Genome‐wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed

Summary Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large‐scale introg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2019-10, Vol.17 (10), p.1998-2010
Hauptverfasser: Zou, Jun, Mao, Lingfeng, Qiu, Jie, Wang, Meng, Jia, Lei, Wu, Dongya, He, Zhesi, Chen, Meihong, Shen, Yifei, Shen, Enhui, Huang, Yongji, Li, Ruiyuan, Hu, Dandan, Shi, Lei, Wang, Kai, Zhu, Qianhao, Ye, Chuyu, Bancroft, Ian, King, Graham J., Meng, Jinling, Fan, Longjiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2010
container_issue 10
container_start_page 1998
container_title Plant biotechnology journal
container_volume 17
creator Zou, Jun
Mao, Lingfeng
Qiu, Jie
Wang, Meng
Jia, Lei
Wu, Dongya
He, Zhesi
Chen, Meihong
Shen, Yifei
Shen, Enhui
Huang, Yongji
Li, Ruiyuan
Hu, Dandan
Shi, Lei
Wang, Kai
Zhu, Qianhao
Ye, Chuyu
Bancroft, Ian
King, Graham J.
Meng, Jinling
Fan, Longjiang
description Summary Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large‐scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently significantly diverged, with rapid genome differentiation after hybridization and intensive local selective breeding. The first historical introgression of B. rapa dramatically broadened the allelic pool but decreased the deleterious variations of Asian rapeseed. The second historical introgression of the double‐low traits of European rapeseed (canola) has reshaped Asian rapeseed into two groups (double‐low and double‐high), accompanied by an increase in genetic load in the double‐low group. This study demonstrates distinctive genomic footprints and deleterious SNP (single nucleotide polymorphism) variants for local adaptation by recent intra‐ and interspecies introgression events and provides novel insights for understanding the rapid genome evolution of a young allopolyploid crop.
doi_str_mv 10.1111/pbi.13115
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6737024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287802838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4765-11ce3b98a4f9b6a92c963fce791b0cd7cc85acc2d9e23f879492933b0e613b193</originalsourceid><addsrcrecordid>eNqFkc9qVDEUxoNYbK0ufAEJuNHFtPl3k5uNUIvWQkEXug65ybk1JZOMyb0ts-sj9Bl9EjNOO6ggZnMC58fH950PoReUHNH2jldDOKKc0u4ROqBCqoWSHXu8-wuxj57WekUIo7KTT9A-J1oorrsD5M8g5SX8uL27CR5whQhuCjnhMedpVUKaKrbJY98WE5SQ54qvbQl2A1UcEl7nOV3ikxpswjbGPMFU7Crm4HGbUAH8M7Q32ljh-f08RF8_vP9y-nFx8ens_PTkYuFEc7yg1AEfdG_FqAdpNXNa8tGB0nQgzivn-s46x7wGxsdeaaGZ5nwgICkfqOaH6O1WdzUPS_AOUrMSTYuxtGVtsg3mz00K38xlvjZScUWYaAKv7wVK_j5DncwyVAcx2gQtuWEdE0xp1fH_o4wI2XeSb2y9-gu9ynNJ7RKN6lVPWM_7Rr3ZUq7kWguMO9-UmE3NptVsftXc2Je_B92RD7024HgL3IQI638rmc_vzreSPwHFnbR-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287802838</pqid></control><display><type>article</type><title>Genome‐wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zou, Jun ; Mao, Lingfeng ; Qiu, Jie ; Wang, Meng ; Jia, Lei ; Wu, Dongya ; He, Zhesi ; Chen, Meihong ; Shen, Yifei ; Shen, Enhui ; Huang, Yongji ; Li, Ruiyuan ; Hu, Dandan ; Shi, Lei ; Wang, Kai ; Zhu, Qianhao ; Ye, Chuyu ; Bancroft, Ian ; King, Graham J. ; Meng, Jinling ; Fan, Longjiang</creator><creatorcontrib>Zou, Jun ; Mao, Lingfeng ; Qiu, Jie ; Wang, Meng ; Jia, Lei ; Wu, Dongya ; He, Zhesi ; Chen, Meihong ; Shen, Yifei ; Shen, Enhui ; Huang, Yongji ; Li, Ruiyuan ; Hu, Dandan ; Shi, Lei ; Wang, Kai ; Zhu, Qianhao ; Ye, Chuyu ; Bancroft, Ian ; King, Graham J. ; Meng, Jinling ; Fan, Longjiang</creatorcontrib><description>Summary Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large‐scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently significantly diverged, with rapid genome differentiation after hybridization and intensive local selective breeding. The first historical introgression of B. rapa dramatically broadened the allelic pool but decreased the deleterious variations of Asian rapeseed. The second historical introgression of the double‐low traits of European rapeseed (canola) has reshaped Asian rapeseed into two groups (double‐low and double‐high), accompanied by an increase in genetic load in the double‐low group. This study demonstrates distinctive genomic footprints and deleterious SNP (single nucleotide polymorphism) variants for local adaptation by recent intra‐ and interspecies introgression events and provides novel insights for understanding the rapid genome evolution of a young allopolyploid crop.