Non-Crh Glutamatergic Neurons in Barrington’s Nucleus Control Micturition via Glutamatergic Afferents from the Midbrain and Hypothalamus

Lower urinary tract symptoms (LUTS) are exceptionally common and debilitating, and they are likely caused or exacerbated by dysfunction of neural circuits controlling bladder function. An incomplete understanding of neural control of bladder function limits our ability to clinically address LUTS. Ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2019-09, Vol.29 (17), p.2775-2789.e7
Hauptverfasser: Verstegen, Anne M.J., Klymko, Nataliya, Zhu, Lin, Mathai, John C., Kobayashi, Reina, Venner, Anne, Ross, Rachel A., VanderHorst, Veronique G., Arrigoni, Elda, Geerling, Joel C., Zeidel, Mark L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2789.e7
container_issue 17
container_start_page 2775
container_title Current biology
container_volume 29
creator Verstegen, Anne M.J.
Klymko, Nataliya
Zhu, Lin
Mathai, John C.
Kobayashi, Reina
Venner, Anne
Ross, Rachel A.
VanderHorst, Veronique G.
Arrigoni, Elda
Geerling, Joel C.
Zeidel, Mark L.
description Lower urinary tract symptoms (LUTS) are exceptionally common and debilitating, and they are likely caused or exacerbated by dysfunction of neural circuits controlling bladder function. An incomplete understanding of neural control of bladder function limits our ability to clinically address LUTS. Barrington’s nucleus (Bar) provides descending control of bladder and sphincter function, and its glutamatergic neurons expressing corticotropin releasing hormone (BarCrh/Vglut2) are implicated in bladder control. However, it remains unclear whether this subset of Bar neurons is necessary for voiding, and the broader circuitry providing input to this control center remains largely unknown. Here, we examine the contribution to micturition behavior of BarCrh/Vglut2 neurons relative to the overall BarVglut2 population. First, we identify robust, excitatory synaptic input to Bar. Glutamatergic axons from the periaqueductal gray (PAG) and lateral hypothalamic area (LHA) intensely innervate and are functionally connected to Bar, and optogenetic stimulation of these axon terminals reliably provokes voiding. Similarly, optogenetic stimulation of BarVglut2 neurons triggers voiding, whereas stimulating the BarCrh/Vglut2 subpopulation causes bladder contraction, typically without voiding. Next, we genetically ablate either BarVglut2 or BarCrh/Vglut2 neurons and found that only BarVglut2 ablation replicates the profound urinary retention produced by conventional lesions in this region. Fiber photometry recordings reveal that BarVglut2 neuron activity precedes increased bladder pressure, while activity of BarCrh/Vglut2 is phase delayed. Finally, deleting Crh from Bar neurons has no effect on voiding and related bladder physiology. Our results help identify the circuitry that modulates Bar neuron activity and identify subtypes that may serve different roles in micturition. [Display omitted] •In vivo neuroscience techniques and thermography combined to study urinary continence•PAG and LHA neurons provide direct excitatory innervation of Barrington’s nucleus•Optogenetic stimulation of neural afferents leads to different void-behavior sequence•The glutamatergic Bar population is necessary and sufficient for micturition behavior Verstegen et al. shine light on Barrington’s nucleus, in which neuron subpopulations have distinct activity patterns important for coordinating downstream bladder control. Furthermore, they identify nodes on the pathway to activate the micturition control c
