Distinct Molecular Trajectories Converge to Induce Naive Pluripotency
Understanding how cell identity transitions occur and whether there are multiple paths between the same beginning and end states are questions of wide interest. Here we show that acquisition of naive pluripotency can follow transcriptionally and mechanistically distinct routes. Starting from post-im...
Gespeichert in:
Veröffentlicht in: | Cell stem cell 2019-09, Vol.25 (3), p.388-406.e8 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 406.e8 |
---|---|
container_issue | 3 |
container_start_page | 388 |
container_title | Cell stem cell |
container_volume | 25 |
creator | Stuart, Hannah T. Stirparo, Giuliano G. Lohoff, Tim Bates, Lawrence E. Kinoshita, Masaki Lim, Chee Y. Sousa, Elsa J. Maskalenka, Katsiaryna Radzisheuskaya, Aliaksandra Malcolm, Andrew A. Alves, Mariana R.P. Lloyd, Rebecca L. Nestorowa, Sonia Humphreys, Peter Mansfield, William Reik, Wolf Bertone, Paul Nichols, Jennifer Göttgens, Berthold Silva, José C.R. |
description | Understanding how cell identity transitions occur and whether there are multiple paths between the same beginning and end states are questions of wide interest. Here we show that acquisition of naive pluripotency can follow transcriptionally and mechanistically distinct routes. Starting from post-implantation epiblast stem cells (EpiSCs), one route advances through a mesodermal state prior to naive pluripotency induction, whereas another transiently resembles the early inner cell mass and correspondingly gains greater developmental potency. These routes utilize distinct signaling networks and transcription factors but subsequently converge on the same naive endpoint, showing surprising flexibility in mechanisms underlying identity transitions and suggesting that naive pluripotency is a multidimensional attractor state. These route differences are reconciled by precise expression of Oct4 as a unifying, essential, and sufficient feature. We propose that fine-tuned regulation of this “transition factor” underpins multidimensional access to naive pluripotency, offering a conceptual framework for understanding cell identity transitions.
[Display omitted]
•Reprogramming routes differ transcriptionally and mechanistically•Reprogramming intermediates resemble different developmental stages•Distinct routes converge on precise Oct4 regulation to permit identity transition•Precise Oct4 expression is sufficient for reprogramming of EpiSCs and fibroblasts
Stuart et al. report distinct routes of reprogramming to naive pluripotency. These differ in their transcriptional trajectories, mechanistic requirements, and developmental parallels, thus demonstrating considerable flexibility for a given cell identity transition to occur. Distinct routes converge on precise Oct4 expression, which is necessary and sufficient for naive pluripotency induction. |
doi_str_mv | 10.1016/j.stem.2019.07.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6731995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934590919303078</els_id><sourcerecordid>2275946709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-1ebf6dc45cae360ee04682579ea0dc28642b61d5f17297709a92d9cd08c79dd3</originalsourceid><addsrcrecordid>eNp9kE9rGzEQxUVpqRMnXyCHssdedjvSrlYWhEBw0jTg_jn4LmRp7MqsV46kNeTbR64dk1x6mgfz5s3Mj5ArChUF2n5bVzHhpmJAZQWiApAfyBmdCF5KIcTHrGXdlFyCHJHzGNcAXFAQn8mopg1jkrIzcn_nYnK9ScVP36EZOh2KedBrNMkHh7GY-n6HYYVF8sVjbweDxS_tdlj86Ybgtj5hb54vyKel7iJeHuuYzL_fz6c_ytnvh8fp7aw0DeeppLhYtjZro7FuARGadsK4kKjBGjZpG7ZoqeVLKlh-AaSWzEpjYWKEtLYek5tD7HZYbNAa7FPQndoGt9HhWXnt1PtO7_6qld-pVtRUSp4Dvh4Dgn8aMCa1cdFg1-ke_RAVY4LLps2bs5UdrCb4GAMuT2soqD1-tVZ7_GqPX4FQ8G_oy9sDTyOvvLPh-mDATGnnMKhoXCaI1oWMXFnv_pf_AiummGE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275946709</pqid></control><display><type>article</type><title>Distinct Molecular Trajectories Converge to Induce Naive Pluripotency</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Stuart, Hannah T. ; Stirparo, Giuliano G. ; Lohoff, Tim ; Bates, Lawrence E. ; Kinoshita, Masaki ; Lim, Chee Y. ; Sousa, Elsa J. ; Maskalenka, Katsiaryna ; Radzisheuskaya, Aliaksandra ; Malcolm, Andrew A. ; Alves, Mariana R.P. ; Lloyd, Rebecca L. ; Nestorowa, Sonia ; Humphreys, Peter ; Mansfield, William ; Reik, Wolf ; Bertone, Paul ; Nichols, Jennifer ; Göttgens, Berthold ; Silva, José C.R.