</description><identifier>ISSN: 1467-7644</identifier><identifier>ISSN: 1467-7652</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.13115</identifier><identifier>PMID: 30947395</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Adaptation ; allopolyploid ; allotetraploidy ; Asia ; Asian rapeseed ; Biological evolution ; biotechnology ; Brassica ; Brassica napus ; Brassica napus - genetics ; Brassica rapa - genetics ; canola ; Chromosomes ; Crops ; Cultivars ; deleterious variations ; Domestication ; Europe ; evolution ; Footprints ; Gene sequencing ; Genetic load ; genetic variation ; genome ; Genome, Plant ; Genomes ; genomics ; Hybridization ; Hybridization, Genetic ; introgression ; Nucleotides ; oilseed crops ; Oilseeds ; Phenotype ; Plant Breeding ; Polymorphism ; Population ; R&amp;D ; Rapeseed ; Research &amp; development ; selection footprints ; Selective breeding ; Single-nucleotide polymorphism ; Tetraploidy</subject><ispartof>Plant biotechnology journal, 2019-10, Vol.17 (10), p.1998-2010</ispartof><rights>2019 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4765-11ce3b98a4f9b6a92c963fce791b0cd7cc85acc2d9e23f879492933b0e613b193</citedby><cites>FETCH-LOGICAL-c4765-11ce3b98a4f9b6a92c963fce791b0cd7cc85acc2d9e23f879492933b0e613b193</cites><orcidid>0000-0003-3271-895X ; 0000-0002-5975-6051 ; 0000-0002-5021-8628 ; 0000-0001-7707-1171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.13115$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.13115$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30947395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Jun</creatorcontrib><creatorcontrib>Mao, Lingfeng</creatorcontrib><creatorcontrib>Qiu, Jie</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Jia, Lei</creatorcontrib><creatorcontrib>Wu, Dongya</creatorcontrib><creatorcontrib>He, Zhesi</creatorcontrib><creatorcontrib>Chen, Meihong</creatorcontrib><creatorcontrib>Shen, Yifei</creatorcontrib><creatorcontrib>Shen, Enhui</creatorcontrib><creatorcontrib>Huang, Yongji</creatorcontrib><creatorcontrib>Li, Ruiyuan</creatorcontrib><creatorcontrib>Hu, Dandan</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Zhu, Qianhao</creatorcontrib><creatorcontrib>Ye, Chuyu</creatorcontrib><creatorcontrib>Bancroft, Ian</creatorcontrib><creatorcontrib>King, Graham J.</creatorcontrib><creatorcontrib>Meng, Jinling</creatorcontrib><creatorcontrib>Fan, Longjiang</creatorcontrib><title>Genome‐wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large‐scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently significantly diverged, with rapid genome differentiation after hybridization and intensive local selective breeding. The first historical introgression of B. rapa dramatically broadened the allelic pool but decreased the deleterious variations of Asian rapeseed. The second historical introgression of the double‐low traits of European rapeseed (canola) has reshaped Asian rapeseed into two groups (double‐low and double‐high), accompanied by an increase in genetic load in the double‐low group. This study demonstrates distinctive genomic footprints and deleterious SNP (single nucleotide polymorphism) variants for local adaptation by recent intra‐ and interspecies introgression events and provides novel insights for understanding the rapid genome evolution of a young allopolyploid crop.