doi_str_mv 10.1016/j.cub.2019.07.009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6736713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982219308541</els_id><sourcerecordid>2275948546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-b24b8982aa541619fa1ee97818e10df94d6362c246129313a82388b9c7c1e4543</originalsourceid><addsrcrecordid>eNp9kc1u1DAURiMEokPhAdggL9kk2I7j2EJCKiNokcqwgbXlODczHiX24J-RumPNG_B6PAmuplTAgpUX_r7je32q6jnBDcGEv9o3Jg8NxUQ2uG8wlg-qFRG9rDFj3cNqhSXHtRSUnlVPYtxjTKiQ_HF11hJGqRBkVX3feFevww5dzjnpRScIW2vQBnLwLiLr0FsdgnXb5N3Pbz8i2mQzQ45o7V0KfkYfrUk52GS9Q0er_-FcTBMEcCmiKfgFpR2UwjgEXcDajejq5uDTTs96yfFp9WjSc4Rnd-d59eX9u8_rq_r60-WH9cV1bTrSp3qgbBBlKa07RjiRkyYAshdEAMHjJNnIW04NZZxQ2ZJWC9oKMUjTGwKsY-159ebEPeRhgdGU8YKe1SHYRYcb5bVVf984u1Nbf1S8b3lP2gJ4eQcI_muGmNRio4F51g58jorSvpNMdIyXKDlFTfAxBpjunyFY3TpUe1UcqluHCveqOCydF3_Od9_4La0EXp8CUH7paCGoaCw4A6MNYJIavf0P_hdV6rCz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275948546</pqid></control><display><type>article</type><title>Non-Crh Glutamatergic Neurons in Barrington’s Nucleus Control Micturition via Glutamatergic Afferents from the Midbrain and Hypothalamus</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Verstegen, Anne M.J. ; Klymko, Nataliya ; Zhu, Lin ; Mathai, John C. ; Kobayashi, Reina ; Venner, Anne ; Ross, Rachel A. ; VanderHorst, Veronique G. ; Arrigoni, Elda ; Geerling, Joel C. ; Zeidel, Mark L.</creator><creatorcontrib>Verstegen, Anne M.J. ; Klymko, Nataliya ; Zhu, Lin ; Mathai, John C. ; Kobayashi, Reina ; Venner, Anne ; Ross, Rachel A. ; VanderHorst, Veronique G. ; Arrigoni, Elda ; Geerling, Joel C. ; Zeidel, Mark L.</creatorcontrib><description>Lower urinary tract symptoms (LUTS) are exceptionally common and debilitating, and they are likely caused or exacerbated by dysfunction of neural circuits controlling bladder function. An incomplete understanding of neural control of bladder function limits our ability to clinically address LUTS. Barrington’s nucleus (Bar) provides descending control of bladder and sphincter function, and its glutamatergic neurons expressing corticotropin releasing hormone (BarCrh/Vglut2) are implicated in bladder control. However, it remains unclear whether this subset of Bar neurons is necessary for voiding, and the broader circuitry providing input to this control center remains largely unknown. Here, we examine the contribution to micturition behavior of BarCrh/Vglut2 neurons relative to the overall BarVglut2 population. First, we identify robust, excitatory synaptic input to Bar. Glutamatergic axons from the periaqueductal gray (PAG) and lateral hypothalamic area (LHA) intensely innervate and are functionally connected to Bar, and optogenetic stimulation of these axon terminals reliably provokes voiding. Similarly, optogenetic stimulation of BarVglut2 neurons triggers voiding, whereas stimulating the BarCrh/Vglut2 subpopulation causes bladder contraction, typically without voiding. Next, we genetically ablate either BarVglut2 or BarCrh/Vglut2 neurons and found that only BarVglut2 ablation replicates the profound urinary retention produced by conventional lesions in this region. Fiber photometry recordings reveal that BarVglut2 neuron activity precedes increased bladder pressure, while activity of BarCrh/Vglut2 is phase delayed. Finally, deleting Crh from Bar neurons has no effect on voiding and related bladder physiology. Our results help identify the circuitry that modulates Bar neuron activity and identify subtypes that may serve different roles in micturition. [Display omitted] •In vivo neuroscience techniques and thermography combined to study urinary continence•PAG and LHA neurons provide direct excitatory innervation of Barrington’s nucleus•Optogenetic stimulation of neural afferents leads to different void-behavior sequence•The glutamatergic Bar population is necessary and sufficient for micturition behavior Verstegen et al. shine light on Barrington’s nucleus, in which neuron subpopulations have distinct activity patterns important for coordinating downstream bladder control. Furthermore, they identify nodes on the pathway to activate the micturition control center, with different roles, reflex, or voluntary behavior integration, for the afferent sites</description><identifier>ISSN: 0960-9822</identifier><identifier>ISSN: 1879-0445</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2019.07.009</identifier><identifier>PMID: 31422881</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Barrington's nucleus ; Barrington's Nucleus - physiology ; bladder ; corticotropin-releasing hormone ; Corticotropin-Releasing Hormone - metabolism ; cystometry ; Female ; Hypothalamus - metabolism ; lateral hypothalamic area ; Male ; Mesencephalon - metabolism ; Mice ; micturition ; micturition video thermography ; neural circuits ; Neurons - physiology ; Neurons, Afferent ; neuroscience ; periaqueductal gray ; Urination - physiology</subject><ispartof>Current biology, 2019-09, Vol.29 (17), p.2775-2789.e7</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-b24b8982aa541619fa1ee97818e10df94d6362c246129313a82388b9c7c1e4543</citedby><cites>FETCH-LOGICAL-c517t-b24b8982aa541619fa1ee97818e10df94d6362c246129313a82388b9c7c1e4543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cub.2019.07.