</creator><creatorcontrib>Stuart, Hannah T. ; Stirparo, Giuliano G. ; Lohoff, Tim ; Bates, Lawrence E. ; Kinoshita, Masaki ; Lim, Chee Y. ; Sousa, Elsa J. ; Maskalenka, Katsiaryna ; Radzisheuskaya, Aliaksandra ; Malcolm, Andrew A. ; Alves, Mariana R.P. ; Lloyd, Rebecca L. ; Nestorowa, Sonia ; Humphreys, Peter ; Mansfield, William ; Reik, Wolf ; Bertone, Paul ; Nichols, Jennifer ; Göttgens, Berthold ; Silva, José C.R.</creatorcontrib><description>Understanding how cell identity transitions occur and whether there are multiple paths between the same beginning and end states are questions of wide interest. Here we show that acquisition of naive pluripotency can follow transcriptionally and mechanistically distinct routes. Starting from post-implantation epiblast stem cells (EpiSCs), one route advances through a mesodermal state prior to naive pluripotency induction, whereas another transiently resembles the early inner cell mass and correspondingly gains greater developmental potency. These routes utilize distinct signaling networks and transcription factors but subsequently converge on the same naive endpoint, showing surprising flexibility in mechanisms underlying identity transitions and suggesting that naive pluripotency is a multidimensional attractor state. These route differences are reconciled by precise expression of Oct4 as a unifying, essential, and sufficient feature. We propose that fine-tuned regulation of this “transition factor” underpins multidimensional access to naive pluripotency, offering a conceptual framework for understanding cell identity transitions.
[Display omitted]
•Reprogramming routes differ transcriptionally and mechanistically•Reprogramming intermediates resemble different developmental stages•Distinct routes converge on precise Oct4 regulation to permit identity transition•Precise Oct4 expression is sufficient for reprogramming of EpiSCs and fibroblasts
Stuart et al. report distinct routes of reprogramming to naive pluripotency. These differ in their transcriptional trajectories, mechanistic requirements, and developmental parallels, thus demonstrating considerable flexibility for a given cell identity transition to occur. Distinct routes converge on precise Oct4 expression, which is necessary and sufficient for naive pluripotency induction.</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2019.07.009</identifier><identifier>PMID: 31422912</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Blastocyst Inner Cell Mass - physiology ; Cell Differentiation ; cell identity transitions ; Cell Line ; Cell Plasticity ; Cellular Reprogramming ; Female ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Germ Layers - physiology ; Mice ; Mice, Inbred C57BL ; Octamer Transcription Factor-3 - genetics ; Octamer Transcription Factor-3 - metabolism ; pluripotency ; Pluripotent Stem Cells - physiology ; reprogramming ; Signal Transduction ; signaling ; transcriptional networks</subject><ispartof>Cell stem cell, 2019-09, Vol.25 (3), p.388-406.e8</ispartof><rights>2019 The Author(s)</rights><rights>Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2019 The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-1ebf6dc45cae360ee04682579ea0dc28642b61d5f17297709a92d9cd08c79dd3</citedby><cites>FETCH-LOGICAL-c455t-1ebf6dc45cae360ee04682579ea0dc28642b61d5f17297709a92d9cd08c79dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1934590919303078$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31422912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stuart, Hannah T.