MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry
Neuroanatomical pattern classification using support vector machines (SVMs) has shown promising results in classifying Multiple Sclerosis (MS) patients based on individual structural magnetic resonance images (MRI). To determine whether pattern classification using SVMs facilitates predicting conver...
Gespeichert in:
Veröffentlicht in: | Brain imaging and behavior 2019-10, Vol.13 (5), p.1361-1374 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1374 |
---|---|
container_issue | 5 |
container_start_page | 1361 |
container_title | Brain imaging and behavior |
container_volume | 13 |
creator | Bendfeldt, Kerstin Taschler, Bernd Gaetano, Laura Madoerin, Philip Kuster, Pascal Mueller-Lenke, Nicole Amann, Michael Vrenken, Hugo Wottschel, Viktor Barkhof, Frederik Borgwardt, Stefan Klöppel, Stefan Wicklein, Eva-Maria Kappos, Ludwig Edan, Gilles Freedman, Mark S. Montalbán, Xavier Hartung, Hans-Peter Pohl, Christoph Sandbrink, Rupert Sprenger, Till Radue, Ernst-Wilhelm Wuerfel, Jens Nichols, Thomas E. |
description | Neuroanatomical pattern classification using support vector machines (SVMs) has shown promising results in classifying Multiple Sclerosis (MS) patients based on individual structural magnetic resonance images (MRI). To determine whether pattern classification using SVMs facilitates predicting conversion to clinically definite multiple sclerosis (CDMS) from clinically isolated syndrome (CIS). We used baseline MRI data from 364 patients with CIS, randomised to interferon beta-1b or placebo. Non-linear SVMs and 10-fold cross-validation were applied to predict converters/non-converters (175/189) at two years follow-up based on clinical and demographic data, lesion-specific quantitative geometric features and grey-matter-to-whole-brain volume ratios. We applied linear SVM analysis and leave-one-out cross-validation to subgroups of converters (
n
= 25) and non-converters (
n
= 44) based on cortical grey matter segmentations. Highest prediction accuracies of 70.4% (
p
= 8e-5) were reached with a combination of lesion-specific geometric (image-based) and demographic/clinical features. Cortical grey matter was informative for the placebo group (acc.: 64.6%,
p
= 0.002) but not for the interferon group. Classification based on demographic/clinical covariates only resulted in an accuracy of 56% (
p
= 0.05). Overall, lesion geometry was more informative in the interferon group, EDSS and sex were more important for the placebo cohort. Alongside standard demographic and clinical measures, both lesion geometry and grey matter based information can aid prediction of conversion to CDMS. |
doi_str_mv | 10.1007/s11682-018-9942-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6733701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2094968051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-9e8322045689ba797ab4becc54167d23f2dd16c37d546b734e7716e633750cde3</originalsourceid><addsrcrecordid>eNp1kctu1DAUhiMEoqXwAGyQJTZsAnZ8izdIqCqlUiskblvLsU8GV4492EmleQceug5ThoLEypf_P9_x8d80zwl-TTCWbwohou9aTPpWKda16kFzTBQlreSCPzzsuTxqnpRyjTFnvSKPmyOKSb3t1XHz8-rTRTuYAg5tMzhvZ58iSiOyKd5ALutpzGlCNvjorQlhh3xJwcy1ouyiqxqgOd3XHYx1PwOaljD7bQBUbICcii9oKT5u0OdvV8hEhwL8arCBCpnz7mnzaDShwLO79aT5-v7sy-mH9vLj-cXpu8vWMonnVkFPuw4zLno1GKmkGdgA1nJGhHQdHTvniLBUOs7EICkDKYkAQank2DqgJ83bPXe7DBM4C3HOJuht9pPJO52M138r0X_Xm3SjhawMTCrg1R0gpx8LlFlPvlgIwURIS9EdVoJzKntRrS__sV6nJcc63upiSvSYr0Cyd9n6TSXDeHgMwXrNWu-z1jVrvWatVa15cX-KQ8XvcKuh2xtKleIG8p_W_6feArVqt-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094968051</pqid></control><display><type>article</type><title>MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Bendfeldt, Kerstin ; Taschler, Bernd ; Gaetano, Laura ; Madoerin, Philip ; Kuster, Pascal ; Mueller-Lenke, Nicole ; Amann, Michael ; Vrenken, Hugo ; Wottschel, Viktor ; Barkhof, Frederik ; Borgwardt, Stefan ; Klöppel, Stefan ; Wicklein, Eva-Maria ; Kappos, Ludwig ; Edan, Gilles ; Freedman, Mark S. ; Montalbán, Xavier ; Hartung, Hans-Peter ; Pohl, Christoph ; Sandbrink, Rupert ; Sprenger, Till ; Radue, Ernst-Wilhelm ; Wuerfel, Jens ; Nichols, Thomas E.