Microfluidic electrochemical cell for in situ structural characterization of amorphous thin‐film catalysts using high‐energy X‐ray scattering

Porous, high‐surface‐area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device‐relevant functional electrochemical conditions using high‐energy X‐ray (>50 keV) scattering and pair distribution fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation 2019-09, Vol.26 (5), p.1600-1611
Hauptverfasser: Kwon, Gihan, Cho, Yeong-Ho, Kim, Ki-Bum, Emery, Jonathan D., Kim, In Soo, Zhang, Xiaoyi, Martinson, Alex B. F., Tiede, Davd M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1611
container_issue 5
container_start_page 1600
container_title Journal of synchrotron radiation
container_volume 26
creator Kwon, Gihan
Cho, Yeong-Ho
Kim, Ki-Bum
Emery, Jonathan D.
Kim, In Soo
Zhang, Xiaoyi
Martinson, Alex B. F.
Tiede, Davd M.
description Porous, high‐surface‐area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device‐relevant functional electrochemical conditions using high‐energy X‐ray (>50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass‐capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm–50 nm crystalline indium tin oxide or a 100 nm–150 nm‐thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two‐dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high‐resolution signal collection from interfacial thin‐film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm‐diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure–function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre‐scale surface‐supported molecular catalysts. In addition, a compact 3D‐printed electrochemical cell in a three‐electrode configuration is described which is designed to allow for simultaneous X‐ray transmission and electrolyte flow through the porous working electrode. Porous, high‐surface‐area electrode architectures are described that allow structural characterization of interfacial ultra‐thin catalyst films under device‐relevant functional electrochemical conditions using high‐energy X‐ray (>50 keV) scattering and pair distribution function analysis.
doi_str_mv 10.1107/S1600577519007240
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6730625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2285113119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5043-ffda080b6d40a46b31b5c1717f5234a6cf78c35577e0e313d32ec112636825793</originalsourceid><addsrcrecordid>eNqFksFu1DAQhiMEoqXwAFyQBRcuCx47tjcXJFRRKFrEoSDByfI6duIqsbe2QxVOPAISb8iT4GhLVeDAySPPN79nfk9VPQT8DACL52fAMWZCMGgwFqTGt6rD5Wq13N2-ER9U91I6xxi4IPRudUChbjAwfFj9eOd0DHaYXOs0MoPROQbdm9FpNSBthgHZEJHzKLk8oZTjpPMUl1yvotLZRPdVZRc8ChapMcRdH6aEcu_8z2_frRtGpFVWw5xyQlNyvkO96_qSM97EbkafShjVjFLBFjXf3a_uWDUk8-DqPKo-nrz6cPxmtXn_-vT45WalGa7pytpW4TXe8rbGquZbClumQYCwjNBacW3FWlNW5jfYUKAtJUYDEE75mjDR0KPqxV53N21H02rjcxlM7qIbVZxlUE7-mfGul134IrmgmBNWBB7vBULKTibtstG9Dt4XFyUwwbDABXp69UoMF5NJWY4uLcYqb4pTkpA1b2hNalHQJ3-h52GKvniwUAyAAixtw54qH5dSNPa6Y8By2Qv5z16Umkc3R72u-L0IBWj2wKUbzPx_Rfn27DM53ZRKSn8BeRPI5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285113119</pqid></control><display><type>article</type><title>Microfluidic electrochemical cell for in situ structural characterization of amorphous thin‐film catalysts using high‐energy X‐ray scattering</title><source>Wiley Online Library Journals</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Kwon, Gihan ; Cho, Yeong-Ho ; Kim, Ki-Bum ; Emery, Jonathan D. ; Kim, In Soo ; Zhang, Xiaoyi ; Martinson, Alex B. F. ; Tiede, Davd M.</creator><creatorcontrib>Kwon, Gihan ; Cho, Yeong-Ho ; Kim, Ki-Bum ; Emery, Jonathan D. ; Kim, In Soo ; Zhang, Xiaoyi ; Martinson, Alex B. F. ; Tiede, Davd M. