Molecular Strategies of Meiotic Cheating by Selfish Centromeres

Asymmetric division in female meiosis creates selective pressure favoring selfish centromeres that bias their transmission to the egg. This centromere drive can explain the paradoxical rapid evolution of both centromere DNA and centromere-binding proteins despite conserved centromere function. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2019-08, Vol.178 (5), p.1132-1144.e10
Hauptverfasser: Akera, Takashi, Trimm, Emily, Lampson, Michael A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1144.e10
container_issue 5
container_start_page 1132
container_title Cell
container_volume 178
creator Akera, Takashi
Trimm, Emily
Lampson, Michael A.
description Asymmetric division in female meiosis creates selective pressure favoring selfish centromeres that bias their transmission to the egg. This centromere drive can explain the paradoxical rapid evolution of both centromere DNA and centromere-binding proteins despite conserved centromere function. Here, we define a molecular pathway linking expanded centromeres to histone phosphorylation and recruitment of microtubule destabilizing factors, leading to detachment of selfish centromeres from spindle microtubules that would direct them to the polar body. Exploiting centromere divergence between species, we show that selfish centromeres in two hybrid mouse models use the same molecular pathway but modulate it differently to enrich destabilizing factors. Our results indicate that increasing microtubule destabilizing activity is a general strategy for drive in both models, but centromeres have evolved distinct mechanisms to increase that activity. Furthermore, we show that drive depends on slowing meiotic progression, suggesting that selfish centromeres can be suppressed by regulating meiotic timing. [Display omitted] •High microtubule-destabilizing activity makes mouse centromeres selfish in meiosis•Amplified BUB1 signaling enriches destabilizing activity on selfish centromeres•Selfish centromeres can modulate the BUB1 pathway by different mechanisms•Rapid progression through meiosis I can suppress centromere drive The enrichment of microtubule-destabilizing activity on selfish centromeres provides a mechanistic basis for centromere drive.
doi_str_mv 10.1016/j.cell.2019.07.001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6731994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867419307408</els_id><sourcerecordid>2272219629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-9c15cd620d0f2d180bfde3aa450fee77159eb4baf2172be2bc13e9b467d75b553</originalsourceid><addsrcrecordid>eNqNkc1LxDAQxYMoun78Ax6kRy-tk7RpGhBFFr9A8aCeQ5JOd7N0G026gv-9LauiF_E0h_m9x5t5hBxSyCjQ8mSRWWzbjAGVGYgMgG6QCQUp0oIKtkkmAJKlVSmKHbIb4wIAKs75NtnJaQGMCj4h5_e-RbtqdUge-6B7nDmMiW-Se3S-dzaZzlH3rpsl5j15xLZxcZ5MseuDX2LAuE-2Gt1GPPice-T56vJpepPePVzfTi_uUltUVZ9KS7mtSwY1NKymFZimxlzrgkODKATlEk1hdDOkYgaZsTRHaYpS1IIbzvM9crb2fVmZJdZ2TKBb9RLcUod35bVTvzedm6uZf1OlyKmUxWBw_GkQ_OsKY6-WLo7_0x36VVQsZ0KKqmT_QJlgjMqSyQFla9QGH2PA5jsRBTWWpBZqVKqxJAVCDSUNoqOft3xLvloZgNM1gMNH3xwGFa3DzmLtAtpe1d795f8B0eKj3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272219629</pqid></control><display><type>article</type><title>Molecular Strategies of Meiotic Cheating by Selfish Centromeres</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Akera, Takashi ; Trimm, Emily ; Lampson, Michael A.</creator><creatorcontrib>Akera, Takashi ; Trimm, Emily ; Lampson, Michael A.</creatorcontrib><description>Asymmetric division in female meiosis creates selective pressure favoring selfish centromeres that bias their transmission to the egg. This centromere drive can explain the paradoxical rapid evolution of both centromere DNA and centromere-binding proteins despite conserved centromere function. Here, we define a molecular pathway linking expanded centromeres to histone phosphorylation and recruitment of microtubule destabilizing factors, leading to detachment of selfish centromeres from spindle microtubules that would direct them to the polar body. Exploiting centromere divergence between species, we show that selfish centromeres in two hybrid mouse models use the same molecular pathway but modulate it differently to enrich destabilizing factors. Our results indicate that increasing microtubule destabilizing activity is a general strategy for drive in both models, but centromeres have evolved distinct mechanisms to increase that activity. Furthermore, we show that drive depends on slowing meiotic progression, suggesting that selfish centromeres can be suppressed by regulating meiotic timing. [Display omitted] •High microtubule-destabilizing activity makes mouse centromeres selfish in meiosis•Amplified BUB1 signaling enriches destabilizing activity on selfish centromeres•Selfish centromeres can modulate the BUB1 pathway by different mechanisms•Rapid progression through meiosis I can suppress centromere drive The enrichment of microtubule-destabilizing activity on selfish centromeres provides a mechanistic basis for centromere drive.