irreversible thermal shifts
Thermal denaturation (Tm) data are easy to obtain; it is a technique that is used by both small labs and large‐scale industrial organizations. The link between ligand affinity (K D) and ΔTm is understood for reversible denaturation; however, there is a gap in our understanding of how to quantitative...
Gespeichert in:
Veröffentlicht in: | Protein science 2019-10, Vol.28 (10), p.1880-1887 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1887 |
---|---|
container_issue | 10 |
container_start_page | 1880 |
container_title | Protein science |
container_volume | 28 |
creator | Hall, Justin |
description | Thermal denaturation (Tm) data are easy to obtain; it is a technique that is used by both small labs and large‐scale industrial organizations. The link between ligand affinity (K
D) and ΔTm is understood for reversible denaturation; however, there is a gap in our understanding of how to quantitatively interpret ΔTm for the many proteins that irreversibly denature. To better understand the origin, and extent of applicability, of a K
D to ΔTm correlate, we define equations relating K
D and ΔTm for irreversible protein unfolding, which we test with computational models and experimental data. These results suggest a general relationship exists between K
D and ΔTm for irreversible denaturation. |
doi_str_mv | 10.1002/pro.3701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6739816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288600248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5041-995aaaf5e0bec39cc12f8b899d496e88be6591d60b3ffe9748e5bdd88ec51fc63</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMoOqfgL5CCN95Uk6bNkhthiDphMBEF70KanmyRtplJp-zfm7n5CV6dhDx5zklehI4IPiMYZ-dz787oAJMt1CM5EykX7Gkb9bBgJOWU8T20H8IzxjgnGd1Fe5RQRkROe2g0TIJt5jUkjaugTozzSQUd-Ma2tp0mypi46JaJ8a5JrPfwCj7YMl7oZpFSdRJm1nThAO0YVQc43NQ-ery-ergcpePJze3lcJzqInZPhSiUUqYAXIKmQmuSGV5yIapcMOC8BFYIUjFcUmNADHIORVlVnIMuiNGM9tHF2jtflA1UGtrOq1rOvW2UX0qnrPx90tqZnLpXyQZUcLISnG4E3r0sIHSysUFDXasW3CLILGODHLNYInryB312C9_G50WKcxa_PuffQu1dCB7M1zAEy1U8ce_kKp6IHv8c_gv8zCMC6Rp4szUs_xXJu_vJh_Adubea_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288600248</pqid></control><display><type>article</type><title>A simple model for determining affinity from irreversible thermal shifts</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hall, Justin</creator><creatorcontrib>Hall, Justin</creatorcontrib><description>Thermal denaturation (Tm) data are easy to obtain; it is a technique that is used by both small labs and large‐scale industrial organizations. The link between ligand affinity (K
D) and ΔTm is understood for reversible denaturation; however, there is a gap in our understanding of how to quantitatively interpret ΔTm for the many proteins that irreversibly denature. To better understand the origin, and extent of applicability, of a K
D to ΔTm correlate, we define equations relating K
D and ΔTm for irreversible protein unfolding, which we test with computational models and experimental data. These results suggest a general relationship exists between K
D and ΔTm for irreversible denaturation.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.3701</identifier><identifier>PMID: 31361943</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>activation energy ; Affinity ; Computer applications ; Full‐Length Papers ; irreversible denaturation ; ligand affinity and unfolding ; Ligands ; Mathematical models ; Models, Molecular ; Protein Denaturation ; Protein folding ; protein unfolding ; Proteins ; Proteins - chemistry ; Proteins - isolation & purification ; Temperature ; Thermal denaturation</subject><ispartof>Protein science, 2019-10, Vol.28 (10), p.1880-1887</ispartof><rights>2019 The Author. published by Wiley Periodicals, Inc. on behalf of The Protein Society.</rights><rights>2019 The Author. Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.</rights><rights>2019 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5041-995aaaf5e0bec39cc12f8b899d496e88be6591d60b3ffe9748e5bdd88ec51fc63</citedby><cites>FETCH-LOGICAL-c5041-995aaaf5e0bec39cc12f8b899d496e88be6591d60b3ffe9748e5bdd88ec51fc63</cites><orcidid>0000-0002-0316-847X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739816/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739816/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31361943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, Justin</creatorcontrib><title>A simple model for determining affinity from irreversible thermal shifts</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Thermal denaturation (Tm) data are easy to obtain; it is a technique that is used by both small labs and large‐scale industrial organizations. The link between ligand affinity (K
