MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry

Neuroanatomical pattern classification using support vector machines (SVMs) has shown promising results in classifying Multiple Sclerosis (MS) patients based on individual structural magnetic resonance images (MRI). To determine whether pattern classification using SVMs facilitates predicting conver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain imaging and behavior 2019-10, Vol.13 (5), p.1361-1374
Hauptverfasser: Bendfeldt, Kerstin, Taschler, Bernd, Gaetano, Laura, Madoerin, Philip, Kuster, Pascal, Mueller-Lenke, Nicole, Amann, Michael, Vrenken, Hugo, Wottschel, Viktor, Barkhof, Frederik, Borgwardt, Stefan, Klöppel, Stefan, Wicklein, Eva-Maria, Kappos, Ludwig, Edan, Gilles, Freedman, Mark S., Montalbán, Xavier, Hartung, Hans-Peter, Pohl, Christoph, Sandbrink, Rupert, Sprenger, Till, Radue, Ernst-Wilhelm, Wuerfel, Jens, Nichols, Thomas E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1374
container_issue 5
container_start_page 1361
container_title Brain imaging and behavior
container_volume 13
creator Bendfeldt, Kerstin
Taschler, Bernd
Gaetano, Laura
Madoerin, Philip
Kuster, Pascal
Mueller-Lenke, Nicole
Amann, Michael
Vrenken, Hugo
Wottschel, Viktor
Barkhof, Frederik
Borgwardt, Stefan
Klöppel, Stefan
Wicklein, Eva-Maria
Kappos, Ludwig
Edan, Gilles
Freedman, Mark S.
Montalbán, Xavier
Hartung, Hans-Peter
Pohl, Christoph
Sandbrink, Rupert
Sprenger, Till
Radue, Ernst-Wilhelm
Wuerfel, Jens
Nichols, Thomas E.
description Neuroanatomical pattern classification using support vector machines (SVMs) has shown promising results in classifying Multiple Sclerosis (MS) patients based on individual structural magnetic resonance images (MRI). To determine whether pattern classification using SVMs facilitates predicting conversion to clinically definite multiple sclerosis (CDMS) from clinically isolated syndrome (CIS). We used baseline MRI data from 364 patients with CIS, randomised to interferon beta-1b or placebo. Non-linear SVMs and 10-fold cross-validation were applied to predict converters/non-converters (175/189) at two years follow-up based on clinical and demographic data, lesion-specific quantitative geometric features and grey-matter-to-whole-brain volume ratios. We applied linear SVM analysis and leave-one-out cross-validation to subgroups of converters ( n  = 25) and non-converters ( n  = 44) based on cortical grey matter segmentations. Highest prediction accuracies of 70.4% ( p  = 8e-5) were reached with a combination of lesion-specific geometric (image-based) and demographic/clinical features. Cortical grey matter was informative for the placebo group (acc.: 64.6%, p  = 0.002) but not for the interferon group. Classification based on demographic/clinical covariates only resulted in an accuracy of 56% ( p  = 0.05). Overall, lesion geometry was more informative in the interferon group, EDSS and sex were more important for the placebo cohort. Alongside standard demographic and clinical measures, both lesion geometry and grey matter based information can aid prediction of conversion to CDMS.