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Porous, high‐surface‐area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device‐relevant functional electrochemical conditions using high‐energy X‐ray (&gt;50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass‐capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm–50 nm crystalline indium tin oxide or a 100 nm–150 nm‐thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two‐dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high‐resolution signal collection from interfacial thin‐film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm‐diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure–function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre‐scale surface‐supported molecular catalysts. In addition, a compact 3D‐printed electrochemical cell in a three‐electrode configuration is described which is designed to allow for simultaneous X‐ray transmission and electrolyte flow through the porous working electrode. Porous, high‐surface‐area electrode architectures are described that allow structural characterization of interfacial ultra‐thin catalyst films under device‐relevant functional electrochemical conditions using high‐energy X‐ray (&gt;50 keV) scattering and pair distribution function analysis.</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S1600577519007240</identifier><identifier>PMID: 31490150</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Amorphous structure ; atomic layer deposition ; Atomic layer epitaxy ; Catalysis ; Catalysts ; Coated electrodes ; Cobalt oxides ; Distribution functions ; Electrochemical cells ; electrochemistry ; electrode architectures ; Electrodes ; Fine structure ; high-energy X-ray scattering ; Indium tin oxides ; MATERIALS SCIENCE ; Microfluidics ; Oxide coatings ; pair distribution functions ; Research Papers ; Scattering ; Spatial resolution ; Structural analysis ; Thickness ; Thin films ; Three dimensional printing ; ultra-thin films ; Zinc oxide</subject><ispartof>Journal of synchrotron radiation, 2019-09, Vol.26 (5), p.1600-1611</ispartof><rights>2019 Kwon et al. published by IUCr Journals.</rights><rights>open access.</rights><rights>Copyright Wiley Subscription Services, Inc. Sep 2019</rights><rights>Kwon et al. 2019 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5043-ffda080b6d40a46b31b5c1717f5234a6cf78c35577e0e313d32ec112636825793</citedby><cites>FETCH-LOGICAL-c5043-ffda080b6d40a46b31b5c1717f5234a6cf78c35577e0e313d32ec112636825793</cites><orcidid>0000-0002-2784-4954 ; 0000-0002-7963-2136 ; 0000-0003-4443-441X ; 0000000227844954 ; 000000034443441X ; 0000000279632136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730625/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730625/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31490150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1575070$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwon, Gihan</creatorcontrib><creatorcontrib>Cho, Yeong-Ho</creatorcontrib><creatorcontrib>Kim, Ki-Bum</creatorcontrib><creatorcontrib>Emery, Jonathan D.</creatorcontrib><creatorcontrib>Kim, In Soo</creatorcontrib><creatorcontrib>Zhang, Xiaoyi</creatorcontrib><creatorcontrib>Martinson, Alex B. F.</creatorcontrib><creatorcontrib>Tiede, Davd M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Microfluidic electrochemical cell for in situ structural characterization of amorphous thin‐film catalysts using high‐energy X‐ray scattering</title><title>Journal of synchrotron radiation</title><addtitle>J Synchrotron Radiat</addtitle><description>Porous, high‐surface‐area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device‐relevant functional electrochemical conditions using high‐energy X‐ray (&gt;50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass‐capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm–50 nm crystalline indium tin oxide or a 100 nm–150 nm‐thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two‐dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high‐resolution signal collection from interfacial thin‐film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm‐diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure–function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre‐scale surface‐supported molecular catalysts. In addition, a compact 3D‐printed electrochemical cell in a three‐electrode configuration is described which is designed to allow for simultaneous X‐ray transmission and electrolyte flow through the porous working electrode. Porous, high‐surface‐area electrode architectures are described that allow structural characterization of interfacial ultra‐thin catalyst films under device‐relevant functional electrochemical conditions using high‐energy X‐ray (&gt;50 keV) scattering and pair distribution function analysis.