Molecular Strategies of Meiotic Cheating by Selfish Centromeres
Asymmetric division in female meiosis creates selective pressure favoring selfish centromeres that bias their transmission to the egg. This centromere drive can explain the paradoxical rapid evolution of both centromere DNA and centromere-binding proteins despite conserved centromere function. Here,...
Gespeichert in:
Veröffentlicht in: | Cell 2019-08, Vol.178 (5), p.1132-1144.e10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1144.e10 |
---|---|
container_issue | 5 |
container_start_page | 1132 |
container_title | Cell |
container_volume | 178 |
creator | Akera, Takashi Trimm, Emily Lampson, Michael A. |
description | Asymmetric division in female meiosis creates selective pressure favoring selfish centromeres that bias their transmission to the egg. This centromere drive can explain the paradoxical rapid evolution of both centromere DNA and centromere-binding proteins despite conserved centromere function. Here, we define a molecular pathway linking expanded centromeres to histone phosphorylation and recruitment of microtubule destabilizing factors, leading to detachment of selfish centromeres from spindle microtubules that would direct them to the polar body. Exploiting centromere divergence between species, we show that selfish centromeres in two hybrid mouse models use the same molecular pathway but modulate it differently to enrich destabilizing factors. Our results indicate that increasing microtubule destabilizing activity is a general strategy for drive in both models, but centromeres have evolved distinct mechanisms to increase that activity. Furthermore, we show that drive depends on slowing meiotic progression, suggesting that selfish centromeres can be suppressed by regulating meiotic timing.
[Display omitted]
•High microtubule-destabilizing activity makes mouse centromeres selfish in meiosis•Amplified BUB1 signaling enriches destabilizing activity on selfish centromeres•Selfish centromeres can modulate the BUB1 pathway by different mechanisms•Rapid progression through meiosis I can suppress centromere drive
The enrichment of microtubule-destabilizing activity on selfish centromeres provides a mechanistic basis for centromere drive. |
doi_str_mv | 10.1016/j.cell.2019.07.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6731994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867419307408</els_id><sourcerecordid>2272219629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-9c15cd620d0f2d180bfde3aa450fee77159eb4baf2172be2bc13e9b467d75b553</originalsourceid><addsrcrecordid>eNqNkc1LxDAQxYMoun78Ax6kRy-tk7RpGhBFFr9A8aCeQ5JOd7N0G026gv-9LauiF_E0h_m9x5t5hBxSyCjQ8mSRWWzbjAGVGYgMgG6QCQUp0oIKtkkmAJKlVSmKHbIb4wIAKs75NtnJaQGMCj4h5_e-RbtqdUge-6B7nDmMiW-Se3S-dzaZzlH3rpsl5j15xLZxcZ5MseuDX2LAuE-2Gt1GPPice-T56vJpepPePVzfTi_uUltUVZ9KS7mtSwY1NKymFZimxlzrgkODKATlEk1hdDOkYgaZsTRHaYpS1IIbzvM9crb2fVmZJdZ2TKBb9RLcUod35bVTvzedm6uZf1OlyKmUxWBw_GkQ_OsKY6-WLo7_0x36VVQsZ0KKqmT_QJlgjMqSyQFla9QGH2PA5jsRBTWWpBZqVKqxJAVCDSUNoqOft3xLvloZgNM1gMNH3xwGFa3DzmLtAtpe1d795f8B0eKj3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272219629</pqid></control><display><type>article</type><title>Molecular Strategies of Meiotic Cheating by Selfish Centromeres</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Akera, Takashi ; Trimm, Emily ; Lampson, Michael A.</creator><creatorcontrib>Akera, Takashi ; Trimm, Emily ; Lampson, Michael A.</creatorcontrib><description>Asymmetric division in female meiosis creates selective pressure favoring selfish centromeres that bias their transmission to the egg. This centromere drive can explain the paradoxical rapid evolution of both centromere DNA and centromere-binding proteins despite conserved centromere function. Here, we define a molecular pathway linking expanded centromeres to histone phosphorylation and recruitment of microtubule destabilizing factors, leading to detachment of selfish centromeres from spindle microtubules that would direct them to the polar body. Exploiting centromere divergence between species, we show that selfish centromeres in two hybrid mouse models use the same molecular pathway but modulate it differently to enrich destabilizing factors. Our results indicate that increasing microtubule destabilizing activity is a general strategy for drive in both models, but centromeres have evolved distinct mechanisms to increase that activity. Furthermore, we show that drive depends on slowing meiotic progression, suggesting that selfish centromeres can be suppressed by regulating meiotic timing.