doi_str_mv 10.1007/s11682-018-9942-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6733701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2094968051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-9e8322045689ba797ab4becc54167d23f2dd16c37d546b734e7716e633750cde3</originalsourceid><addsrcrecordid>eNp1kctu1DAUhiMEoqXwAGyQJTZsAnZ8izdIqCqlUiskblvLsU8GV4492EmleQceug5ThoLEypf_P9_x8d80zwl-TTCWbwohou9aTPpWKda16kFzTBQlreSCPzzsuTxqnpRyjTFnvSKPmyOKSb3t1XHz8-rTRTuYAg5tMzhvZ58iSiOyKd5ALutpzGlCNvjorQlhh3xJwcy1ouyiqxqgOd3XHYx1PwOaljD7bQBUbICcii9oKT5u0OdvV8hEhwL8arCBCpnz7mnzaDShwLO79aT5-v7sy-mH9vLj-cXpu8vWMonnVkFPuw4zLno1GKmkGdgA1nJGhHQdHTvniLBUOs7EICkDKYkAQank2DqgJ83bPXe7DBM4C3HOJuht9pPJO52M138r0X_Xm3SjhawMTCrg1R0gpx8LlFlPvlgIwURIS9EdVoJzKntRrS__sV6nJcc63upiSvSYr0Cyd9n6TSXDeHgMwXrNWu-z1jVrvWatVa15cX-KQ8XvcKuh2xtKleIG8p_W_6feArVqt-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094968051</pqid></control><display><type>article</type><title>MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Bendfeldt, Kerstin ; Taschler, Bernd ; Gaetano, Laura ; Madoerin, Philip ; Kuster, Pascal ; Mueller-Lenke, Nicole ; Amann, Michael ; Vrenken, Hugo ; Wottschel, Viktor ; Barkhof, Frederik ; Borgwardt, Stefan ; Klöppel, Stefan ; Wicklein, Eva-Maria ; Kappos, Ludwig ; Edan, Gilles ; Freedman, Mark S. ; Montalbán, Xavier ; Hartung, Hans-Peter ; Pohl, Christoph ; Sandbrink, Rupert ; Sprenger, Till ; Radue, Ernst-Wilhelm ; Wuerfel, Jens ; Nichols, Thomas E.</creator><creatorcontrib>Bendfeldt, Kerstin ; Taschler, Bernd ; Gaetano, Laura ; Madoerin, Philip ; Kuster, Pascal ; Mueller-Lenke, Nicole ; Amann, Michael ; Vrenken, Hugo ; Wottschel, Viktor ; Barkhof, Frederik ; Borgwardt, Stefan ; Klöppel, Stefan ; Wicklein, Eva-Maria ; Kappos, Ludwig ; Edan, Gilles ; Freedman, Mark S. ; Montalbán, Xavier ; Hartung, Hans-Peter ; Pohl, Christoph ; Sandbrink, Rupert ; Sprenger, Till ; Radue, Ernst-Wilhelm ; Wuerfel, Jens ; Nichols, Thomas E.</creatorcontrib><description>Neuroanatomical pattern classification using support vector machines (SVMs) has shown promising results in classifying Multiple Sclerosis (MS) patients based on individual structural magnetic resonance images (MRI). To determine whether pattern classification using SVMs facilitates predicting conversion to clinically definite multiple sclerosis (CDMS) from clinically isolated syndrome (CIS). We used baseline MRI data from 364 patients with CIS, randomised to interferon beta-1b or placebo. Non-linear SVMs and 10-fold cross-validation were applied to predict converters/non-converters (175/189) at two years follow-up based on clinical and demographic data, lesion-specific quantitative geometric features and grey-matter-to-whole-brain volume ratios. We applied linear SVM analysis and leave-one-out cross-validation to subgroups of converters ( n  = 25) and non-converters ( n  = 44) based on cortical grey matter segmentations. Highest prediction accuracies of 70.4% ( p  = 8e-5) were reached with a combination of lesion-specific geometric (image-based) and demographic/clinical features. Cortical grey matter was informative for the placebo group (acc.: 64.6%, p  = 0.002) but not for the interferon group. Classification based on demographic/clinical covariates only resulted in an accuracy of 56% ( p  = 0.05). Overall, lesion geometry was more informative in the interferon group, EDSS and sex were more important for the placebo cohort. Alongside standard demographic and clinical measures, both lesion geometry and grey matter based information can aid prediction of conversion to CDMS.</description><identifier>ISSN: 1931-7557</identifier><identifier>EISSN: 1931-7565</identifier><identifier>DOI: 10.1007/s11682-018-9942-9</identifier><identifier>PMID: 30155789</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adult ; Anatomy ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain architecture ; Classification ; Conversion ; Converters ; Cortex ; Demographics ; Disease Progression ; Female ; Geometry ; Gray Matter - pathology ; Humans ; Image classification ; Interferon ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Multiple sclerosis ; Multiple Sclerosis - diagnostic imaging ; Multiple Sclerosis - pathology ; Neuropsychology ; Neuroradiology ; Neurosciences ; Original Research ; Patients ; Predictions ; Psychiatry ; Randomized Controlled Trials as Topic ; Subgroups ; Substantia grisea ; Support Vector Machine ; Support vector machines</subject><ispartof>Brain imaging and behavior, 2019-10, Vol.13 (5), p.1361-1374</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Brain Imaging and Behavior is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-9e8322045689ba797ab4becc54167d23f2dd16c37d546b734e7716e633750cde3</citedby><cites>FETCH-LOGICAL-c470t-9e8322045689ba797ab4becc54167d23f2dd16c37d546b734e7716e633750cde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11682-018-9942-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11682-018-9942-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30155789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bendfeldt, Kerstin</creatorcontrib><creatorcontrib>Taschler, Bernd</creatorcontrib><creatorcontrib>Gaetano, Laura</creatorcontrib><creatorcontrib>Madoerin, Philip</creatorcontrib><creatorcontrib>Kuster, Pascal</creatorcontrib><creatorcontrib>Mueller-Lenke, Nicole</creatorcontrib><creatorcontrib>Amann, Michael</creatorcontrib><creatorcontrib>Vrenken, Hugo</creatorcontrib><creatorcontrib>Wottschel, Viktor</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><creatorcontrib>Borgwardt, Stefan</creatorcontrib><creatorcontrib>Klöppel, Stefan</creatorcontrib><creatorcontrib>Wicklein, Eva-Maria</creatorcontrib><creatorcontrib>Kappos, Ludwig</creatorcontrib><creatorcontrib>Edan, Gilles</creatorcontrib><creatorcontrib>Freedman, Mark S.</creatorcontrib><creatorcontrib>Montalbán, Xavier</creatorcontrib><creatorcontrib>Hartung, Hans-Peter</creatorcontrib><creatorcontrib>Pohl, Christoph</creatorcontrib><creatorcontrib>Sandbrink, Rupert</creatorcontrib><creatorcontrib>Sprenger, Till</creatorcontrib><creatorcontrib>Radue, Ernst-Wilhelm</creatorcontrib><creatorcontrib>Wuerfel, Jens</creatorcontrib><creatorcontrib>Nichols, Thomas E.</creatorcontrib><title>MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry</title><title>Brain imaging and behavior</title><addtitle>Brain Imaging and Behavior</addtitle><addtitle>Brain Imaging Behav</addtitle><description>Neuroanatomical pattern classification using support vector machines (SVMs) has shown promising results in classifying Multiple Sclerosis (MS) patients based on individual structural magnetic resonance images (MRI). To determine whether pattern classification using SVMs facilitates predicting conversion to clinically definite multiple sclerosis (CDMS) from clinically isolated syndrome (CIS). We used baseline MRI data from 364 patients with CIS, randomised to interferon beta-1b or placebo. Non-linear SVMs and 10-fold cross-validation were applied to predict converters/non-converters (175/189) at two years follow-up based on clinical and demographic data, lesion-specific quantitative geometric features and grey-matter-to-whole-brain volume ratios. We applied linear SVM analysis and leave-one-out cross-validation to subgroups of converters ( n  = 25) and non-converters ( n  = 44) based on cortical grey matter segmentations. Highest prediction accuracies of 70.4% ( p  = 8e-5) were reached with a combination of lesion-specific geometric (image-based) and demographic/clinical features. Cortical grey matter was informative for the placebo group (acc.: 64.6%, p  = 0.002) but not for the interferon group. Classification based on demographic/clinical covariates only resulted in an accuracy of 56% ( p  = 0.05). Overall, lesion geometry was more informative in the interferon group, EDSS and sex were more important for the placebo cohort. Alongside standard demographic and clinical measures, both lesion geometry and grey matter based information can aid prediction of conversion to CDMS.</description><subject>Adult</subject><subject>Anatomy</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain architecture</subject><subject>Classification</subject><subject>Conversion</subject><subject>Converters</subject><subject>Cortex</subject><subject>Demographics</subject><subject>Disease Progression</subject><subject>Female</subject><subject>Geometry</subject><subject>Gray Matter - pathology</subject><subject>Humans</subject><subject>Image classification</subject><subject>Interferon</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - diagnostic imaging</subject><subject>Multiple Sclerosis - pathology</subject><subject>Neuropsychology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Original