D) and ΔTm is understood for reversible denaturation; however, there is a gap in our understanding of how to quantitatively interpret ΔTm for the many proteins that irreversibly denature. To better understand the origin, and extent of applicability, of a K
D to ΔTm correlate, we define equations relating K
D and ΔTm for irreversible protein unfolding, which we test with computational models and experimental data. These results suggest a general relationship exists between K
D and ΔTm for irreversible denaturation.</description><subject>activation energy</subject><subject>Affinity</subject><subject>Computer applications</subject><subject>Full‐Length Papers</subject><subject>irreversible denaturation</subject><subject>ligand affinity and unfolding</subject><subject>Ligands</subject><subject>Mathematical models</subject><subject>Models, Molecular</subject><subject>Protein Denaturation</subject><subject>Protein folding</subject><subject>protein unfolding</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - isolation & purification</subject><subject>Temperature</subject><subject>Thermal denaturation</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kV1LwzAUhoMoOqfgL5CCN95Uk6bNkhthiDphMBEF70KanmyRtplJp-zfm7n5CV6dhDx5zklehI4IPiMYZ-dz787oAJMt1CM5EykX7Gkb9bBgJOWU8T20H8IzxjgnGd1Fe5RQRkROe2g0TIJt5jUkjaugTozzSQUd-Ma2tp0mypi46JaJ8a5JrPfwCj7YMl7oZpFSdRJm1nThAO0YVQc43NQ-ery-ergcpePJze3lcJzqInZPhSiUUqYAXIKmQmuSGV5yIapcMOC8BFYIUjFcUmNADHIORVlVnIMuiNGM9tHF2jtflA1UGtrOq1rOvW2UX0qnrPx90tqZnLpXyQZUcLISnG4E3r0sIHSysUFDXasW3CLILGODHLNYInryB312C9_G50WKcxa_PuffQu1dCB7M1zAEy1U8ce_kKp6IHv8c_gv8zCMC6Rp4szUs_xXJu_vJh_Adubea_A</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Hall, Justin</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0316-847X</orcidid></search><sort><creationdate>201910</creationdate><title>A simple model for determining affinity from irreversible thermal shifts</title><author>Hall, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5041-995aaaf5e0bec39cc12f8b899d496e88be6591d60b3ffe9748e5bdd88ec51fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>activation energy</topic><topic>Affinity</topic><topic>Computer applications</topic><topic>Full‐Length Papers</topic><topic>irreversible denaturation</topic><topic>ligand affinity and unfolding</topic><topic>Ligands</topic><topic>Mathematical models</topic><topic>Models, Molecular</topic><topic>Protein Denaturation</topic><topic>Protein folding</topic><topic>protein unfolding</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - isolation & purification</topic><topic>Temperature</topic><topic>Thermal denaturation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Justin</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple model for determining affinity from irreversible thermal shifts</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2019-10</date><risdate>2019</risdate><volume>28</volume><issue>10</issue><spage>1880</spage><epage>1887</epage><pages>1880-1887</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Thermal denaturation (Tm) data are easy to obtain; it is a technique that is used by both small labs and large‐scale industrial organizations. The link between ligand affinity (K
D) and ΔTm is understood for reversible denaturation; however, there is a gap in our understanding of how to quantitatively interpret ΔTm for the many proteins that irreversibly denature. To better understand the origin, and extent of applicability, of a K
D to ΔTm correlate, we define equations relating K
D and ΔTm for irreversible protein unfolding, which we test with computational models and experimental data. These results suggest a general relationship exists between K
D and ΔTm for irreversible denaturation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31361943</pmid><doi>10.1002/pro.3701</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0316-847X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2019-10, Vol.28 (10), p.1880-1887 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6739816 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | activation energy Affinity Computer applications Full‐Length Papers irreversible denaturation ligand affinity and unfolding Ligands Mathematical models Models, Molecular Protein Denaturation Protein folding protein unfolding Proteins Proteins - chemistry Proteins - isolation & purification Temperature Thermal denaturation |
title | A simple model for determining affinity from irreversible thermal shifts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20model%20for%20determining%20affinity%20from%20irreversible%20thermal%20shifts&rft.jtitle=Protein%20science&rft.au=Hall,%20Justin&rft.date=2019-10&rft.volume=28&rft.issue=10&rft.spage=1880&rft.epage=1887&rft.pages=1880-1887&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.3701&rft_dat=%3Cproquest_pubme%3E2288600248%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288600248&rft_id=info:pmid/31361943&rfr_iscdi=true |