</description><subject>Amorphous structure</subject><subject>atomic layer deposition</subject><subject>Atomic layer epitaxy</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Coated electrodes</subject><subject>Cobalt oxides</subject><subject>Distribution functions</subject><subject>Electrochemical cells</subject><subject>electrochemistry</subject><subject>electrode architectures</subject><subject>Electrodes</subject><subject>Fine structure</subject><subject>high-energy X-ray scattering</subject><subject>Indium tin oxides</subject><subject>MATERIALS SCIENCE</subject><subject>Microfluidics</subject><subject>Oxide coatings</subject><subject>pair distribution functions</subject><subject>Research Papers</subject><subject>Scattering</subject><subject>Spatial resolution</subject><subject>Structural analysis</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Three dimensional printing</subject><subject>ultra-thin films</subject><subject>Zinc oxide</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFksFu1DAQhiMEoqXwAFyQBRcuCx47tjcXJFRRKFrEoSDByfI6duIqsbe2QxVOPAISb8iT4GhLVeDAySPPN79nfk9VPQT8DACL52fAMWZCMGgwFqTGt6rD5Wq13N2-ER9U91I6xxi4IPRudUChbjAwfFj9eOd0DHaYXOs0MoPROQbdm9FpNSBthgHZEJHzKLk8oZTjpPMUl1yvotLZRPdVZRc8ChapMcRdH6aEcu_8z2_frRtGpFVWw5xyQlNyvkO96_qSM97EbkafShjVjFLBFjXf3a_uWDUk8-DqPKo-nrz6cPxmtXn_-vT45WalGa7pytpW4TXe8rbGquZbClumQYCwjNBacW3FWlNW5jfYUKAtJUYDEE75mjDR0KPqxV53N21H02rjcxlM7qIbVZxlUE7-mfGul134IrmgmBNWBB7vBULKTibtstG9Dt4XFyUwwbDABXp69UoMF5NJWY4uLcYqb4pTkpA1b2hNalHQJ3-h52GKvniwUAyAAixtw54qH5dSNPa6Y8By2Qv5z16Umkc3R72u-L0IBWj2wKUbzPx_Rfn27DM53ZRKSn8BeRPI5g</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Kwon, Gihan</creator><creator>Cho, Yeong-Ho</creator><creator>Kim, Ki-Bum</creator><creator>Emery, Jonathan D.</creator><creator>Kim, In Soo</creator><creator>Zhang, Xiaoyi</creator><creator>Martinson, Alex B. F.</creator><creator>Tiede, Davd M.</creator><general>International Union of Crystallography</general><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2784-4954</orcidid><orcidid>https://orcid.org/0000-0002-7963-2136</orcidid><orcidid>https://orcid.org/0000-0003-4443-441X</orcidid><orcidid>https://orcid.org/0000000227844954</orcidid><orcidid>https://orcid.org/000000034443441X</orcidid><orcidid>https://orcid.org/0000000279632136</orcidid></search><sort><creationdate>201909</creationdate><title>Microfluidic electrochemical cell for in situ structural characterization of amorphous thin‐film catalysts using high‐energy X‐ray scattering</title><author>Kwon, Gihan ; Cho, Yeong-Ho ; Kim, Ki-Bum ; Emery, Jonathan D. ; Kim, In Soo ; Zhang, Xiaoyi ; Martinson, Alex B. F. ; Tiede, Davd M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5043-ffda080b6d40a46b31b5c1717f5234a6cf78c35577e0e313d32ec112636825793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amorphous structure</topic><topic>atomic layer deposition</topic><topic>Atomic layer epitaxy</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Coated electrodes</topic><topic>Cobalt oxides</topic><topic>Distribution functions</topic><topic>Electrochemical cells</topic><topic>electrochemistry</topic><topic>electrode architectures</topic><topic>Electrodes</topic><topic>Fine structure</topic><topic>high-energy X-ray scattering</topic><topic>Indium tin oxides</topic><topic>MATERIALS SCIENCE</topic><topic>Microfluidics</topic><topic>Oxide coatings</topic><topic>pair distribution functions</topic><topic>Research Papers</topic><topic>Scattering</topic><topic>Spatial resolution</topic><topic>Structural analysis</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Three dimensional printing</topic><topic>ultra-thin films</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Gihan</creatorcontrib><creatorcontrib>Cho, Yeong-Ho</creatorcontrib><creatorcontrib>Kim, Ki-Bum</creatorcontrib><creatorcontrib>Emery, Jonathan D.</creatorcontrib><creatorcontrib>Kim, In Soo</creatorcontrib><creatorcontrib>Zhang, Xiaoyi</creatorcontrib><creatorcontrib>Martinson, Alex B. F.