Distinct Molecular Trajectories Converge to Induce Naive Pluripotency

Understanding how cell identity transitions occur and whether there are multiple paths between the same beginning and end states are questions of wide interest. Here we show that acquisition of naive pluripotency can follow transcriptionally and mechanistically distinct routes. Starting from post-im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell stem cell 2019-09, Vol.25 (3), p.388-406.e8
Hauptverfasser: Stuart, Hannah T., Stirparo, Giuliano G., Lohoff, Tim, Bates, Lawrence E., Kinoshita, Masaki, Lim, Chee Y., Sousa, Elsa J., Maskalenka, Katsiaryna, Radzisheuskaya, Aliaksandra, Malcolm, Andrew A., Alves, Mariana R.P., Lloyd, Rebecca L., Nestorowa, Sonia, Humphreys, Peter, Mansfield, William, Reik, Wolf, Bertone, Paul, Nichols, Jennifer, Göttgens, Berthold, Silva, José C.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406.e8
container_issue 3
container_start_page 388
container_title Cell stem cell
container_volume 25
creator Stuart, Hannah T.
Stirparo, Giuliano G.
Lohoff, Tim
Bates, Lawrence E.
Kinoshita, Masaki
Lim, Chee Y.
Sousa, Elsa J.
Maskalenka, Katsiaryna
Radzisheuskaya, Aliaksandra
Malcolm, Andrew A.
Alves, Mariana R.P.
Lloyd, Rebecca L.
Nestorowa, Sonia
Humphreys, Peter
Mansfield, William
Reik, Wolf
Bertone, Paul
Nichols, Jennifer
Göttgens, Berthold
Silva, José C.R.
description Understanding how cell identity transitions occur and whether there are multiple paths between the same beginning and end states are questions of wide interest. Here we show that acquisition of naive pluripotency can follow transcriptionally and mechanistically distinct routes. Starting from post-implantation epiblast stem cells (EpiSCs), one route advances through a mesodermal state prior to naive pluripotency induction, whereas another transiently resembles the early inner cell mass and correspondingly gains greater developmental potency. These routes utilize distinct signaling networks and transcription factors but subsequently converge on the same naive endpoint, showing surprising flexibility in mechanisms underlying identity transitions and suggesting that naive pluripotency is a multidimensional attractor state. These route differences are reconciled by precise expression of Oct4 as a unifying, essential, and sufficient feature. We propose that fine-tuned regulation of this “transition factor” underpins multidimensional access to naive pluripotency, offering a conceptual framework for understanding cell identity transitions. [Display omitted] •Reprogramming routes differ transcriptionally and mechanistically•Reprogramming intermediates resemble different developmental stages•Distinct routes converge on precise Oct4 regulation to permit identity transition•Precise Oct4 expression is sufficient for reprogramming of EpiSCs and fibroblasts Stuart et al. report distinct routes of reprogramming to naive pluripotency. These differ in their transcriptional trajectories, mechanistic requirements, and developmental parallels, thus demonstrating considerable flexibility for a given cell identity transition to occur. Distinct routes converge on precise Oct4 expression, which is necessary and sufficient for naive pluripotency induction.
