A simple model for determining affinity from irreversible thermal shifts

Thermal denaturation (Tm) data are easy to obtain; it is a technique that is used by both small labs and large‐scale industrial organizations. The link between ligand affinity (K D) and ΔTm is understood for reversible denaturation; however, there is a gap in our understanding of how to quantitative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2019-10, Vol.28 (10), p.1880-1887
1. Verfasser: Hall, Justin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1887
container_issue 10
container_start_page 1880
container_title Protein science
container_volume 28
creator Hall, Justin
description Thermal denaturation (Tm) data are easy to obtain; it is a technique that is used by both small labs and large‐scale industrial organizations. The link between ligand affinity (K D) and ΔTm is understood for reversible denaturation; however, there is a gap in our understanding of how to quantitatively interpret ΔTm for the many proteins that irreversibly denature. To better understand the origin, and extent of applicability, of a K D to ΔTm correlate, we define equations relating K D and ΔTm for irreversible protein unfolding, which we test with computational models and experimental data. These results suggest a general relationship exists between K D and ΔTm for irreversible denaturation.
doi_str_mv 10.1002/pro.3701
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6739816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288600248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5041-995aaaf5e0bec39cc12f8b899d496e88be6591d60b3ffe9748e5bdd88ec51fc63</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMoOqfgL5CCN95Uk6bNkhthiDphMBEF70KanmyRtplJp-zfm7n5CV6dhDx5zklehI4IPiMYZ-dz787oAJMt1CM5EykX7Gkb9bBgJOWU8T20H8IzxjgnGd1Fe5RQRkROe2g0TIJt5jUkjaugTozzSQUd-Ma2tp0mypi46JaJ8a5JrPfwCj7YMl7oZpFSdRJm1nThAO0YVQc43NQ-ery-ergcpePJze3lcJzqInZPhSiUUqYAXIKmQmuSGV5yIapcMOC8BFYIUjFcUmNADHIORVlVnIMuiNGM9tHF2jtflA1UGtrOq1rOvW2UX0qnrPx90tqZnLpXyQZUcLISnG4E3r0sIHSysUFDXasW3CLILGODHLNYInryB312C9_G50WKcxa_PuffQu1dCB7M1zAEy1U8ce_kKp6IHv8c_gv8zCMC6Rp4szUs_xXJu_vJh_Adubea_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288600248</pqid></control><display><type>article</type><title>A simple model for determining affinity from irreversible thermal shifts</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hall, Justin</creator><creatorcontrib>Hall, Justin</creatorcontrib><description>Thermal denaturation (Tm) data are easy to obtain; it is a technique that is used by both small labs and large‐scale industrial organizations. The link between ligand affinity (K D) and ΔTm is understood for reversible denaturation; however, there is a gap in our understanding of how to quantitatively interpret ΔTm for the many proteins that irreversibly denature. To better understand the origin, and extent of applicability, of a K D to ΔTm correlate, we define equations relating K D and ΔTm for irreversible protein unfolding, which we test with computational models and experimental data. These results suggest a general relationship exists between K D and ΔTm for irreversible denaturation.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.3701</identifier><identifier>PMID: 31361943</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>activation energy ; Affinity ; Computer applications ; Full‐Length Papers ; irreversible denaturation ; ligand affinity and unfolding ; Ligands ; Mathematical models ; Models, Molecular ; Protein Denaturation ; Protein folding ; protein unfolding ; Proteins ; Proteins - chemistry ; Proteins - isolation &amp; purification ; Temperature ; Thermal denaturation</subject><ispartof>Protein science, 2019-10, Vol.28 (10), p.1880-1887</ispartof><rights>2019 The Author. published by Wiley Periodicals, Inc. on behalf of The Protein Society.</rights><rights>2019 The Author. Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.</rights><rights>2019 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5041-995aaaf5e0bec39cc12f8b899d496e88be6591d60b3ffe9748e5bdd88ec51fc63</citedby><cites>FETCH-LOGICAL-c5041-995aaaf5e0bec39cc12f8b899d496e88be6591d60b3ffe9748e5bdd88ec51fc63</cites><orcidid>0000-0002-0316-847X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739816/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739816/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31361943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, Justin</creatorcontrib><title>A simple model for determining affinity from irreversible thermal shifts</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Thermal denaturation (Tm) data are easy to obtain; it is a technique that is used by both small labs and large‐scale industrial organizations. The link between ligand affinity (K D) and ΔTm is understood for reversible denaturation; however, there is a gap in our understanding of how to quantitatively interpret ΔTm for the many proteins that irreversibly denature. To better understand the origin, and extent of applicability, of a K D to ΔTm correlate, we define equations relating K D and ΔTm for irreversible protein unfolding, which we test with computational models and experimental data. These results suggest a general relationship exists between K D and ΔTm for irreversible denaturation.