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31422881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verstegen, Anne M.J.</creatorcontrib><creatorcontrib>Klymko, Nataliya</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Mathai, John C.</creatorcontrib><creatorcontrib>Kobayashi, Reina</creatorcontrib><creatorcontrib>Venner, Anne</creatorcontrib><creatorcontrib>Ross, Rachel A.</creatorcontrib><creatorcontrib>VanderHorst, Veronique G.</creatorcontrib><creatorcontrib>Arrigoni, Elda</creatorcontrib><creatorcontrib>Geerling, Joel C.</creatorcontrib><creatorcontrib>Zeidel, Mark L.</creatorcontrib><title>Non-Crh Glutamatergic Neurons in Barrington’s Nucleus Control Micturition via Glutamatergic Afferents from the Midbrain and Hypothalamus</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Lower urinary tract symptoms (LUTS) are exceptionally common and debilitating, and they are likely caused or exacerbated by dysfunction of neural circuits controlling bladder function. An incomplete understanding of neural control of bladder function limits our ability to clinically address LUTS. Barrington’s nucleus (Bar) provides descending control of bladder and sphincter function, and its glutamatergic neurons expressing corticotropin releasing hormone (BarCrh/Vglut2) are implicated in bladder control. However, it remains unclear whether this subset of Bar neurons is necessary for voiding, and the broader circuitry providing input to this control center remains largely unknown. Here, we examine the contribution to micturition behavior of BarCrh/Vglut2 neurons relative to the overall BarVglut2 population. First, we identify robust, excitatory synaptic input to Bar. Glutamatergic axons from the periaqueductal gray (PAG) and lateral hypothalamic area (LHA) intensely innervate and are functionally connected to Bar, and optogenetic stimulation of these axon terminals reliably provokes voiding. Similarly, optogenetic stimulation of BarVglut2 neurons triggers voiding, whereas stimulating the BarCrh/Vglut2 subpopulation causes bladder contraction, typically without voiding. Next, we genetically ablate either BarVglut2 or BarCrh/Vglut2 neurons and found that only BarVglut2 ablation replicates the profound urinary retention produced by conventional lesions in this region. Fiber photometry recordings reveal that BarVglut2 neuron activity precedes increased bladder pressure, while activity of BarCrh/Vglut2 is phase delayed. Finally, deleting Crh from Bar neurons has no effect on voiding and related bladder physiology. Our results help identify the circuitry that modulates Bar neuron activity and identify subtypes that may serve different roles in micturition. [Display omitted] •In vivo neuroscience techniques and thermography combined to study urinary continence•PAG and LHA neurons provide direct excitatory innervation of Barrington’s nucleus•Optogenetic stimulation of neural afferents leads to different void-behavior sequence•The glutamatergic Bar population is necessary and sufficient for micturition behavior Verstegen et al. shine light on Barrington’s nucleus, in which neuron subpopulations have distinct activity patterns important for coordinating downstream bladder control. Furthermore, they identify nodes on the pathway to activate the micturition control center, with different roles, reflex, or voluntary behavior integration, for the afferent sites</description><subject>Animals</subject><subject>Barrington's nucleus</subject><subject>Barrington's Nucleus - physiology</subject><subject>bladder</subject><subject>corticotropin-releasing