doi_str_mv 10.1016/j.stem.2019.07.009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6731995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934590919303078</els_id><sourcerecordid>2275946709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-1ebf6dc45cae360ee04682579ea0dc28642b61d5f17297709a92d9cd08c79dd3</originalsourceid><addsrcrecordid>eNp9kE9rGzEQxUVpqRMnXyCHssdedjvSrlYWhEBw0jTg_jn4LmRp7MqsV46kNeTbR64dk1x6mgfz5s3Mj5ArChUF2n5bVzHhpmJAZQWiApAfyBmdCF5KIcTHrGXdlFyCHJHzGNcAXFAQn8mopg1jkrIzcn_nYnK9ScVP36EZOh2KedBrNMkHh7GY-n6HYYVF8sVjbweDxS_tdlj86Ybgtj5hb54vyKel7iJeHuuYzL_fz6c_ytnvh8fp7aw0DeeppLhYtjZro7FuARGadsK4kKjBGjZpG7ZoqeVLKlh-AaSWzEpjYWKEtLYek5tD7HZYbNAa7FPQndoGt9HhWXnt1PtO7_6qld-pVtRUSp4Dvh4Dgn8aMCa1cdFg1-ke_RAVY4LLps2bs5UdrCb4GAMuT2soqD1-tVZ7_GqPX4FQ8G_oy9sDTyOvvLPh-mDATGnnMKhoXCaI1oWMXFnv_pf_AiummGE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275946709</pqid></control><display><type>article</type><title>Distinct Molecular Trajectories Converge to Induce Naive Pluripotency</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Stuart, Hannah T. ; Stirparo, Giuliano G. ; Lohoff, Tim ; Bates, Lawrence E. ; Kinoshita, Masaki ; Lim, Chee Y. ; Sousa, Elsa J. ; Maskalenka, Katsiaryna ; Radzisheuskaya, Aliaksandra ; Malcolm, Andrew A. ; Alves, Mariana R.P. ; Lloyd, Rebecca L. ; Nestorowa, Sonia ; Humphreys, Peter ; Mansfield, William ; Reik, Wolf ; Bertone, Paul ; Nichols, Jennifer ; Göttgens, Berthold ; Silva, José C.R.</creator><creatorcontrib>Stuart, Hannah T. ; Stirparo, Giuliano G. ; Lohoff, Tim ; Bates, Lawrence E. ; Kinoshita, Masaki ; Lim, Chee Y. ; Sousa, Elsa J. ; Maskalenka, Katsiaryna ; Radzisheuskaya, Aliaksandra ; Malcolm, Andrew A. ; Alves, Mariana R.P. ; Lloyd, Rebecca L. ; Nestorowa, Sonia ; Humphreys, Peter ; Mansfield, William ; Reik, Wolf ; Bertone, Paul ; Nichols, Jennifer ; Göttgens, Berthold ; Silva, José C.R.</creatorcontrib><description>Understanding how cell identity transitions occur and whether there are multiple paths between the same beginning and end states are questions of wide interest. Here we show that acquisition of naive pluripotency can follow transcriptionally and mechanistically distinct routes. Starting from post-implantation epiblast stem cells (EpiSCs), one route advances through a mesodermal state prior to naive pluripotency induction, whereas another transiently resembles the early inner cell mass and correspondingly gains greater developmental potency. These routes utilize distinct signaling networks and transcription factors but subsequently converge on the same naive endpoint, showing surprising flexibility in mechanisms underlying identity transitions and suggesting that naive pluripotency is a multidimensional attractor state. These route differences are reconciled by precise expression of Oct4 as a unifying, essential, and sufficient feature. We propose that fine-tuned regulation of this “transition factor” underpins multidimensional access to naive pluripotency, offering a conceptual framework for understanding cell identity transitions. [Display omitted] •Reprogramming routes differ transcriptionally and mechanistically•Reprogramming intermediates resemble different developmental stages•Distinct routes converge on precise Oct4 regulation to permit identity transition•Precise Oct4 expression is sufficient for reprogramming of EpiSCs and fibroblasts Stuart et al. report distinct routes of reprogramming to naive pluripotency. These differ in their transcriptional trajectories, mechanistic requirements, and developmental parallels, thus demonstrating considerable flexibility for a given cell identity transition to occur. Distinct routes converge on precise Oct4 expression, which is necessary and sufficient for naive pluripotency induction.