</creatorcontrib><creatorcontrib>Tiede, Davd M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Wiley Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Gihan</au><au>Cho, Yeong-Ho</au><au>Kim, Ki-Bum</au><au>Emery, Jonathan D.</au><au>Kim, In Soo</au><au>Zhang, Xiaoyi</au><au>Martinson, Alex B. F.</au><au>Tiede, Davd M.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic electrochemical cell for in situ structural characterization of amorphous thin‐film catalysts using high‐energy X‐ray scattering</atitle><jtitle>Journal of synchrotron radiation</jtitle><addtitle>J Synchrotron Radiat</addtitle><date>2019-09</date><risdate>2019</risdate><volume>26</volume><issue>5</issue><spage>1600</spage><epage>1611</epage><pages>1600-1611</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>Porous, high‐surface‐area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device‐relevant functional electrochemical conditions using high‐energy X‐ray (&gt;50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass‐capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm–50 nm crystalline indium tin oxide or a 100 nm–150 nm‐thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two‐dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high‐resolution signal collection from interfacial thin‐film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm‐diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure–function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre‐scale surface‐supported molecular catalysts. In addition, a compact 3D‐printed electrochemical cell in a three‐electrode configuration is described which is designed to allow for simultaneous X‐ray transmission and electrolyte flow through the porous working electrode. Porous, high‐surface‐area electrode architectures are described that allow structural characterization of interfacial ultra‐thin catalyst films under device‐relevant functional electrochemical conditions using high‐energy X‐ray (&gt;50 keV) scattering and pair distribution function analysis.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>31490150</pmid><doi>10.1107/S1600577519007240</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2784-4954</orcidid><orcidid>https://orcid.org/0000-0002-7963-2136</orcidid><orcidid>https://orcid.org/0000-0003-4443-441X</orcidid><orcidid>https://orcid.org/0000000227844954</orcidid><orcidid>https://orcid.org/000000034443441X</orcidid><orcidid>https://orcid.org/0000000279632136</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1600-5775
ispartof Journal of synchrotron radiation, 2019-09, Vol.26 (5), p.1600-1611
issn 1600-5775
0909-0495
1600-5775
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6730625
source Wiley Online Library Journals; Full-Text Journals in Chemistry (Open access); Wiley Open Access; PubMed Central
subjects Amorphous structure
atomic layer deposition
Atomic layer epitaxy
Catalysis
Catalysts
Coated electrodes
Cobalt oxides
Distribution functions
Electrochemical cells
electrochemistry
electrode architectures
Electrodes
Fine structure
high-energy X-ray scattering
Indium tin oxides
MATERIALS SCIENCE
Microfluidics
Oxide coatings
pair distribution functions
Research Papers
Scattering
Spatial resolution
Structural analysis
Thickness
Thin films
Three dimensional printing
ultra-thin films
Zinc oxide
title Microfluidic electrochemical cell for in situ structural characterization of amorphous thin‐film catalysts using high‐energy X‐ray scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T16%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20electrochemical%20cell%20for%20in%20situ%20structural%20characterization%20of%20amorphous%20thin%E2%80%90film%20catalysts%20using%20high%E2%80%90energy%20X%E2%80%90ray%20scattering&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Kwon,%20Gihan&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-09&rft.volume=26&rft.issue=5&rft.spage=1600&rft.epage=1611&rft.pages=1600-1611&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S1600577519007240&rft_dat=%3Cproquest_pubme%3E2285113119%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285113119&rft_id=info:pmid/31490150&rfr_iscdi=true