hormone</subject><subject>Corticotropin-Releasing Hormone - metabolism</subject><subject>cystometry</subject><subject>Female</subject><subject>Hypothalamus - metabolism</subject><subject>lateral hypothalamic area</subject><subject>Male</subject><subject>Mesencephalon - metabolism</subject><subject>Mice</subject><subject>micturition</subject><subject>micturition video thermography</subject><subject>neural circuits</subject><subject>Neurons - physiology</subject><subject>Neurons, Afferent</subject><subject>neuroscience</subject><subject>periaqueductal gray</subject><subject>Urination - physiology</subject><issn>0960-9822</issn><issn>1879-0445</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAURiMEokPhAdggL9kk2I7j2EJCKiNokcqwgbXlODczHiX24J-RumPNG_B6PAmuplTAgpUX_r7je32q6jnBDcGEv9o3Jg8NxUQ2uG8wlg-qFRG9rDFj3cNqhSXHtRSUnlVPYtxjTKiQ_HF11hJGqRBkVX3feFevww5dzjnpRScIW2vQBnLwLiLr0FsdgnXb5N3Pbz8i2mQzQ45o7V0KfkYfrUk52GS9Q0er_-FcTBMEcCmiKfgFpR2UwjgEXcDajejq5uDTTs96yfFp9WjSc4Rnd-d59eX9u8_rq_r60-WH9cV1bTrSp3qgbBBlKa07RjiRkyYAshdEAMHjJNnIW04NZZxQ2ZJWC9oKMUjTGwKsY-159ebEPeRhgdGU8YKe1SHYRYcb5bVVf984u1Nbf1S8b3lP2gJ4eQcI_muGmNRio4F51g58jorSvpNMdIyXKDlFTfAxBpjunyFY3TpUe1UcqluHCveqOCydF3_Od9_4La0EXp8CUH7paCGoaCw4A6MNYJIavf0P_hdV6rCz</recordid><startdate>20190909</startdate><enddate>20190909</enddate><creator>Verstegen, Anne M.J.</creator><creator>Klymko, Nataliya</creator><creator>Zhu, Lin</creator><creator>Mathai, John C.</creator><creator>Kobayashi, Reina</creator><creator>Venner, Anne</creator><creator>Ross, Rachel A.</creator><creator>VanderHorst, Veronique G.</creator><creator>Arrigoni, Elda</creator><creator>Geerling, Joel C.</creator><creator>Zeidel, Mark L.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190909</creationdate><title>Non-Crh Glutamatergic Neurons in Barrington’s Nucleus Control Micturition via Glutamatergic Afferents from the Midbrain and Hypothalamus</title><author>Verstegen, Anne M.J. ; Klymko, Nataliya ; Zhu, Lin ; Mathai, John C. ; Kobayashi, Reina ; Venner, Anne ; Ross, Rachel A. ; VanderHorst, Veronique G. ; Arrigoni, Elda ; Geerling, Joel C. ; Zeidel, Mark L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-b24b8982aa541619fa1ee97818e10df94d6362c246129313a82388b9c7c1e4543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Barrington's nucleus</topic><topic>Barrington's Nucleus - physiology</topic><topic>bladder</topic><topic>corticotropin-releasing hormone</topic><topic>Corticotropin-Releasing Hormone - metabolism</topic><topic>cystometry</topic><topic>Female</topic><topic>Hypothalamus - metabolism</topic><topic>lateral hypothalamic area</topic><topic>Male</topic><topic>Mesencephalon - metabolism</topic><topic>Mice</topic><topic>micturition</topic><topic>micturition video thermography</topic><topic>neural circuits</topic><topic>Neurons - physiology</topic><topic>Neurons, Afferent</topic><topic>neuroscience</topic><topic>periaqueductal gray</topic><topic>Urination - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verstegen, Anne M.J.</creatorcontrib><creatorcontrib>Klymko, Nataliya</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Mathai, John C.</creatorcontrib><creatorcontrib>Kobayashi, Reina</creatorcontrib><creatorcontrib>Venner, Anne</creatorcontrib><creatorcontrib>Ross, Rachel A.</creatorcontrib><creatorcontrib>VanderHorst, Veronique G.</creatorcontrib><creatorcontrib>Arrigoni, Elda</creatorcontrib><creatorcontrib>Geerling, Joel C.</creatorcontrib><creatorcontrib>Zeidel, Mark L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verstegen, Anne M.J.</au><au>Klymko, Nataliya</au><au>Zhu, Lin</au><au>Mathai, John C.</au><au>Kobayashi, Reina</au><au>Venner, Anne</au><au>Ross, Rachel A.</au><au>VanderHorst, Veronique G.</au><au>Arrigoni, Elda</au><au>Geerling, Joel C.