</description><subject>activation energy</subject><subject>Affinity</subject><subject>Computer applications</subject><subject>Full‐Length Papers</subject><subject>irreversible denaturation</subject><subject>ligand affinity and unfolding</subject><subject>Ligands</subject><subject>Mathematical models</subject><subject>Models, Molecular</subject><subject>Protein Denaturation</subject><subject>Protein folding</subject><subject>protein unfolding</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - isolation &amp; purification</subject><subject>Temperature</subject><subject>Thermal denaturation</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kV1LwzAUhoMoOqfgL5CCN95Uk6bNkhthiDphMBEF70KanmyRtplJp-zfm7n5CV6dhDx5zklehI4IPiMYZ-dz787oAJMt1CM5EykX7Gkb9bBgJOWU8T20H8IzxjgnGd1Fe5RQRkROe2g0TIJt5jUkjaugTozzSQUd-Ma2tp0mypi46JaJ8a5JrPfwCj7YMl7oZpFSdRJm1nThAO0YVQc43NQ-ery-ergcpePJze3lcJzqInZPhSiUUqYAXIKmQmuSGV5yIapcMOC8BFYIUjFcUmNADHIORVlVnIMuiNGM9tHF2jtflA1UGtrOq1rOvW2UX0qnrPx90tqZnLpXyQZUcLISnG4E3r0sIHSysUFDXasW3CLILGODHLNYInryB312C9_G50WKcxa_PuffQu1dCB7M1zAEy1U8ce_kKp6IHv8c_gv8zCMC6Rp4szUs_xXJu_vJh_Adubea_A</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Hall, Justin</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0316-847X</orcidid></search><sort><creationdate>201910</creationdate><title>A simple model for determining affinity from irreversible thermal shifts</title><author>Hall, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5041-995aaaf5e0bec39cc12f8b899d496e88be6591d60b3ffe9748e5bdd88ec51fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>activation energy</topic><topic>Affinity</topic><topic>Computer applications</topic><topic>Full‐Length Papers</topic><topic>irreversible denaturation</topic><topic>ligand affinity and unfolding</topic><topic>Ligands</topic><topic>Mathematical models</topic><topic>Models, Molecular</topic><topic>Protein Denaturation</topic><topic>Protein folding</topic><topic>protein unfolding</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - isolation &amp; purification</topic><topic>Temperature</topic><topic>Thermal denaturation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Justin</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple model for determining affinity from irreversible thermal shifts</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2019-10</date><risdate>2019</risdate><volume>28</volume><issue>10</issue><spage>1880</spage><epage>1887</epage><pages>1880-1887</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Thermal denaturation (Tm) data are easy to obtain; it is a technique that is used by both small labs and large‐scale industrial organizations. The link between ligand affinity (K D) and ΔTm is understood for reversible denaturation; however, there is a gap in our understanding of how to quantitatively interpret ΔTm for the many proteins that irreversibly denature. To better understand the origin, and extent of applicability, of a K D to ΔTm correlate, we define equations relating K D and ΔTm for irreversible protein unfolding, which we test with computational models and experimental data. These results suggest a general relationship exists between K D and ΔTm for irreversible denaturation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31361943</pmid><doi>10.1002/pro.3701</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0316-847X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2019-10, Vol.28 (10), p.1880-1887
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6739816
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects activation energy
Affinity
Computer applications
Full‐Length Papers
irreversible denaturation
ligand affinity and unfolding
Ligands
Mathematical models
Models, Molecular
Protein Denaturation
Protein folding
protein unfolding
Proteins
Proteins - chemistry
Proteins - isolation & purification
Temperature
Thermal denaturation
title A simple model for determining affinity from irreversible thermal shifts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20model%20for%20determining%20affinity%20from%20irreversible%20thermal%20shifts&rft.jtitle=Protein%20science&rft.au=Hall,%20Justin&rft.date=2019-10&rft.volume=28&rft.issue=10&rft.spage=1880&rft.epage=1887&rft.pages=1880-1887&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.3701&rft_dat=%3Cproquest_pubme%3E2288600248%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288600248&rft_id=info:pmid/31361943&rfr_iscdi=true