</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2019.07.009</identifier><identifier>PMID: 31422912</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Blastocyst Inner Cell Mass - physiology ; Cell Differentiation ; cell identity transitions ; Cell Line ; Cell Plasticity ; Cellular Reprogramming ; Female ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Germ Layers - physiology ; Mice ; Mice, Inbred C57BL ; Octamer Transcription Factor-3 - genetics ; Octamer Transcription Factor-3 - metabolism ; pluripotency ; Pluripotent Stem Cells - physiology ; reprogramming ; Signal Transduction ; signaling ; transcriptional networks</subject><ispartof>Cell stem cell, 2019-09, Vol.25 (3), p.388-406.e8</ispartof><rights>2019 The Author(s)</rights><rights>Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2019 The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-1ebf6dc45cae360ee04682579ea0dc28642b61d5f17297709a92d9cd08c79dd3</citedby><cites>FETCH-LOGICAL-c455t-1ebf6dc45cae360ee04682579ea0dc28642b61d5f17297709a92d9cd08c79dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1934590919303078$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31422912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stuart, Hannah T.</creatorcontrib><creatorcontrib>Stirparo, Giuliano G.</creatorcontrib><creatorcontrib>Lohoff, Tim</creatorcontrib><creatorcontrib>Bates, Lawrence E.</creatorcontrib><creatorcontrib>Kinoshita, Masaki</creatorcontrib><creatorcontrib>Lim, Chee Y.</creatorcontrib><creatorcontrib>Sousa, Elsa J.</creatorcontrib><creatorcontrib>Maskalenka, Katsiaryna</creatorcontrib><creatorcontrib>Radzisheuskaya, Aliaksandra</creatorcontrib><creatorcontrib>Malcolm, Andrew A.</creatorcontrib><creatorcontrib>Alves, Mariana R.P.</creatorcontrib><creatorcontrib>Lloyd, Rebecca L.</creatorcontrib><creatorcontrib>Nestorowa, Sonia</creatorcontrib><creatorcontrib>Humphreys, Peter</creatorcontrib><creatorcontrib>Mansfield, William</creatorcontrib><creatorcontrib>Reik, Wolf</creatorcontrib><creatorcontrib>Bertone, Paul</creatorcontrib><creatorcontrib>Nichols, Jennifer</creatorcontrib><creatorcontrib>Göttgens, Berthold</creatorcontrib><creatorcontrib>Silva, José C.R.</creatorcontrib><title>Distinct Molecular Trajectories Converge to Induce Naive Pluripotency</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>Understanding how cell identity transitions occur and whether there are multiple paths between the same beginning and end states are questions of wide interest. Here we show that acquisition of naive pluripotency can follow transcriptionally and mechanistically distinct routes. Starting from post-implantation epiblast stem cells (EpiSCs), one route advances through a mesodermal state prior to naive pluripotency induction, whereas another transiently resembles the early inner cell mass and correspondingly gains greater developmental potency. These routes utilize distinct signaling networks and transcription factors but subsequently converge on the same naive endpoint, showing surprising flexibility in mechanisms underlying identity transitions and suggesting that naive pluripotency is a multidimensional attractor state. These route differences are reconciled by precise expression of Oct4 as a unifying, essential, and sufficient feature. We propose that fine-tuned regulation of this “transition factor” underpins multidimensional access to naive pluripotency, offering a conceptual framework for understanding cell identity transitions. [Display omitted] •Reprogramming routes differ transcriptionally and mechanistically•Reprogramming intermediates resemble different developmental stages•Distinct routes converge on precise Oct4 regulation to permit identity transition•Precise Oct4 expression is sufficient for reprogramming of EpiSCs and fibroblasts Stuart et al. report distinct routes of reprogramming to naive pluripotency. These differ in their transcriptional trajectories, mechanistic requirements, and developmental parallels, thus demonstrating considerable flexibility for a given cell identity transition to occur. Distinct routes converge on precise Oct4 expression, which is necessary and sufficient for naive pluripotency induction.