</creatorcontrib><creatorcontrib>Stirparo, Giuliano G.</creatorcontrib><creatorcontrib>Lohoff, Tim</creatorcontrib><creatorcontrib>Bates, Lawrence E.</creatorcontrib><creatorcontrib>Kinoshita, Masaki</creatorcontrib><creatorcontrib>Lim, Chee Y.</creatorcontrib><creatorcontrib>Sousa, Elsa J.</creatorcontrib><creatorcontrib>Maskalenka, Katsiaryna</creatorcontrib><creatorcontrib>Radzisheuskaya, Aliaksandra</creatorcontrib><creatorcontrib>Malcolm, Andrew A.</creatorcontrib><creatorcontrib>Alves, Mariana R.P.</creatorcontrib><creatorcontrib>Lloyd, Rebecca L.</creatorcontrib><creatorcontrib>Nestorowa, Sonia</creatorcontrib><creatorcontrib>Humphreys, Peter</creatorcontrib><creatorcontrib>Mansfield, William</creatorcontrib><creatorcontrib>Reik, Wolf</creatorcontrib><creatorcontrib>Bertone, Paul</creatorcontrib><creatorcontrib>Nichols, Jennifer</creatorcontrib><creatorcontrib>Göttgens, Berthold</creatorcontrib><creatorcontrib>Silva, José C.R.</creatorcontrib><title>Distinct Molecular Trajectories Converge to Induce Naive Pluripotency</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>Understanding how cell identity transitions occur and whether there are multiple paths between the same beginning and end states are questions of wide interest. Here we show that acquisition of naive pluripotency can follow transcriptionally and mechanistically distinct routes. Starting from post-implantation epiblast stem cells (EpiSCs), one route advances through a mesodermal state prior to naive pluripotency induction, whereas another transiently resembles the early inner cell mass and correspondingly gains greater developmental potency. These routes utilize distinct signaling networks and transcription factors but subsequently converge on the same naive endpoint, showing surprising flexibility in mechanisms underlying identity transitions and suggesting that naive pluripotency is a multidimensional attractor state. These route differences are reconciled by precise expression of Oct4 as a unifying, essential, and sufficient feature. We propose that fine-tuned regulation of this “transition factor” underpins multidimensional access to naive pluripotency, offering a conceptual framework for understanding cell identity transitions.
[Display omitted]
•Reprogramming routes differ transcriptionally and mechanistically•Reprogramming intermediates resemble different developmental stages•Distinct routes converge on precise Oct4 regulation to permit identity transition•Precise Oct4 expression is sufficient for reprogramming of EpiSCs and fibroblasts
Stuart et al. report distinct routes of reprogramming to naive pluripotency. These differ in their transcriptional trajectories, mechanistic requirements, and developmental parallels, thus demonstrating considerable flexibility for a given cell identity transition to occur. Distinct routes converge on precise Oct4 expression, which is necessary and sufficient for naive pluripotency induction.</description><subject>Animals</subject><subject>Blastocyst Inner Cell Mass - physiology</subject><subject>Cell Differentiation</subject><subject>cell identity transitions</subject><subject>Cell Line</subject><subject>Cell Plasticity</subject><subject>Cellular Reprogramming</subject><subject>Female</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Regulatory Networks</subject><subject>Germ Layers - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Octamer Transcription Factor-3 - genetics</subject><subject>Octamer Transcription Factor-3 - metabolism</subject><subject>pluripotency</subject><subject>Pluripotent Stem Cells - physiology</subject><subject>reprogramming</subject><subject>Signal Transduction</subject><subject>signaling</subject><subject>transcriptional networks</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9rGzEQxUVpqRMnXyCHssdedjvSrlYWhEBw0jTg_jn4LmRp7MqsV46kNeTbR64dk1x6mgfz5s3Mj5ArChUF2n5bVzHhpmJAZQWiApAfyBmdCF5KIcTHrGXdlFyCHJHzGNcAXFAQn8mopg1jkrIzcn_nYnK9ScVP36EZOh2KedBrNMkHh7GY-n6HYYVF8sVjbweDxS_tdlj86Ybgtj5hb54vyKel7iJeHuuYzL_fz6c_ytnvh8fp7aw0DeeppLhYtjZro7FuARGadsK4kKjBGjZpG7ZoqeVLKlh-AaSWzEpjYWKEtLYek5tD7HZYbNAa7FPQndoGt9HhWXnt1PtO7_6qld-pVtRUSp4Dvh4Dgn8aMCa1cdFg1-ke_RAVY4LLps2bs5UdrCb4GAMuT2soqD1-tVZ7_GqPX4FQ8G_oy9sDTyOvvLPh-mDATGnnMKhoXCaI1oWMXFnv_pf_AiummGE</recordid><startdate>20190905</startdate><enddate>20190905</enddate><creator>Stuart, Hannah T.