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2019.07.001</identifier><identifier>PMID: 31402175</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>animal models ; Animals ; centromere ; Centromere - genetics ; centromeres ; Chromosome Segregation ; DNA ; eggs ; Female ; females ; histones ; Male ; Meiosis ; meiotic drive ; Mice ; Mice, Inbred C57BL ; microtubules ; Microtubules - metabolism ; mouse ; oocyte ; Oocytes - metabolism ; phosphorylation ; Protein-Serine-Threonine Kinases - metabolism</subject><ispartof>Cell, 2019-08, Vol.178 (5), p.1132-1144.e10</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-9c15cd620d0f2d180bfde3aa450fee77159eb4baf2172be2bc13e9b467d75b553</citedby><cites>FETCH-LOGICAL-c488t-9c15cd620d0f2d180bfde3aa450fee77159eb4baf2172be2bc13e9b467d75b553</cites><orcidid>0000-0002-8406-9333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867419307408$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31402175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akera, Takashi</creatorcontrib><creatorcontrib>Trimm, Emily</creatorcontrib><creatorcontrib>Lampson, Michael A.</creatorcontrib><title>Molecular Strategies of Meiotic Cheating by Selfish Centromeres</title><title>Cell</title><addtitle>Cell</addtitle><description>Asymmetric division in female meiosis creates selective pressure favoring selfish centromeres that bias their transmission to the egg. This centromere drive can explain the paradoxical rapid evolution of both centromere DNA and centromere-binding proteins despite conserved centromere function. Here, we define a molecular pathway linking expanded centromeres to histone phosphorylation and recruitment of microtubule destabilizing factors, leading to detachment of selfish centromeres from spindle microtubules that would direct them to the polar body. Exploiting centromere divergence between species, we show that selfish centromeres in two hybrid mouse models use the same molecular pathway but modulate it differently to enrich destabilizing factors. Our results indicate that increasing microtubule destabilizing activity is a general strategy for drive in both models, but centromeres have evolved distinct mechanisms to increase that activity. Furthermore, we show that drive depends on slowing meiotic progression, suggesting that selfish centromeres can be suppressed by regulating meiotic timing. [Display omitted] •High microtubule-destabilizing activity makes mouse centromeres selfish in meiosis•Amplified BUB1 signaling enriches destabilizing activity on selfish centromeres•Selfish centromeres can modulate the BUB1 pathway by different mechanisms•Rapid progression through meiosis I can suppress centromere drive The enrichment of microtubule-destabilizing activity on selfish centromeres provides a mechanistic basis for centromere drive.</description><subject>animal models</subject><subject>Animals</subject><subject>centromere</subject><subject>Centromere - genetics</subject><subject>centromeres</subject><subject>Chromosome Segregation</subject><subject>DNA</subject><subject>eggs</subject><subject>Female</subject><subject>females</subject><subject>histones</subject><subject>Male</subject><subject>Meiosis</subject><subject>meiotic drive</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>microtubules</subject><subject>Microtubules - metabolism</subject><subject>mouse</subject><subject>oocyte</subject><subject>Oocytes - metabolism</subject><subject>phosphorylation</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1LxDAQxYMoun78Ax6kRy-tk7RpGhBFFr9A8aCeQ5JOd7N0G026gv-9LauiF_E0h_m9x5t5hBxSyCjQ8mSRWWzbjAGVGYgMgG6QCQUp0oIKtkkmAJKlVSmKHbIb4wIAKs75NtnJaQGMCj4h5_e-RbtqdUge-6B7nDmMiW-Se3S-dzaZzlH3rpsl5j15xLZxcZ5MseuDX2LAuE-2Gt1GPPice-T56vJpepPePVzfTi_uUltUVZ9KS7mtSwY1NKymFZimxlzrgkODKATlEk1hdDOkYgaZsTRHaYpS1IIbzvM9crb2fVmZJdZ2TKBb9RLcUod35bVTvzedm6uZf1OlyKmUxWBw_GkQ_OsKY6-WLo7_0x36VVQsZ0KKqmT_QJlgjMqSyQFla9QGH2PA5jsRBTWWpBZqVKqxJAVCDSUNoqOft3xLvloZgNM1gMNH3xwGFa3DzmLtAtpe1d795f8B0eKj3Q</recordid><startdate>20190822</startdate><enddate>20190822</enddate><creator>Akera, Takashi</creator><creator>Trimm, Emily</creator><creator>Lampson, Michael A.