Research</subject><subject>Patients</subject><subject>Predictions</subject><subject>Psychiatry</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Subgroups</subject><subject>Substantia grisea</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><issn>1931-7557</issn><issn>1931-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kctu1DAUhiMEoqXwAGyQJTZsAnZ8izdIqCqlUiskblvLsU8GV4492EmleQceug5ThoLEypf_P9_x8d80zwl-TTCWbwohou9aTPpWKda16kFzTBQlreSCPzzsuTxqnpRyjTFnvSKPmyOKSb3t1XHz8-rTRTuYAg5tMzhvZ58iSiOyKd5ALutpzGlCNvjorQlhh3xJwcy1ouyiqxqgOd3XHYx1PwOaljD7bQBUbICcii9oKT5u0OdvV8hEhwL8arCBCpnz7mnzaDShwLO79aT5-v7sy-mH9vLj-cXpu8vWMonnVkFPuw4zLno1GKmkGdgA1nJGhHQdHTvniLBUOs7EICkDKYkAQank2DqgJ83bPXe7DBM4C3HOJuht9pPJO52M138r0X_Xm3SjhawMTCrg1R0gpx8LlFlPvlgIwURIS9EdVoJzKntRrS__sV6nJcc63upiSvSYr0Cyd9n6TSXDeHgMwXrNWu-z1jVrvWatVa15cX-KQ8XvcKuh2xtKleIG8p_W_6feArVqt-w</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Bendfeldt, Kerstin</creator><creator>Taschler, Bernd</creator><creator>Gaetano, Laura</creator><creator>Madoerin, Philip</creator><creator>Kuster, Pascal</creator><creator>Mueller-Lenke, Nicole</creator><creator>Amann, Michael</creator><creator>Vrenken, Hugo</creator><creator>Wottschel, Viktor</creator><creator>Barkhof, Frederik</creator><creator>Borgwardt, Stefan</creator><creator>Klöppel, Stefan</creator><creator>Wicklein, Eva-Maria</creator><creator>Kappos, Ludwig</creator><creator>Edan, Gilles</creator><creator>Freedman, Mark S.</creator><creator>Montalbán, Xavier</creator><creator>Hartung, Hans-Peter</creator><creator>Pohl, Christoph</creator><creator>Sandbrink, Rupert</creator><creator>Sprenger, Till</creator><creator>Radue, Ernst-Wilhelm</creator><creator>Wuerfel, Jens</creator><creator>Nichols, Thomas E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191001</creationdate><title>MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry</title><author>Bendfeldt, Kerstin ; Taschler, Bernd ; Gaetano, Laura ; Madoerin, Philip ; Kuster, Pascal ; Mueller-Lenke, Nicole ; Amann, Michael ; Vrenken, Hugo ; Wottschel, Viktor ; Barkhof, Frederik ; Borgwardt, Stefan ; Klöppel, Stefan ; Wicklein, Eva-Maria ; Kappos, Ludwig ; Edan, Gilles ; Freedman, Mark S. ; Montalbán, Xavier ; Hartung, Hans-Peter ; Pohl, Christoph ; Sandbrink, Rupert ; Sprenger, Till ; Radue, Ernst-Wilhelm ; Wuerfel, Jens ; Nichols, Thomas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-9e8322045689ba797ab4becc54167d23f2dd16c37d546b734e7716e633750cde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Anatomy</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain architecture</topic><topic>Classification</topic><topic>Conversion</topic><topic>Converters</topic><topic>Cortex</topic><topic>Demographics</topic><topic>Disease Progression</topic><topic>Female</topic><topic>Geometry</topic><topic>Gray Matter - pathology</topic><topic>Humans</topic><topic>Image classification</topic><topic>Interferon</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - diagnostic imaging</topic><topic>Multiple Sclerosis - pathology</topic><topic>Neuropsychology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Original Research</topic><topic>Patients</topic><topic>Predictions</topic><topic>Psychiatry</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Subgroups</topic><topic>Substantia grisea</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bendfeldt, Kerstin</creatorcontrib><creatorcontrib>Taschler, Bernd</creatorcontrib><creatorcontrib>Gaetano, Laura</creatorcontrib><creatorcontrib>Madoerin, Philip</creatorcontrib><creatorcontrib>Kuster, Pascal</creatorcontrib><creatorcontrib>Mueller-Lenke, Nicole</creatorcontrib><creatorcontrib>Amann, Michael</creatorcontrib><creatorcontrib>Vrenken, Hugo</creatorcontrib><creatorcontrib>Wottschel, Viktor</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><creatorcontrib>Borgwardt, Stefan</creatorcontrib><creatorcontrib>Klöppel, Stefan</creatorcontrib><creatorcontrib>Wicklein, Eva-Maria</creatorcontrib><creatorcontrib>Kappos, Ludwig</creatorcontrib><creatorcontrib>Edan, Gilles</creatorcontrib><creatorcontrib>Freedman, Mark S.