</creator><creatorcontrib>Bendfeldt, Kerstin ; Taschler, Bernd ; Gaetano, Laura ; Madoerin, Philip ; Kuster, Pascal ; Mueller-Lenke, Nicole ; Amann, Michael ; Vrenken, Hugo ; Wottschel, Viktor ; Barkhof, Frederik ; Borgwardt, Stefan ; Klöppel, Stefan ; Wicklein, Eva-Maria ; Kappos, Ludwig ; Edan, Gilles ; Freedman, Mark S. ; Montalbán, Xavier ; Hartung, Hans-Peter ; Pohl, Christoph ; Sandbrink, Rupert ; Sprenger, Till ; Radue, Ernst-Wilhelm ; Wuerfel, Jens ; Nichols, Thomas E.</creatorcontrib><description>Neuroanatomical pattern classification using support vector machines (SVMs) has shown promising results in classifying Multiple Sclerosis (MS) patients based on individual structural magnetic resonance images (MRI). To determine whether pattern classification using SVMs facilitates predicting conversion to clinically definite multiple sclerosis (CDMS) from clinically isolated syndrome (CIS). We used baseline MRI data from 364 patients with CIS, randomised to interferon beta-1b or placebo. Non-linear SVMs and 10-fold cross-validation were applied to predict converters/non-converters (175/189) at two years follow-up based on clinical and demographic data, lesion-specific quantitative geometric features and grey-matter-to-whole-brain volume ratios. We applied linear SVM analysis and leave-one-out cross-validation to subgroups of converters (
n
= 25) and non-converters (
n
= 44) based on cortical grey matter segmentations. Highest prediction accuracies of 70.4% (
p
= 8e-5) were reached with a combination of lesion-specific geometric (image-based) and demographic/clinical features. Cortical grey matter was informative for the placebo group (acc.: 64.6%,
p
= 0.002) but not for the interferon group. Classification based on demographic/clinical covariates only resulted in an accuracy of 56% (
p
= 0.05). Overall, lesion geometry was more informative in the interferon group, EDSS and sex were more important for the placebo cohort. Alongside standard demographic and clinical measures, both lesion geometry and grey matter based information can aid prediction of conversion to CDMS.</description><identifier>ISSN: 1931-7557</identifier><identifier>EISSN: 1931-7565</identifier><identifier>DOI: 10.1007/s11682-018-9942-9</identifier><identifier>PMID: 30155789</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adult ; Anatomy ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain architecture ; Classification ; Conversion ; Converters ; Cortex ; Demographics ; Disease Progression ; Female ; Geometry ; Gray Matter - pathology ; Humans ; Image classification ; Interferon ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Multiple sclerosis ; Multiple Sclerosis - diagnostic imaging ; Multiple Sclerosis - pathology ; Neuropsychology ; Neuroradiology ; Neurosciences ; Original Research ; Patients ; Predictions ; Psychiatry ; Randomized Controlled Trials as Topic ; Subgroups ; Substantia grisea ; Support Vector Machine ; Support vector machines</subject><ispartof>Brain imaging and behavior, 2019-10, Vol.13 (5), p.1361-1374</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Brain Imaging and Behavior is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-9e8322045689ba797ab4becc54167d23f2dd16c37d546b734e7716e633750cde3</citedby><cites>FETCH-LOGICAL-c470t-9e8322045689ba797ab4becc54167d23f2dd16c37d546b734e7716e633750cde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11682-018-9942-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11682-018-9942-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30155789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bendfeldt, Kerstin</creatorcontrib><creatorcontrib>Taschler, Bernd</creatorcontrib><creatorcontrib>Gaetano, Laura</creatorcontrib><creatorcontrib>Madoerin, Philip</creatorcontrib><creatorcontrib>Kuster, Pascal</creatorcontrib><creatorcontrib>Mueller-Lenke, Nicole</creatorcontrib><creatorcontrib>Amann, Michael</creatorcontrib><creatorcontrib>Vrenken, Hugo</creatorcontrib><creatorcontrib>Wottschel, Viktor</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><creatorcontrib>Borgwardt, Stefan</creatorcontrib><creatorcontrib>Klöppel, Stefan</creatorcontrib><creatorcontrib>Wicklein, Eva-Maria</creatorcontrib><creatorcontrib>Kappos, Ludwig</creatorcontrib><creatorcontrib>Edan, Gilles</creatorcontrib><creatorcontrib>Freedman, Mark S.