[Display omitted]
•High microtubule-destabilizing activity makes mouse centromeres selfish in meiosis•Amplified BUB1 signaling enriches destabilizing activity on selfish centromeres•Selfish centromeres can modulate the BUB1 pathway by different mechanisms•Rapid progression through meiosis I can suppress centromere drive
The enrichment of microtubule-destabilizing activity on selfish centromeres provides a mechanistic basis for centromere drive.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2019.07.001</identifier><identifier>PMID: 31402175</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>animal models ; Animals ; centromere ; Centromere - genetics ; centromeres ; Chromosome Segregation ; DNA ; eggs ; Female ; females ; histones ; Male ; Meiosis ; meiotic drive ; Mice ; Mice, Inbred C57BL ; microtubules ; Microtubules - metabolism ; mouse ; oocyte ; Oocytes - metabolism ; phosphorylation ; Protein-Serine-Threonine Kinases - metabolism</subject><ispartof>Cell, 2019-08, Vol.178 (5), p.1132-1144.e10</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-9c15cd620d0f2d180bfde3aa450fee77159eb4baf2172be2bc13e9b467d75b553</citedby><cites>FETCH-LOGICAL-c488t-9c15cd620d0f2d180bfde3aa450fee77159eb4baf2172be2bc13e9b467d75b553</cites><orcidid>0000-0002-8406-9333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867419307408$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31402175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akera, Takashi</creatorcontrib><creatorcontrib>Trimm, Emily</creatorcontrib><creatorcontrib>Lampson, Michael A.</creatorcontrib><title>Molecular Strategies of Meiotic Cheating by Selfish Centromeres</title><title>Cell</title><addtitle>Cell</addtitle><description>Asymmetric division in female meiosis creates selective pressure favoring selfish centromeres that bias their transmission to the egg. This centromere drive can explain the paradoxical rapid evolution of both centromere DNA and centromere-binding proteins despite conserved centromere function. Here, we define a molecular pathway linking expanded centromeres to histone phosphorylation and recruitment of microtubule destabilizing factors, leading to detachment of selfish centromeres from spindle microtubules that would direct them to the polar body. Exploiting centromere divergence between species, we show that selfish centromeres in two hybrid mouse models use the same molecular pathway but modulate it differently to enrich destabilizing factors. Our results indicate that increasing microtubule destabilizing activity is a general strategy for drive in both models, but centromeres have evolved distinct mechanisms to increase that activity. Furthermore, we show that drive depends on slowing meiotic progression, suggesting that selfish centromeres can be suppressed by regulating meiotic timing.
[Display omitted]
•High microtubule-destabilizing activity makes mouse centromeres selfish in meiosis•Amplified BUB1 signaling enriches destabilizing activity on selfish centromeres•Selfish centromeres can modulate the BUB1 pathway by different mechanisms•Rapid progression through meiosis I can suppress centromere drive
The enrichment of microtubule-destabilizing activity on selfish centromeres provides a mechanistic basis for centromere drive.</description><subject>animal models</subject><subject>Animals</subject><subject>centromere</subject><subject>Centromere - genetics</subject><subject>centromeres</subject><subject>Chromosome Segregation</subject><subject>DNA</subject><subject>eggs</subject><subject>Female</subject><subject>females</subject><subject>histones</subject><subject>Male</subject><subject>Meiosis</subject><subject>meiotic drive</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>microtubules</subject><subject>Microtubules - metabolism</subject><subject>mouse</subject><subject>oocyte</subject><subject>Oocytes - metabolism</subject><subject>phosphorylation</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1LxDAQxYMoun78Ax6kRy-tk7RpGhBFFr9A8aCeQ5JOd7N0G026gv-9LauiF_E0h_m9x5t5hBxSyCjQ8mSRWWzbjAGVGYgMgG6QCQUp0oIKtkkmAJKlVSmKHbIb4wIAKs75NtnJaQGMCj4h5_e-RbtqdUge-6B7nDmMiW-Se3S-dzaZzlH3rpsl5j15xLZxcZ5MseuDX2LAuE-2Gt1GPPice-T56vJpepPePVzfTi_uUltUVZ9KS7mtSwY1NKymFZimxlzrgkODKATlEk1hdDOkYgaZsTRHaYpS1IIbzvM9crb2fVmZJdZ2TKBb9RLcUod35bVTvzedm6uZf1OlyKmUxWBw_GkQ_OsKY6-WLo7_0x36VVQsZ0KKqmT_QJlgjMqSyQFla9QGH2PA5jsRBTWWpBZqVKqxJAVCDSUNoqOft3xLvloZgNM1gMNH3xwGFa3DzmLtAtpe1d795f8B0eKj3Q</recordid><startdate>20190822</startdate><enddate>20190822</enddate><creator>Akera, Takashi</creator><creator>Trimm, Emily</creator><creator>Lampson, Michael A.