</creatorcontrib><creatorcontrib>Montalbán, Xavier</creatorcontrib><creatorcontrib>Hartung, Hans-Peter</creatorcontrib><creatorcontrib>Pohl, Christoph</creatorcontrib><creatorcontrib>Sandbrink, Rupert</creatorcontrib><creatorcontrib>Sprenger, Till</creatorcontrib><creatorcontrib>Radue, Ernst-Wilhelm</creatorcontrib><creatorcontrib>Wuerfel, Jens</creatorcontrib><creatorcontrib>Nichols, Thomas E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain imaging and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bendfeldt, Kerstin</au><au>Taschler, Bernd</au><au>Gaetano, Laura</au><au>Madoerin, Philip</au><au>Kuster, Pascal</au><au>Mueller-Lenke, Nicole</au><au>Amann, Michael</au><au>Vrenken, Hugo</au><au>Wottschel, Viktor</au><au>Barkhof, Frederik</au><au>Borgwardt, Stefan</au><au>Klöppel, Stefan</au><au>Wicklein, Eva-Maria</au><au>Kappos, Ludwig</au><au>Edan, Gilles</au><au>Freedman, Mark S.</au><au>Montalbán, Xavier</au><au>Hartung, Hans-Peter</au><au>Pohl, Christoph</au><au>Sandbrink, Rupert</au><au>Sprenger, Till</au><au>Radue, Ernst-Wilhelm</au><au>Wuerfel, Jens</au><au>Nichols, Thomas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry</atitle><jtitle>Brain imaging and behavior</jtitle><stitle>Brain Imaging and Behavior</stitle><addtitle>Brain Imaging Behav</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>13</volume><issue>5</issue><spage>1361</spage><epage>1374</epage><pages>1361-1374</pages><issn>1931-7557</issn><eissn>1931-7565</eissn><abstract>Neuroanatomical pattern classification using support vector machines (SVMs) has shown promising results in classifying Multiple Sclerosis (MS) patients based on individual structural magnetic resonance images (MRI). To determine whether pattern classification using SVMs facilitates predicting conversion to clinically definite multiple sclerosis (CDMS) from clinically isolated syndrome (CIS). We used baseline MRI data from 364 patients with CIS, randomised to interferon beta-1b or placebo. Non-linear SVMs and 10-fold cross-validation were applied to predict converters/non-converters (175/189) at two years follow-up based on clinical and demographic data, lesion-specific quantitative geometric features and grey-matter-to-whole-brain volume ratios. We applied linear SVM analysis and leave-one-out cross-validation to subgroups of converters ( n  = 25) and non-converters ( n  = 44) based on cortical grey matter segmentations. Highest prediction accuracies of 70.4% ( p  = 8e-5) were reached with a combination of lesion-specific geometric (image-based) and demographic/clinical features. Cortical grey matter was informative for the placebo group (acc.: 64.6%, p  = 0.002) but not for the interferon group. Classification based on demographic/clinical covariates only resulted in an accuracy of 56% ( p  = 0.05). Overall, lesion geometry was more informative in the interferon group, EDSS and sex were more important for the placebo cohort. Alongside standard demographic and clinical measures, both lesion geometry and grey matter based information can aid prediction of conversion to CDMS.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30155789</pmid><doi>10.1007/s11682-018-9942-9</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-7557
ispartof Brain imaging and behavior, 2019-10, Vol.13 (5), p.1361-1374
issn 1931-7557
1931-7565
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6733701
source MEDLINE; SpringerLink Journals
subjects Adult
Anatomy
Biomedical and Life Sciences
Biomedicine
Brain
Brain architecture
Classification
Conversion
Converters
Cortex
Demographics
Disease Progression
Female
Geometry
Gray Matter - pathology
Humans
Image classification
Interferon
Magnetic Resonance Imaging
Male
Medical imaging
Multiple sclerosis
Multiple Sclerosis - diagnostic imaging
Multiple Sclerosis - pathology
Neuropsychology
Neuroradiology
Neurosciences
Original Research
Patients
Predictions
Psychiatry
Randomized Controlled Trials as Topic
Subgroups
Substantia grisea
Support Vector Machine
Support vector machines
title MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRI-based%20prediction%20of%20conversion%20from%20clinically%20isolated%20syndrome%20to%20clinically%20definite%20multiple%20sclerosis%20using%20SVM%20and%20lesion%20geometry&rft.jtitle=Brain%20imaging%20and%20behavior&rft.au=Bendfeldt,%20Kerstin&rft.date=2019-10-01&rft.volume=13&rft.issue=5&rft.spage=1361&rft.epage=1374&rft.pages=1361-1374&rft.issn=1931-7557&rft.eissn=1931-7565&rft_id=info:doi/10.1007/s11682-018-9942-9&rft_dat=%3Cproquest_pubme%3E2094968051%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094968051&rft_id=info:pmid/30155789&rfr_iscdi=true