</creatorcontrib><creatorcontrib>Montalbán, Xavier</creatorcontrib><creatorcontrib>Hartung, Hans-Peter</creatorcontrib><creatorcontrib>Pohl, Christoph</creatorcontrib><creatorcontrib>Sandbrink, Rupert</creatorcontrib><creatorcontrib>Sprenger, Till</creatorcontrib><creatorcontrib>Radue, Ernst-Wilhelm</creatorcontrib><creatorcontrib>Wuerfel, Jens</creatorcontrib><creatorcontrib>Nichols, Thomas E.</creatorcontrib><title>MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry</title><title>Brain imaging and behavior</title><addtitle>Brain Imaging and Behavior</addtitle><addtitle>Brain Imaging Behav</addtitle><description>Neuroanatomical pattern classification using support vector machines (SVMs) has shown promising results in classifying Multiple Sclerosis (MS) patients based on individual structural magnetic resonance images (MRI). To determine whether pattern classification using SVMs facilitates predicting conversion to clinically definite multiple sclerosis (CDMS) from clinically isolated syndrome (CIS). We used baseline MRI data from 364 patients with CIS, randomised to interferon beta-1b or placebo. Non-linear SVMs and 10-fold cross-validation were applied to predict converters/non-converters (175/189) at two years follow-up based on clinical and demographic data, lesion-specific quantitative geometric features and grey-matter-to-whole-brain volume ratios. We applied linear SVM analysis and leave-one-out cross-validation to subgroups of converters (
n
= 25) and non-converters (
n
= 44) based on cortical grey matter segmentations. Highest prediction accuracies of 70.4% (
p
= 8e-5) were reached with a combination of lesion-specific geometric (image-based) and demographic/clinical features. Cortical grey matter was informative for the placebo group (acc.: 64.6%,
p
= 0.002) but not for the interferon group. Classification based on demographic/clinical covariates only resulted in an accuracy of 56% (
p
= 0.05). Overall, lesion geometry was more informative in the interferon group, EDSS and sex were more important for the placebo cohort. Alongside standard demographic and clinical measures, both lesion geometry and grey matter based information can aid prediction of conversion to CDMS.</description><subject>Adult</subject><subject>Anatomy</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain architecture</subject><subject>Classification</subject><subject>Conversion</subject><subject>Converters</subject><subject>Cortex</subject><subject>Demographics</subject><subject>Disease Progression</subject><subject>Female</subject><subject>Geometry</subject><subject>Gray Matter - pathology</subject><subject>Humans</subject><subject>Image classification</subject><subject>Interferon</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - diagnostic imaging</subject><subject>Multiple Sclerosis - pathology</subject><subject>Neuropsychology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Original Research</subject><subject>Patients</subject><subject>Predictions</subject><subject>Psychiatry</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Subgroups</subject><subject>Substantia