</creator><creator>Stirparo, Giuliano G.</creator><creator>Lohoff, Tim</creator><creator>Bates, Lawrence E.</creator><creator>Kinoshita, Masaki</creator><creator>Lim, Chee Y.</creator><creator>Sousa, Elsa J.</creator><creator>Maskalenka, Katsiaryna</creator><creator>Radzisheuskaya, Aliaksandra</creator><creator>Malcolm, Andrew A.</creator><creator>Alves, Mariana R.P.</creator><creator>Lloyd, Rebecca L.</creator><creator>Nestorowa, Sonia</creator><creator>Humphreys, Peter</creator><creator>Mansfield, William</creator><creator>Reik, Wolf</creator><creator>Bertone, Paul</creator><creator>Nichols, Jennifer</creator><creator>Göttgens, Berthold</creator><creator>Silva, José C.R.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190905</creationdate><title>Distinct Molecular Trajectories Converge to Induce Naive Pluripotency</title><author>Stuart, Hannah T. ; Stirparo, Giuliano G. ; Lohoff, Tim ; Bates, Lawrence E. ; Kinoshita, Masaki ; Lim, Chee Y. ; Sousa, Elsa J. ; Maskalenka, Katsiaryna ; Radzisheuskaya, Aliaksandra ; Malcolm, Andrew A. ; Alves, Mariana R.P. ; Lloyd, Rebecca L. ; Nestorowa, Sonia ; Humphreys, Peter ; Mansfield, William ; Reik, Wolf ; Bertone, Paul ; Nichols, Jennifer ; Göttgens, Berthold ; Silva, José C.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-1ebf6dc45cae360ee04682579ea0dc28642b61d5f17297709a92d9cd08c79dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Blastocyst Inner Cell Mass - physiology</topic><topic>Cell Differentiation</topic><topic>cell identity transitions</topic><topic>Cell Line</topic><topic>Cell Plasticity</topic><topic>Cellular Reprogramming</topic><topic>Female</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Regulatory Networks</topic><topic>Germ Layers - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Octamer Transcription Factor-3 - genetics</topic><topic>Octamer Transcription Factor-3 - metabolism</topic><topic>pluripotency</topic><topic>Pluripotent Stem Cells - physiology</topic><topic>reprogramming</topic><topic>Signal Transduction</topic><topic>signaling</topic><topic>transcriptional networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stuart, Hannah T.</creatorcontrib><creatorcontrib>Stirparo, Giuliano G.</creatorcontrib><creatorcontrib>Lohoff, Tim</creatorcontrib><creatorcontrib>Bates, Lawrence E.</creatorcontrib><creatorcontrib>Kinoshita, Masaki</creatorcontrib><creatorcontrib>Lim, Chee Y.</creatorcontrib><creatorcontrib>Sousa, Elsa J.</creatorcontrib><creatorcontrib>Maskalenka, Katsiaryna</creatorcontrib><creatorcontrib>Radzisheuskaya, Aliaksandra</creatorcontrib><creatorcontrib>Malcolm, Andrew A.</creatorcontrib><creatorcontrib>Alves, Mariana R.P.</creatorcontrib><creatorcontrib>Lloyd, Rebecca L.</creatorcontrib><creatorcontrib>Nestorowa, Sonia</creatorcontrib><creatorcontrib>Humphreys, Peter</creatorcontrib><creatorcontrib>Mansfield, William</creatorcontrib><creatorcontrib>Reik, Wolf</creatorcontrib><creatorcontrib>Bertone, Paul</creatorcontrib><creatorcontrib>Nichols, Jennifer</creatorcontrib><creatorcontrib>Göttgens, Berthold</creatorcontrib><creatorcontrib>Silva, José C.R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stuart, Hannah T.</au><au>Stirparo, Giuliano G.</au><au>Lohoff, Tim</au><au>Bates, Lawrence E.</au><au>Kinoshita, Masaki</au><au>Lim, Chee Y.</au><au>Sousa, Elsa J.</au><au>Maskalenka, Katsiaryna</au><au>Radzisheuskaya, Aliaksandra</au><au>Malcolm, Andrew A.