</description><subject>Adaptation</subject><subject>allopolyploid</subject><subject>allotetraploidy</subject><subject>Asia</subject><subject>Asian rapeseed</subject><subject>Biological evolution</subject><subject>biotechnology</subject><subject>Brassica</subject><subject>Brassica napus</subject><subject>Brassica napus - genetics</subject><subject>Brassica rapa - genetics</subject><subject>canola</subject><subject>Chromosomes</subject><subject>Crops</subject><subject>Cultivars</subject><subject>deleterious variations</subject><subject>Domestication</subject><subject>Europe</subject><subject>evolution</subject><subject>Footprints</subject><subject>Gene sequencing</subject><subject>Genetic load</subject><subject>genetic variation</subject><subject>genome</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>genomics</subject><subject>Hybridization</subject><subject>Hybridization, Genetic</subject><subject>introgression</subject><subject>Nucleotides</subject><subject>oilseed crops</subject><subject>Oilseeds</subject><subject>Phenotype</subject><subject>Plant Breeding</subject><subject>Polymorphism</subject><subject>Population</subject><subject>R&amp;D</subject><subject>Rapeseed</subject><subject>Research &amp; development</subject><subject>selection footprints</subject><subject>Selective breeding</subject><subject>Single-nucleotide polymorphism</subject><subject>Tetraploidy</subject><issn>1467-7644</issn><issn>1467-7652</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkc9qVDEUxoNYbK0ufAEJuNHFtPl3k5uNUIvWQkEXug65ybk1JZOMyb0ts-sj9Bl9EjNOO6ggZnMC58fH950PoReUHNH2jldDOKKc0u4ROqBCqoWSHXu8-wuxj57WekUIo7KTT9A-J1oorrsD5M8g5SX8uL27CR5whQhuCjnhMedpVUKaKrbJY98WE5SQ54qvbQl2A1UcEl7nOV3ikxpswjbGPMFU7Crm4HGbUAH8M7Q32ljh-f08RF8_vP9y-nFx8ens_PTkYuFEc7yg1AEfdG_FqAdpNXNa8tGB0nQgzivn-s46x7wGxsdeaaGZ5nwgICkfqOaH6O1WdzUPS_AOUrMSTYuxtGVtsg3mz00K38xlvjZScUWYaAKv7wVK_j5DncwyVAcx2gQtuWEdE0xp1fH_o4wI2XeSb2y9-gu9ynNJ7RKN6lVPWM_7Rr3ZUq7kWguMO9-UmE3NptVsftXc2Je_B92RD7024HgL3IQI638rmc_vzreSPwHFnbR-</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Zou, Jun</creator><creator>Mao, Lingfeng</creator><creator>Qiu, Jie</creator><creator>Wang, Meng</creator><creator>Jia, Lei</creator><creator>Wu, Dongya</creator><creator>He, Zhesi</creator><creator>Chen, Meihong</creator><creator>Shen, Yifei</creator><creator>Shen, Enhui</creator><creator>Huang, Yongji</creator><creator>Li, Ruiyuan</creator><creator>Hu, Dandan</creator><creator>Shi, Lei</creator><creator>Wang, Kai</creator><creator>Zhu, Qianhao</creator><creator>Ye, Chuyu</creator><creator>Bancroft, Ian</creator><creator>King, Graham J.</creator><creator>Meng, Jinling</creator><creator>Fan, Longjiang</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3271-895X</orcidid><orcidid>https://orcid.org/0000-0002-5975-6051</orcidid><orcidid>https://orcid.org/0000-0002-5021-8628</orcidid><orcidid>https://orcid.org/0000-0001-7707-1171</orcidid></search><sort><creationdate>201910</creationdate><title>Genome‐wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed</title><author>Zou, Jun ; Mao, Lingfeng ; Qiu, Jie ; Wang, Meng ; Jia, Lei ; Wu, Dongya ; He, Zhesi ; Chen, Meihong ; Shen, Yifei ; Shen, Enhui ; Huang, Yongji ; Li, Ruiyuan ; Hu, Dandan ; Shi, Lei ; Wang, Kai ; Zhu, Qianhao ; Ye, Chuyu ; Bancroft, Ian ; King, Graham J. ; Meng, Jinling ; Fan, Longjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4765-11ce3b98a4f9b6a92c963fce791b0cd7cc85acc2d9e23f879492933b0e613b193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation</topic><topic>allopolyploid</topic><topic>allotetraploidy</topic><topic>Asia</topic><topic>Asian rapeseed</topic><topic>Biological evolution</topic><topic>biotechnology</topic><topic>Brassica</topic><topic>Brassica napus</topic><topic>Brassica napus - genetics</topic><topic>Brassica rapa - genetics</topic><topic>canola</topic><topic>Chromosomes</topic><topic>Crops</topic><topic>Cultivars</topic><topic>deleterious variations</topic><topic>Domestication</topic><topic>Europe</topic><topic>evolution</topic><topic>Footprints</topic><topic>Gene sequencing</topic><topic>Genetic load</topic><topic>genetic variation</topic><topic>genome</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>genomics</topic><topic>Hybridization</topic><topic>Hybridization, Genetic</topic><topic>introgression</topic><topic>Nucleotides</topic><topic>oilseed crops</topic><topic>Oilseeds</topic><topic>Phenotype</topic><topic>Plant Breeding</topic><topic>Polymorphism</topic><topic>Population</topic><topic>R&amp;D</topic><topic>Rapeseed</topic><topic>Research &amp; development</topic><topic>selection footprints</topic><topic>Selective breeding</topic><topic>Single-nucleotide