grisea</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><issn>1931-7557</issn><issn>1931-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kctu1DAUhiMEoqXwAGyQJTZsAnZ8izdIqCqlUiskblvLsU8GV4492EmleQceug5ThoLEypf_P9_x8d80zwl-TTCWbwohou9aTPpWKda16kFzTBQlreSCPzzsuTxqnpRyjTFnvSKPmyOKSb3t1XHz8-rTRTuYAg5tMzhvZ58iSiOyKd5ALutpzGlCNvjorQlhh3xJwcy1ouyiqxqgOd3XHYx1PwOaljD7bQBUbICcii9oKT5u0OdvV8hEhwL8arCBCpnz7mnzaDShwLO79aT5-v7sy-mH9vLj-cXpu8vWMonnVkFPuw4zLno1GKmkGdgA1nJGhHQdHTvniLBUOs7EICkDKYkAQank2DqgJ83bPXe7DBM4C3HOJuht9pPJO52M138r0X_Xm3SjhawMTCrg1R0gpx8LlFlPvlgIwURIS9EdVoJzKntRrS__sV6nJcc63upiSvSYr0Cyd9n6TSXDeHgMwXrNWu-z1jVrvWatVa15cX-KQ8XvcKuh2xtKleIG8p_W_6feArVqt-w</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Bendfeldt, Kerstin</creator><creator>Taschler, Bernd</creator><creator>Gaetano, Laura</creator><creator>Madoerin, Philip</creator><creator>Kuster, Pascal</creator><creator>Mueller-Lenke, Nicole</creator><creator>Amann, Michael</creator><creator>Vrenken, Hugo</creator><creator>Wottschel, Viktor</creator><creator>Barkhof, Frederik</creator><creator>Borgwardt, Stefan</creator><creator>Klöppel, Stefan</creator><creator>Wicklein, Eva-Maria</creator><creator>Kappos, Ludwig</creator><creator>Edan, Gilles</creator><creator>Freedman, Mark S.</creator><creator>Montalbán, Xavier</creator><creator>Hartung, Hans-Peter</creator><creator>Pohl, Christoph</creator><creator>Sandbrink, Rupert</creator><creator>Sprenger, Till</creator><creator>Radue, Ernst-Wilhelm</creator><creator>Wuerfel, Jens</creator><creator>Nichols, Thomas E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191001</creationdate><title>MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry</title><author>Bendfeldt, Kerstin ; Taschler, Bernd ; Gaetano, Laura ; Madoerin, Philip ; Kuster, Pascal ; Mueller-Lenke, Nicole ; Amann, Michael ; Vrenken, Hugo ; Wottschel, Viktor ; Barkhof, Frederik ; Borgwardt, Stefan ; Klöppel, Stefan ; Wicklein, Eva-Maria ; Kappos, Ludwig ; Edan, Gilles ; Freedman, Mark S. ; Montalbán, Xavier ; Hartung, Hans-Peter ; Pohl, Christoph ; Sandbrink, Rupert ; Sprenger, Till ; Radue, Ernst-Wilhelm ; Wuerfel, Jens ; Nichols, Thomas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-9e8322045689ba797ab4becc54167d23f2dd16c37d546b734e7716e633750cde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Anatomy</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain architecture</topic><topic>Classification</topic><topic>Conversion</topic><topic>Converters</topic><topic>Cortex</topic><topic>Demographics</topic><topic>Disease Progression</topic><topic>Female</topic><topic>Geometry</topic><topic>Gray Matter - pathology</topic><topic>Humans</topic><topic>Image classification</topic><topic>Interferon</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - diagnostic imaging</topic><topic>Multiple Sclerosis - pathology</topic><topic>Neuropsychology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Original Research</topic><topic>Patients</topic><topic>Predictions</topic><topic>Psychiatry</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Subgroups</topic><topic>Substantia grisea</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bendfeldt, Kerstin</creatorcontrib><creatorcontrib>Taschler, Bernd</creatorcontrib><creatorcontrib>Gaetano, Laura</creatorcontrib><creatorcontrib>Madoerin, Philip</creatorcontrib><creatorcontrib>Kuster, Pascal</creatorcontrib><creatorcontrib>Mueller-Lenke, Nicole</creatorcontrib><creatorcontrib>Amann, Michael</creatorcontrib><creatorcontrib>Vrenken, Hugo</creatorcontrib><creatorcontrib>Wottschel, Viktor</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><creatorcontrib>Borgwardt, Stefan</creatorcontrib><creatorcontrib>Klöppel, Stefan</creatorcontrib><creatorcontrib>Wicklein, Eva-Maria</creatorcontrib><creatorcontrib>Kappos, Ludwig</creatorcontrib><creatorcontrib>Edan, Gilles</creatorcontrib><creatorcontrib>Freedman, Mark S.</creatorcontrib><creatorcontrib>Montalbán, Xavier</creatorcontrib><creatorcontrib>Hartung, Hans-Peter</creatorcontrib><creatorcontrib>Pohl, Christoph</creatorcontrib><creatorcontrib>Sandbrink, Rupert</creatorcontrib><creatorcontrib>Sprenger, Till</creatorcontrib><creatorcontrib>Radue, Ernst-Wilhelm</creatorcontrib><creatorcontrib>Wuerfel, Jens</creatorcontrib><creatorcontrib>Nichols, Thomas E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain imaging and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bendfeldt, Kerstin</au><au>Taschler, Bernd</au><au>Gaetano, Laura</au><au>Madoerin, Philip</au><au>Kuster, Pascal</au><au>Mueller-Lenke, Nicole</au><au>Amann, Michael</au><au>Vrenken, Hugo</au><au>Wottschel, Viktor</au><au>Barkhof, Frederik</au><au>Borgwardt, Stefan</au><au>Klöppel, Stefan</au><au>Wicklein, Eva-Maria</au><au>Kappos, Ludwig</au><au>Edan, Gilles</au><au>Freedman, Mark S.