</au><au>Alves, Mariana R.P.</au><au>Lloyd, Rebecca L.</au><au>Nestorowa, Sonia</au><au>Humphreys, Peter</au><au>Mansfield, William</au><au>Reik, Wolf</au><au>Bertone, Paul</au><au>Nichols, Jennifer</au><au>Göttgens, Berthold</au><au>Silva, José C.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct Molecular Trajectories Converge to Induce Naive Pluripotency</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2019-09-05</date><risdate>2019</risdate><volume>25</volume><issue>3</issue><spage>388</spage><epage>406.e8</epage><pages>388-406.e8</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>Understanding how cell identity transitions occur and whether there are multiple paths between the same beginning and end states are questions of wide interest. Here we show that acquisition of naive pluripotency can follow transcriptionally and mechanistically distinct routes. Starting from post-implantation epiblast stem cells (EpiSCs), one route advances through a mesodermal state prior to naive pluripotency induction, whereas another transiently resembles the early inner cell mass and correspondingly gains greater developmental potency. These routes utilize distinct signaling networks and transcription factors but subsequently converge on the same naive endpoint, showing surprising flexibility in mechanisms underlying identity transitions and suggesting that naive pluripotency is a multidimensional attractor state. These route differences are reconciled by precise expression of Oct4 as a unifying, essential, and sufficient feature. We propose that fine-tuned regulation of this “transition factor” underpins multidimensional access to naive pluripotency, offering a conceptual framework for understanding cell identity transitions.
[Display omitted]
•Reprogramming routes differ transcriptionally and mechanistically•Reprogramming intermediates resemble different developmental stages•Distinct routes converge on precise Oct4 regulation to permit identity transition•Precise Oct4 expression is sufficient for reprogramming of EpiSCs and fibroblasts
Stuart et al. report distinct routes of reprogramming to naive pluripotency. These differ in their transcriptional trajectories, mechanistic requirements, and developmental parallels, thus demonstrating considerable flexibility for a given cell identity transition to occur. Distinct routes converge on precise Oct4 expression, which is necessary and sufficient for naive pluripotency induction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31422912</pmid><doi>10.1016/j.stem.2019.07.009</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1934-5909 |
ispartof | Cell stem cell, 2019-09, Vol.25 (3), p.388-406.e8 |
issn | 1934-5909 1875-9777 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6731995 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Blastocyst Inner Cell Mass - physiology Cell Differentiation cell identity transitions Cell Line Cell Plasticity Cellular Reprogramming Female Gene Expression Regulation, Developmental Gene Regulatory Networks Germ Layers - physiology Mice Mice, Inbred C57BL Octamer Transcription Factor-3 - genetics Octamer Transcription Factor-3 - metabolism pluripotency Pluripotent Stem Cells - physiology reprogramming Signal Transduction signaling transcriptional networks |
title | Distinct Molecular Trajectories Converge to Induce Naive Pluripotency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20Molecular%20Trajectories%20Converge%20to%20Induce%20Naive%20Pluripotency&rft.jtitle=Cell%20stem%20cell&rft.au=Stuart,%20Hannah%20T.&rft.date=2019-09-05&rft.volume=25&rft.issue=3&rft.spage=388&rft.epage=406.e8&rft.pages=388-406.e8&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2019.07.009&rft_dat=%3Cproquest_pubme%3E2275946709%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275946709&rft_id=info:pmid/31422912&rft_els_id=S1934590919303078&rfr_iscdi=true |