polymorphism</topic><topic>Tetraploidy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Jun</creatorcontrib><creatorcontrib>Mao, Lingfeng</creatorcontrib><creatorcontrib>Qiu, Jie</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Jia, Lei</creatorcontrib><creatorcontrib>Wu, Dongya</creatorcontrib><creatorcontrib>He, Zhesi</creatorcontrib><creatorcontrib>Chen, Meihong</creatorcontrib><creatorcontrib>Shen, Yifei</creatorcontrib><creatorcontrib>Shen, Enhui</creatorcontrib><creatorcontrib>Huang, Yongji</creatorcontrib><creatorcontrib>Li, Ruiyuan</creatorcontrib><creatorcontrib>Hu, Dandan</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Zhu, Qianhao</creatorcontrib><creatorcontrib>Ye, Chuyu</creatorcontrib><creatorcontrib>Bancroft, Ian</creatorcontrib><creatorcontrib>King, Graham J.</creatorcontrib><creatorcontrib>Meng, Jinling</creatorcontrib><creatorcontrib>Fan, Longjiang</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Jun</au><au>Mao, Lingfeng</au><au>Qiu, Jie</au><au>Wang, Meng</au><au>Jia, Lei</au><au>Wu, Dongya</au><au>He, Zhesi</au><au>Chen, Meihong</au><au>Shen, Yifei</au><au>Shen, Enhui</au><au>Huang, Yongji</au><au>Li, Ruiyuan</au><au>Hu, Dandan</au><au>Shi, Lei</au><au>Wang, Kai</au><au>Zhu, Qianhao</au><au>Ye, Chuyu</au><au>Bancroft, Ian</au><au>King, Graham J.</au><au>Meng, Jinling</au><au>Fan, Longjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome‐wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2019-10</date><risdate>2019</risdate><volume>17</volume><issue>10</issue><spage>1998</spage><epage>2010</epage><pages>1998-2010</pages><issn>1467-7644</issn><issn>1467-7652</issn><eissn>1467-7652</eissn><abstract>Summary Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large‐scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently significantly diverged, with rapid genome differentiation after hybridization and intensive local selective breeding. The first historical introgression of B. rapa dramatically broadened the allelic pool but decreased the deleterious variations of Asian rapeseed. The second historical introgression of the double‐low traits of European rapeseed (canola) has reshaped Asian rapeseed into two groups (double‐low and double‐high), accompanied by an increase in genetic load in the double‐low group. This study demonstrates distinctive genomic footprints and deleterious SNP (single nucleotide polymorphism) variants for local adaptation by recent intra‐ and interspecies introgression events and provides novel insights for understanding the rapid genome evolution of a young allopolyploid crop.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30947395</pmid><doi>10.1111/pbi.13115</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3271-895X</orcidid><orcidid>https://orcid.org/0000-0002-5975-6051</orcidid><orcidid>https://orcid.org/0000-0002-5021-8628</orcidid><orcidid>https://orcid.org/0000-0001-7707-1171</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2019-10, Vol.17 (10), p.1998-2010
issn 1467-7644
1467-7652
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6737024
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Adaptation
allopolyploid
allotetraploidy
Asia
Asian rapeseed
Biological evolution
biotechnology
Brassica
Brassica napus
Brassica napus - genetics
Brassica rapa - genetics
canola
Chromosomes
Crops
Cultivars
deleterious variations
Domestication
Europe
evolution
Footprints
Gene sequencing
Genetic load
genetic variation
genome
Genome, Plant
Genomes
genomics
Hybridization
Hybridization, Genetic
introgression
Nucleotides
oilseed crops
Oilseeds
Phenotype
Plant Breeding
Polymorphism
Population
R&D
Rapeseed
Research & development
selection footprints
Selective breeding
Single-nucleotide polymorphism
Tetraploidy
title Genome‐wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%E2%80%90wide%20selection%20footprints%20and%20deleterious%20variations%20in%20young%20Asian%20allotetraploid%20rapeseed&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Zou,%20Jun&rft.date=2019-10&rft.volume=17&rft.issue=10&rft.spage=1998&rft.epage=2010&rft.pages=1998-2010&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.13115&rft_dat=%3Cproquest_pubme%3E2287802838%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287802838&rft_id=info:pmid/30947395&rfr_iscdi=true