Identification of Multiple Kinetic Populations of DNA-Binding Proteins in Live Cells

Understanding how multiprotein complexes function in cells requires detailed quantitative understanding of their association and dissociation kinetics. Analysis of the heterogeneity of binding lifetimes enables the interrogation of the various intermediate states formed during the reaction. Single-m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2019-09, Vol.117 (5), p.950-961
Hauptverfasser: Ho, Han N., Zalami, Daniel, Köhler, Jürgen, van Oijen, Antoine M., Ghodke, Harshad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 961
container_issue 5
container_start_page 950
container_title Biophysical journal
container_volume 117
creator Ho, Han N.
Zalami, Daniel
Köhler, Jürgen
van Oijen, Antoine M.
Ghodke, Harshad
description Understanding how multiprotein complexes function in cells requires detailed quantitative understanding of their association and dissociation kinetics. Analysis of the heterogeneity of binding lifetimes enables the interrogation of the various intermediate states formed during the reaction. Single-molecule fluorescence imaging permits the measurement of reaction kinetics inside living organisms with minimal perturbation. However, poor photophysical properties of fluorescent probes limit the dynamic range and accuracy of measurements of off rates in live cells. Time-lapse single-molecule fluorescence imaging can partially overcome the limits of photobleaching; however, limitations of this technique remain uncharacterized. Here, we present a structured analysis of which timescales are most accessible using the time-lapse imaging approach and explore uncertainties in determining kinetic subpopulations. We demonstrate the effect of shot noise on the precision of the measurements as well as the resolution and dynamic range limits that are inherent to the method. Our work provides a convenient implementation to determine theoretical errors from measurements and to support interpretation of experimental data.
doi_str_mv 10.1016/j.bpj.2019.07.015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6731377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349519305831</els_id><sourcerecordid>2268939912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-4184b7536fa092effa702ccbefed4ac7831d13903d7e6afaa010f21a546c319e3</originalsourceid><addsrcrecordid>eNp9UU2P1DAMjRCIHRZ-ABfUI5cWu2mbVkhIy_C1YoA9LOcokzqLR52k27Qj8e_JMMsKLpws-T0_2-8J8RyhQMDm1a7YjruiBOwKUAVg_UCssK7KHKBtHooVADS5rLr6TDyJcQeAZQ34WJxJlK2UdbsS15c9-ZkdWzNz8Flw2ZdlmHkcKPvMnma22VUYl-E3HI_4u68X-Vv2Pfub7GoKM3Hqs882fKBsTcMQn4pHzgyRnt3Vc_H9w_vr9ad88-3j5fpik9uqxjmvsK22qpaNM9CV5JxRUFq7JUd9ZaxqJfYoO5C9osY4YwDBlWjqqrESO5Ln4s1Jd1y2e-pt-mQygx4n3pvppw6G9b-I5x_6Jhx0o5IDSiWBl3cCU7hdKM56z9GmF4ynsERdlk3bya7DMlHxRLVTiHEid78GQR_T0Dud0tDHNDQondJIMy_-vu9-4o_9ifD6RKDk0oFp0tEyeUs9T2Rn3Qf-j_wvYR2b6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268939912</pqid></control><display><type>article</type><title>Identification of Multiple Kinetic Populations of DNA-Binding Proteins in Live Cells</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ho, Han N. ; Zalami, Daniel ; Köhler, Jürgen ; van Oijen, Antoine M. ; Ghodke, Harshad</creator><creatorcontrib>Ho, Han N. ; Zalami, Daniel ; Köhler, Jürgen ; van Oijen, Antoine M. ; Ghodke, Harshad</creatorcontrib><description>Understanding how multiprotein complexes function in cells requires detailed quantitative understanding of their association and dissociation kinetics. Analysis of the heterogeneity of binding lifetimes enables the interrogation of the various intermediate states formed during the reaction. Single-molecule fluorescence imaging permits the measurement of reaction kinetics inside living organisms with minimal perturbation. However, poor photophysical properties of fluorescent probes limit the dynamic range and accuracy of measurements of off rates in live cells. Time-lapse single-molecule fluorescence imaging can partially overcome the limits of photobleaching; however, limitations of this technique remain uncharacterized. Here, we present a structured analysis of which timescales are most accessible using the time-lapse imaging approach and explore uncertainties in determining kinetic subpopulations. We demonstrate the effect of shot noise on the precision of the measurements as well as the resolution and dynamic range limits that are inherent to the method. Our work provides a convenient implementation to determine theoretical errors from measurements and to support interpretation of experimental data.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2019.07.015</identifier><identifier>PMID: 31383358</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><ispartof>Biophysical journal, 2019-09, Vol.117 (5), p.950-961</ispartof><rights>2019 Biophysical Society</rights><rights>Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2019 Biophysical Society. 2019 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-4184b7536fa092effa702ccbefed4ac7831d13903d7e6afaa010f21a546c319e3</citedby><cites>FETCH-LOGICAL-c451t-4184b7536fa092effa702ccbefed4ac7831d13903d7e6afaa010f21a546c319e3</cites><orcidid>0000-0002-4214-4008 ; 0000-0002-6628-876X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731377/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349519305831$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31383358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ho, Han N.</creatorcontrib><creatorcontrib>Zalami, Daniel</creatorcontrib><creatorcontrib>Köhler, Jürgen</creatorcontrib><creatorcontrib>van Oijen, Antoine M.