</description><subject>Animals</subject><subject>Blastocyst Inner Cell Mass - physiology</subject><subject>Cell Differentiation</subject><subject>cell identity transitions</subject><subject>Cell Line</subject><subject>Cell Plasticity</subject><subject>Cellular Reprogramming</subject><subject>Female</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Regulatory Networks</subject><subject>Germ Layers - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Octamer Transcription Factor-3 - genetics</subject><subject>Octamer Transcription Factor-3 - metabolism</subject><subject>pluripotency</subject><subject>Pluripotent Stem Cells - physiology</subject><subject>reprogramming</subject><subject>Signal Transduction</subject><subject>signaling</subject><subject>transcriptional networks</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9rGzEQxUVpqRMnXyCHssdedjvSrlYWhEBw0jTg_jn4LmRp7MqsV46kNeTbR64dk1x6mgfz5s3Mj5ArChUF2n5bVzHhpmJAZQWiApAfyBmdCF5KIcTHrGXdlFyCHJHzGNcAXFAQn8mopg1jkrIzcn_nYnK9ScVP36EZOh2KedBrNMkHh7GY-n6HYYVF8sVjbweDxS_tdlj86Ybgtj5hb54vyKel7iJeHuuYzL_fz6c_ytnvh8fp7aw0DeeppLhYtjZro7FuARGadsK4kKjBGjZpG7ZoqeVLKlh-AaSWzEpjYWKEtLYek5tD7HZYbNAa7FPQndoGt9HhWXnt1PtO7_6qld-pVtRUSp4Dvh4Dgn8aMCa1cdFg1-ke_RAVY4LLps2bs5UdrCb4GAMuT2soqD1-tVZ7_GqPX4FQ8G_oy9sDTyOvvLPh-mDATGnnMKhoXCaI1oWMXFnv_pf_AiummGE</recordid><startdate>20190905</startdate><enddate>20190905</enddate><creator>Stuart, Hannah T.</creator><creator>Stirparo, Giuliano G.</creator><creator>Lohoff, Tim</creator><creator>Bates, Lawrence E.</creator><creator>Kinoshita, Masaki</creator><creator>Lim, Chee Y.</creator><creator>Sousa, Elsa J.</creator><creator>Maskalenka, Katsiaryna</creator><creator>Radzisheuskaya, Aliaksandra</creator><creator>Malcolm, Andrew A.</creator><creator>Alves, Mariana R.P.</creator><creator>Lloyd, Rebecca L.</creator><creator>Nestorowa, Sonia</creator><creator>Humphreys, Peter</creator><creator>Mansfield, William</creator><creator>Reik, Wolf</creator><creator>Bertone, Paul</creator><creator>Nichols, Jennifer</creator><creator>Göttgens, Berthold</creator><creator>Silva, José C.R.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190905</creationdate><title>Distinct Molecular Trajectories Converge to Induce Naive Pluripotency</title><author>Stuart, Hannah T. ; Stirparo, Giuliano G. ; Lohoff, Tim ; Bates, Lawrence E. ; Kinoshita, Masaki ; Lim, Chee Y. ; Sousa, Elsa J. ; Maskalenka, Katsiaryna ; Radzisheuskaya, Aliaksandra ; Malcolm, Andrew A. ; Alves, Mariana R.P. ; Lloyd, Rebecca L. ; Nestorowa, Sonia ; Humphreys, Peter ; Mansfield, William ; Reik, Wolf ; Bertone, Paul ; Nichols, Jennifer ; Göttgens, Berthold ; Silva, José C.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-1ebf6dc45cae360ee04682579ea0dc28642b61d5f17297709a92d9cd08c79dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Blastocyst Inner Cell Mass - physiology</topic><topic>Cell Differentiation</topic><topic>cell identity transitions</topic><topic>Cell Line</topic><topic>Cell Plasticity</topic><topic>Cellular Reprogramming</topic><topic>Female</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Regulatory Networks</topic><topic>Germ Layers - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Octamer Transcription Factor-3 - genetics</topic><topic>Octamer Transcription Factor-3 - metabolism</topic><topic>pluripotency</topic><topic>Pluripotent Stem Cells - physiology</topic><topic>reprogramming</topic><topic>Signal Transduction</topic><topic>signaling</topic><topic>transcriptional networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stuart, Hannah T.</creatorcontrib><creatorcontrib>Stirparo, Giuliano G.</creatorcontrib><creatorcontrib>Lohoff, Tim</creatorcontrib><creatorcontrib>Bates, Lawrence E.</creatorcontrib><creatorcontrib>Kinoshita, Masaki</creatorcontrib><creatorcontrib>Lim, Chee Y.</creatorcontrib><creatorcontrib>Sousa, Elsa J.</creatorcontrib><creatorcontrib>Maskalenka, Katsiaryna</creatorcontrib><creatorcontrib>Radzisheuskaya, Aliaksandra</creatorcontrib><creatorcontrib>Malcolm, Andrew A.</creatorcontrib><creatorcontrib>Alves, Mariana R.P.</creatorcontrib><creatorcontrib>Lloyd, Rebecca L.</creatorcontrib><creatorcontrib>Nestorowa, Sonia</creatorcontrib><creatorcontrib>Humphreys, Peter</creatorcontrib><creatorcontrib>Mansfield, William</creatorcontrib><creatorcontrib>Reik, Wolf</creatorcontrib><creatorcontrib>Bertone, Paul</creatorcontrib><creatorcontrib>Nichols, Jennifer</creatorcontrib><creatorcontrib>Göttgens, Berthold</creatorcontrib><creatorcontrib>Silva, José C.R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stuart, Hannah T.