</au><au>Zeidel, Mark L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Crh Glutamatergic Neurons in Barrington’s Nucleus Control Micturition via Glutamatergic Afferents from the Midbrain and Hypothalamus</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2019-09-09</date><risdate>2019</risdate><volume>29</volume><issue>17</issue><spage>2775</spage><epage>2789.e7</epage><pages>2775-2789.e7</pages><issn>0960-9822</issn><issn>1879-0445</issn><eissn>1879-0445</eissn><abstract>Lower urinary tract symptoms (LUTS) are exceptionally common and debilitating, and they are likely caused or exacerbated by dysfunction of neural circuits controlling bladder function. An incomplete understanding of neural control of bladder function limits our ability to clinically address LUTS. Barrington’s nucleus (Bar) provides descending control of bladder and sphincter function, and its glutamatergic neurons expressing corticotropin releasing hormone (BarCrh/Vglut2) are implicated in bladder control. However, it remains unclear whether this subset of Bar neurons is necessary for voiding, and the broader circuitry providing input to this control center remains largely unknown. Here, we examine the contribution to micturition behavior of BarCrh/Vglut2 neurons relative to the overall BarVglut2 population. First, we identify robust, excitatory synaptic input to Bar. Glutamatergic axons from the periaqueductal gray (PAG) and lateral hypothalamic area (LHA) intensely innervate and are functionally connected to Bar, and optogenetic stimulation of these axon terminals reliably provokes voiding. Similarly, optogenetic stimulation of BarVglut2 neurons triggers voiding, whereas stimulating the BarCrh/Vglut2 subpopulation causes bladder contraction, typically without voiding. Next, we genetically ablate either BarVglut2 or BarCrh/Vglut2 neurons and found that only BarVglut2 ablation replicates the profound urinary retention produced by conventional lesions in this region. Fiber photometry recordings reveal that BarVglut2 neuron activity precedes increased bladder pressure, while activity of BarCrh/Vglut2 is phase delayed. Finally, deleting Crh from Bar neurons has no effect on voiding and related bladder physiology. Our results help identify the circuitry that modulates Bar neuron activity and identify subtypes that may serve different roles in micturition. [Display omitted] •In vivo neuroscience techniques and thermography combined to study urinary continence•PAG and LHA neurons provide direct excitatory innervation of Barrington’s nucleus•Optogenetic stimulation of neural afferents leads to different void-behavior sequence•The glutamatergic Bar population is necessary and sufficient for micturition behavior Verstegen et al. shine light on Barrington’s nucleus, in which neuron subpopulations have distinct activity patterns important for coordinating downstream bladder control. Furthermore, they identify nodes on the pathway to activate the micturition control center, with different roles, reflex, or voluntary behavior integration, for the afferent sites</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31422881</pmid><doi>10.1016/j.cub.2019.07.009</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2019-09, Vol.29 (17), p.2775-2789.e7
issn 0960-9822
1879-0445
1879-0445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6736713
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Animals
Barrington's nucleus
Barrington's Nucleus - physiology
bladder
corticotropin-releasing hormone
Corticotropin-Releasing Hormone - metabolism
cystometry
Female
Hypothalamus - metabolism
lateral hypothalamic area
Male
Mesencephalon - metabolism
Mice
micturition
micturition video thermography
neural circuits
Neurons - physiology
Neurons, Afferent
neuroscience
periaqueductal gray
Urination - physiology
title Non-Crh Glutamatergic Neurons in Barrington’s Nucleus Control Micturition via Glutamatergic Afferents from the Midbrain and Hypothalamus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Crh%20Glutamatergic%20Neurons%20in%20Barrington%E2%80%99s%20Nucleus%20Control%20Micturition%20via%20Glutamatergic%20Afferents%20from%20the%20Midbrain%20and%20Hypothalamus&rft.jtitle=Current%20biology&rft.au=Verstegen,%20Anne%20M.J.&rft.date=2019-09-09&rft.volume=29&rft.issue=17&rft.spage=2775&rft.epage=2789.e7&rft.pages=2775-2789.e7&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2019.07.009&rft_dat=%3Cproquest_pubme%3E2275948546%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275948546&rft_id=info:pmid/31422881&rft_els_id=S0960982219308541&rfr_iscdi=true