</creatorcontrib><creatorcontrib>Ghodke, Harshad</creatorcontrib><title>Identification of Multiple Kinetic Populations of DNA-Binding Proteins in Live Cells</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Understanding how multiprotein complexes function in cells requires detailed quantitative understanding of their association and dissociation kinetics. Analysis of the heterogeneity of binding lifetimes enables the interrogation of the various intermediate states formed during the reaction. Single-molecule fluorescence imaging permits the measurement of reaction kinetics inside living organisms with minimal perturbation. However, poor photophysical properties of fluorescent probes limit the dynamic range and accuracy of measurements of off rates in live cells. Time-lapse single-molecule fluorescence imaging can partially overcome the limits of photobleaching; however, limitations of this technique remain uncharacterized. Here, we present a structured analysis of which timescales are most accessible using the time-lapse imaging approach and explore uncertainties in determining kinetic subpopulations. We demonstrate the effect of shot noise on the precision of the measurements as well as the resolution and dynamic range limits that are inherent to the method. Our work provides a convenient implementation to determine theoretical errors from measurements and to support interpretation of experimental data.</description><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UU2P1DAMjRCIHRZ-ABfUI5cWu2mbVkhIy_C1YoA9LOcokzqLR52k27Qj8e_JMMsKLpws-T0_2-8J8RyhQMDm1a7YjruiBOwKUAVg_UCssK7KHKBtHooVADS5rLr6TDyJcQeAZQ34WJxJlK2UdbsS15c9-ZkdWzNz8Flw2ZdlmHkcKPvMnma22VUYl-E3HI_4u68X-Vv2Pfub7GoKM3Hqs882fKBsTcMQn4pHzgyRnt3Vc_H9w_vr9ad88-3j5fpik9uqxjmvsK22qpaNM9CV5JxRUFq7JUd9ZaxqJfYoO5C9osY4YwDBlWjqqrESO5Ln4s1Jd1y2e-pt-mQygx4n3pvppw6G9b-I5x_6Jhx0o5IDSiWBl3cCU7hdKM56z9GmF4ynsERdlk3bya7DMlHxRLVTiHEid78GQR_T0Dud0tDHNDQondJIMy_-vu9-4o_9ifD6RKDk0oFp0tEyeUs9T2Rn3Qf-j_wvYR2b6A</recordid><startdate>20190903</startdate><enddate>20190903</enddate><creator>Ho, Han N.</creator><creator>Zalami, Daniel</creator><creator>Köhler, Jürgen</creator><creator>van Oijen, Antoine M.</creator><creator>Ghodke, Harshad</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4214-4008</orcidid><orcidid>https://orcid.org/0000-0002-6628-876X</orcidid></search><sort><creationdate>20190903</creationdate><title>Identification of Multiple Kinetic Populations of DNA-Binding Proteins in Live Cells</title><author>Ho, Han N. ; Zalami, Daniel ; Köhler, Jürgen ; van Oijen, Antoine M. ; Ghodke, Harshad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-4184b7536fa092effa702ccbefed4ac7831d13903d7e6afaa010f21a546c319e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Han N.</creatorcontrib><creatorcontrib>Zalami, Daniel</creatorcontrib><creatorcontrib>Köhler, Jürgen</creatorcontrib><creatorcontrib>van Oijen, Antoine M.</creatorcontrib><creatorcontrib>Ghodke, Harshad</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Han N.</au><au>Zalami, Daniel</au><au>Köhler, Jürgen</au><au>van Oijen, Antoine M.</au><au>Ghodke, Harshad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Multiple Kinetic Populations of DNA-Binding Proteins in Live Cells</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2019-09-03</date><risdate>2019</risdate><volume>117</volume><issue>5</issue><spage>950</spage><epage>961</epage><pages>950-961</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Understanding how multiprotein complexes function in cells requires detailed quantitative understanding of their association and dissociation kinetics. Analysis of the heterogeneity of binding lifetimes enables the interrogation of the various intermediate states formed during the reaction. Single-molecule fluorescence imaging permits the measurement of reaction kinetics inside living organisms with minimal perturbation. However, poor photophysical properties of fluorescent probes limit the dynamic range and accuracy of measurements of off rates in live cells. Time-lapse single-molecule fluorescence imaging can partially overcome the limits of photobleaching; however, limitations of this technique remain uncharacterized. Here, we present a structured analysis of which timescales are most accessible using the time-lapse imaging approach and explore uncertainties in determining kinetic subpopulations. We demonstrate the effect of shot noise on the precision of the measurements as well as the resolution and dynamic range limits that are inherent to the method. Our work provides a convenient implementation to determine theoretical errors from measurements and to support interpretation of experimental data.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31383358</pmid><doi>10.1016/j.bpj.2019.07.015</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4214-4008</orcidid><orcidid>https://orcid.org/0000-0002-6628-876X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2019-09, Vol.117 (5), p.950-961
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6731377
source Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
title Identification of Multiple Kinetic Populations of DNA-Binding Proteins in Live Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Multiple%20Kinetic%20Populations%20of%20DNA-Binding%20Proteins%20in%20Live%20Cells&rft.jtitle=Biophysical%20journal&rft.au=Ho,%20Han%20N.&rft.date=2019-09-03&rft.volume=117&rft.issue=5&rft.spage=950&rft.epage=961&rft.pages=950-961&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2019.07.015&rft_dat=%3Cproquest_pubme%3E2268939912%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268939912&rft_id=info:pmid/31383358&rft_els_id=S0006349519305831&rfr_iscdi=true