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8406-9333</orcidid></search><sort><creationdate>20190822</creationdate><title>Molecular Strategies of Meiotic Cheating by Selfish Centromeres</title><author>Akera, Takashi ; Trimm, Emily ; Lampson, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-9c15cd620d0f2d180bfde3aa450fee77159eb4baf2172be2bc13e9b467d75b553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>animal models</topic><topic>Animals</topic><topic>centromere</topic><topic>Centromere - genetics</topic><topic>centromeres</topic><topic>Chromosome Segregation</topic><topic>DNA</topic><topic>eggs</topic><topic>Female</topic><topic>females</topic><topic>histones</topic><topic>Male</topic><topic>Meiosis</topic><topic>meiotic drive</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>microtubules</topic><topic>Microtubules - metabolism</topic><topic>mouse</topic><topic>oocyte</topic><topic>Oocytes - metabolism</topic><topic>phosphorylation</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akera, Takashi</creatorcontrib><creatorcontrib>Trimm, Emily</creatorcontrib><creatorcontrib>Lampson, Michael A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akera, Takashi</au><au>Trimm, Emily</au><au>Lampson, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Strategies of Meiotic Cheating by Selfish Centromeres</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2019-08-22</date><risdate>2019</risdate><volume>178</volume><issue>5</issue><spage>1132</spage><epage>1144.e10</epage><pages>1132-1144.e10</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Asymmetric division in female meiosis creates selective pressure favoring selfish centromeres that bias their transmission to the egg. This centromere drive can explain the paradoxical rapid evolution of both centromere DNA and centromere-binding proteins despite conserved centromere function. Here, we define a molecular pathway linking expanded centromeres to histone phosphorylation and recruitment of microtubule destabilizing factors, leading to detachment of selfish centromeres from spindle microtubules that would direct them to the polar body. Exploiting centromere divergence between species, we show that selfish centromeres in two hybrid mouse models use the same molecular pathway but modulate it differently to enrich destabilizing factors. Our results indicate that increasing microtubule destabilizing activity is a general strategy for drive in both models, but centromeres have evolved distinct mechanisms to increase that activity. Furthermore, we show that drive depends on slowing meiotic progression, suggesting that selfish centromeres can be suppressed by regulating meiotic timing.
[Display omitted]
•High microtubule-destabilizing activity makes mouse centromeres selfish in meiosis•Amplified BUB1 signaling enriches destabilizing activity on selfish centromeres•Selfish centromeres can modulate the BUB1 pathway by different mechanisms•Rapid progression through meiosis I can suppress centromere drive
The enrichment of microtubule-destabilizing activity on selfish centromeres provides a mechanistic basis for centromere drive.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31402175</pmid><doi>10.1016/j.cell.2019.07.001</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8406-9333</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2019-08, Vol.178 (5), p.1132-1144.e10 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6731994 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | animal models Animals centromere Centromere - genetics centromeres Chromosome Segregation DNA eggs Female females histones Male Meiosis meiotic drive Mice Mice, Inbred C57BL microtubules Microtubules - metabolism mouse oocyte Oocytes - metabolism phosphorylation Protein-Serine-Threonine Kinases - metabolism |
title | Molecular Strategies of Meiotic Cheating by Selfish Centromeres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Strategies%20of%20Meiotic%20Cheating%20by%20Selfish%20Centromeres&rft.jtitle=Cell&rft.au=Akera,%20Takashi&rft.date=2019-08-22&rft.volume=178&rft.issue=5&rft.spage=1132&rft.epage=1144.e10&rft.pages=1132-1144.e10&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2019.07.001&rft_dat=%3Cproquest_pubme%3E2272219629%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272219629&rft_id=info:pmid/31402175&rft_els_id=S0092867419307408&rfr_iscdi=true |