</au><au>Montalbán, Xavier</au><au>Hartung, Hans-Peter</au><au>Pohl, Christoph</au><au>Sandbrink, Rupert</au><au>Sprenger, Till</au><au>Radue, Ernst-Wilhelm</au><au>Wuerfel, Jens</au><au>Nichols, Thomas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry</atitle><jtitle>Brain imaging and behavior</jtitle><stitle>Brain Imaging and Behavior</stitle><addtitle>Brain Imaging Behav</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>13</volume><issue>5</issue><spage>1361</spage><epage>1374</epage><pages>1361-1374</pages><issn>1931-7557</issn><eissn>1931-7565</eissn><abstract>Neuroanatomical pattern classification using support vector machines (SVMs) has shown promising results in classifying Multiple Sclerosis (MS) patients based on individual structural magnetic resonance images (MRI). To determine whether pattern classification using SVMs facilitates predicting conversion to clinically definite multiple sclerosis (CDMS) from clinically isolated syndrome (CIS). We used baseline MRI data from 364 patients with CIS, randomised to interferon beta-1b or placebo. Non-linear SVMs and 10-fold cross-validation were applied to predict converters/non-converters (175/189) at two years follow-up based on clinical and demographic data, lesion-specific quantitative geometric features and grey-matter-to-whole-brain volume ratios. We applied linear SVM analysis and leave-one-out cross-validation to subgroups of converters (
n
= 25) and non-converters (
n
= 44) based on cortical grey matter segmentations. Highest prediction accuracies of 70.4% (
p
= 8e-5) were reached with a combination of lesion-specific geometric (image-based) and demographic/clinical features. Cortical grey matter was informative for the placebo group (acc.: 64.6%,
p
= 0.002) but not for the interferon group. Classification based on demographic/clinical covariates only resulted in an accuracy of 56% (
p
= 0.05). Overall, lesion geometry was more informative in the interferon group, EDSS and sex were more important for the placebo cohort. Alongside standard demographic and clinical measures, both lesion geometry and grey matter based information can aid prediction of conversion to CDMS.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30155789</pmid><doi>10.1007/s11682-018-9942-9</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-7557 |
ispartof | Brain imaging and behavior, 2019-10, Vol.13 (5), p.1361-1374 |
issn | 1931-7557 1931-7565 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6733701 |
source | MEDLINE; SpringerLink Journals |
subjects | Adult Anatomy Biomedical and Life Sciences Biomedicine Brain Brain architecture Classification Conversion Converters Cortex Demographics Disease Progression Female Geometry Gray Matter - pathology Humans Image classification Interferon Magnetic Resonance Imaging Male Medical imaging Multiple sclerosis Multiple Sclerosis - diagnostic imaging Multiple Sclerosis - pathology Neuropsychology Neuroradiology Neurosciences Original Research Patients Predictions Psychiatry Randomized Controlled Trials as Topic Subgroups Substantia grisea Support Vector Machine Support vector machines |
title | MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRI-based%20prediction%20of%20conversion%20from%20clinically%20isolated%20syndrome%20to%20clinically%20definite%20multiple%20sclerosis%20using%20SVM%20and%20lesion%20geometry&rft.jtitle=Brain%20imaging%20and%20behavior&rft.au=Bendfeldt,%20Kerstin&rft.date=2019-10-01&rft.volume=13&rft.issue=5&rft.spage=1361&rft.epage=1374&rft.pages=1361-1374&rft.issn=1931-7557&rft.eissn=1931-7565&rft_id=info:doi/10.1007/s11682-018-9942-9&rft_dat=%3Cproquest_pubme%3E2094968051%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094968051&rft_id=info:pmid/30155789&rfr_iscdi=true |