</au><au>Stirparo, Giuliano G.</au><au>Lohoff, Tim</au><au>Bates, Lawrence E.</au><au>Kinoshita, Masaki</au><au>Lim, Chee Y.</au><au>Sousa, Elsa J.</au><au>Maskalenka, Katsiaryna</au><au>Radzisheuskaya, Aliaksandra</au><au>Malcolm, Andrew A.</au><au>Alves, Mariana R.P.</au><au>Lloyd, Rebecca L.</au><au>Nestorowa, Sonia</au><au>Humphreys, Peter</au><au>Mansfield, William</au><au>Reik, Wolf</au><au>Bertone, Paul</au><au>Nichols, Jennifer</au><au>Göttgens, Berthold</au><au>Silva, José C.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct Molecular Trajectories Converge to Induce Naive Pluripotency</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2019-09-05</date><risdate>2019</risdate><volume>25</volume><issue>3</issue><spage>388</spage><epage>406.e8</epage><pages>388-406.e8</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>Understanding how cell identity transitions occur and whether there are multiple paths between the same beginning and end states are questions of wide interest. Here we show that acquisition of naive pluripotency can follow transcriptionally and mechanistically distinct routes. Starting from post-implantation epiblast stem cells (EpiSCs), one route advances through a mesodermal state prior to naive pluripotency induction, whereas another transiently resembles the early inner cell mass and correspondingly gains greater developmental potency. These routes utilize distinct signaling networks and transcription factors but subsequently converge on the same naive endpoint, showing surprising flexibility in mechanisms underlying identity transitions and suggesting that naive pluripotency is a multidimensional attractor state. These route differences are reconciled by precise expression of Oct4 as a unifying, essential, and sufficient feature. We propose that fine-tuned regulation of this “transition factor” underpins multidimensional access to naive pluripotency, offering a conceptual framework for understanding cell identity transitions. [Display omitted] •Reprogramming routes differ transcriptionally and mechanistically•Reprogramming intermediates resemble different developmental stages•Distinct routes converge on precise Oct4 regulation to permit identity transition•Precise Oct4 expression is sufficient for reprogramming of EpiSCs and fibroblasts Stuart et al. report distinct routes of reprogramming to naive pluripotency. These differ in their transcriptional trajectories, mechanistic requirements, and developmental parallels, thus demonstrating considerable flexibility for a given cell identity transition to occur. Distinct routes converge on precise Oct4 expression, which is necessary and sufficient for naive pluripotency induction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31422912</pmid><doi>10.1016/j.stem.2019.07.009</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1934-5909
ispartof Cell stem cell, 2019-09, Vol.25 (3), p.388-406.e8
issn 1934-5909
1875-9777
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6731995
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Blastocyst Inner Cell Mass - physiology
Cell Differentiation
cell identity transitions
Cell Line
Cell Plasticity
Cellular Reprogramming
Female
Gene Expression Regulation, Developmental
Gene Regulatory Networks
Germ Layers - physiology
Mice
Mice, Inbred C57BL
Octamer Transcription Factor-3 - genetics
Octamer Transcription Factor-3 - metabolism
pluripotency
Pluripotent Stem Cells - physiology
reprogramming
Signal Transduction
signaling
transcriptional networks
title Distinct Molecular Trajectories Converge to Induce Naive Pluripotency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20Molecular%20Trajectories%20Converge%20to%20Induce%20Naive%20Pluripotency&rft.jtitle=Cell%20stem%20cell&rft.au=Stuart,%20Hannah%20T.&rft.date=2019-09-05&rft.volume=25&rft.issue=3&rft.spage=388&rft.epage=406.e8&rft.pages=388-406.e8&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2019.07.009&rft_dat=%3Cproquest_pubme%3E2275946709%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275946709&rft_id=info:pmid/31422912&rft_els_id=S1934590919303078&rfr_iscdi=true