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8406-9333</orcidid></search><sort><creationdate>20190822</creationdate><title>Molecular Strategies of Meiotic Cheating by Selfish Centromeres</title><author>Akera, Takashi ; Trimm, Emily ; Lampson, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-9c15cd620d0f2d180bfde3aa450fee77159eb4baf2172be2bc13e9b467d75b553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>animal models</topic><topic>Animals</topic><topic>centromere</topic><topic>Centromere - genetics</topic><topic>centromeres</topic><topic>Chromosome Segregation</topic><topic>DNA</topic><topic>eggs</topic><topic>Female</topic><topic>females</topic><topic>histones</topic><topic>Male</topic><topic>Meiosis</topic><topic>meiotic drive</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>microtubules</topic><topic>Microtubules - metabolism</topic><topic>mouse</topic><topic>oocyte</topic><topic>Oocytes - metabolism</topic><topic>phosphorylation</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akera, Takashi</creatorcontrib><creatorcontrib>Trimm, Emily</creatorcontrib><creatorcontrib>Lampson, Michael A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akera, Takashi</au><au>Trimm, Emily</au><au>Lampson, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Strategies of Meiotic Cheating by Selfish Centromeres</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2019-08-22</date><risdate>2019</risdate><volume>178</volume><issue>5</issue><spage>1132</spage><epage>1144.e10</epage><pages>1132-1144.e10</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Asymmetric division in female meiosis creates selective pressure favoring selfish centromeres that bias their transmission to the egg. This centromere drive can explain the paradoxical rapid evolution of both centromere DNA and centromere-binding proteins despite conserved centromere function. Here, we define a molecular pathway linking expanded centromeres to histone phosphorylation and recruitment of microtubule destabilizing factors, leading to detachment of selfish centromeres from spindle microtubules that would direct them to the polar body. Exploiting centromere divergence between species, we show that selfish centromeres in two hybrid mouse models use the same molecular pathway but modulate it differently to enrich destabilizing factors. Our results indicate that increasing microtubule destabilizing activity is a general strategy for drive in both models, but centromeres have evolved distinct mechanisms to increase that activity. Furthermore, we show that drive depends on slowing meiotic progression, suggesting that selfish centromeres can be suppressed by regulating meiotic timing. [Display omitted] •High microtubule-destabilizing activity makes mouse centromeres selfish in meiosis•Amplified BUB1 signaling enriches destabilizing activity on selfish centromeres•Selfish centromeres can modulate the BUB1 pathway by different mechanisms•Rapid progression through meiosis I can suppress centromere drive The enrichment of microtubule-destabilizing activity on selfish centromeres provides a mechanistic basis for centromere drive.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31402175</pmid><doi>10.1016/j.cell.2019.07.001</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8406-9333</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2019-08, Vol.178 (5), p.1132-1144.e10
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6731994
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects animal models
Animals
centromere
Centromere - genetics
centromeres
Chromosome Segregation
DNA
eggs
Female
females
histones
Male
Meiosis
meiotic drive
Mice
Mice, Inbred C57BL
microtubules
Microtubules - metabolism
mouse
oocyte
Oocytes - metabolism
phosphorylation
Protein-Serine-Threonine Kinases - metabolism
title Molecular Strategies of Meiotic Cheating by Selfish Centromeres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Strategies%20of%20Meiotic%20Cheating%20by%20Selfish%20Centromeres&rft.jtitle=Cell&rft.au=Akera,%20Takashi&rft.date=2019-08-22&rft.volume=178&rft.issue=5&rft.spage=1132&rft.epage=1144.e10&rft.pages=1132-1144.e10&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2019.07.001&rft_dat=%3Cproquest_pubme%3E2272219629%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272219629&rft_id=info:pmid/31402175&rft_els_id=S0092867419307408&rfr_iscdi=true