Cell Type-Specific Synaptic Dynamics of Synchronized Bursting in the Juvenile CA3 Rat Hippocampus

Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2004-10, Vol.24 (43), p.9681-9692
Hauptverfasser: Aradi, Ildiko, Maccaferri, Gianmaria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9692
container_issue 43
container_start_page 9681
container_title The Journal of neuroscience
container_volume 24
creator Aradi, Ildiko
Maccaferri, Gianmaria
description Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA(A) receptors. Here, we show that the first manifestation of a burst event is a cell type-specific flurry of GABA(A) receptor-mediated inhibitory input to pyramidal cells, but not to stratum oriens horizontal interneurons. Moreover, GABA(A) receptor-mediated synaptic input is proportionally smaller in these interneurons compared with pyramidal cells. Computational models and dynamic-clamp studies using experimentally derived conductance waveforms indicate that both these factors modulate spike timing during synchronized activity. In particular, the different kinetics and the larger strength of GABAergic input to pyramidal cells defer action potential initiation and contribute to the observed delay of firing, so that the interneuronal activity leads the burst cycle. In contrast, excitatory inputs to both neuronal populations during a burst are kinetically similar, as required to maintain synchronicity. We also show that the natural pattern of activation of inhibitory and excitatory conductances during a synchronized burst cycle is different within the same neuronal population. In particular, GABA(A) receptor-mediated currents activate earlier and outlast the excitatory components driving the bursts. Thus, cell type-specific balance and timing of GABA(A) receptor-mediated input are critical to set the appropriate spike timing in pyramidal cells and interneurons and coordinate additional neurotransmitter release modulating burst strength and network frequency.
doi_str_mv 10.1523/JNEUROSCI.2800-04.2004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6730161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67017621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-eaeb680fa4ccf796e00657a82bbe196a4284f2e0d5716978411fe98f33d6a2f23</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhi0EotvCX6h8glOWsePYyQWppIW2qqjUbc-W1zveGOWLOOlq-fV1tKsCJ488z7y25iHknMGSZTz9cvvz6unhflXeLHkOkIBYcgDxhixit0i4APaWLIArSKRQ4oSchvALABQw9Z6csCyDQmVyQUyJdU0f9z0mqx6td97S1b41_RiLy1g03gbaufnSVkPX-j-4od-mIYy-3VLf0rFCejs9Y-trpOVFSh_MSK9933fWNP0UPpB3ztQBPx7PM_L0_eqxvE7u7n_clBd3iRWCjwkaXMscnBHWOlVIBJCZMjlfr5EV0gieC8cRNplislC5YMxhkbs03UjDHU_PyNdDbj-tG9xYbMfB1LoffGOGve6M1_93Wl_pbfespUqBSRYDPh0Dhu73hGHUjQ82rse02E0hcnF5ks-gPIB26EIY0L0-wkDPdvSrHT3b0SD0bCcOnv_7xb9jRx0R-HwAKr-tdn5AHRpT1xFnerfbcaFFqguZs_QFdwCbMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67017621</pqid></control><display><type>article</type><title>Cell Type-Specific Synaptic Dynamics of Synchronized Bursting in the Juvenile CA3 Rat Hippocampus</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Aradi, Ildiko ; Maccaferri, Gianmaria</creator><creatorcontrib>Aradi, Ildiko ; Maccaferri, Gianmaria</creatorcontrib><description>Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA(A) receptors. Here, we show that the first manifestation of a burst event is a cell type-specific flurry of GABA(A) receptor-mediated inhibitory input to pyramidal cells, but not to stratum oriens horizontal interneurons. Moreover, GABA(A) receptor-mediated synaptic input is proportionally smaller in these interneurons compared with pyramidal cells. Computational models and dynamic-clamp studies using experimentally derived conductance waveforms indicate that both these factors modulate spike timing during synchronized activity. In particular, the different kinetics and the larger strength of GABAergic input to pyramidal cells defer action potential initiation and contribute to the observed delay of firing, so that the interneuronal activity leads the burst cycle. In contrast, excitatory inputs to both neuronal populations during a burst are kinetically similar, as required to maintain synchronicity. We also show that the natural pattern of activation of inhibitory and excitatory conductances during a synchronized burst cycle is different within the same neuronal population. In particular, GABA(A) receptor-mediated currents activate earlier and outlast the excitatory components driving the bursts. Thus, cell type-specific balance and timing of GABA(A) receptor-mediated input are critical to set the appropriate spike timing in pyramidal cells and interneurons and coordinate additional neurotransmitter release modulating burst strength and network frequency.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2800-04.2004</identifier><identifier>PMID: 15509756</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Action Potentials - physiology ; Animals ; Behavioral/Systems/Cognitive ; Chlorides - pharmacology ; GABA-A Receptor Antagonists ; gamma-Aminobutyric Acid - physiology ; Hippocampus - cytology ; Hippocampus - physiology ; In Vitro Techniques ; Interneurons - physiology ; Models, Neurological ; Nerve Net - physiology ; Neural Inhibition - physiology ; Pyramidal Cells - physiology ; Pyridazines - pharmacology ; Rats ; Rats, Sprague-Dawley ; Reaction Time ; Receptors, GABA-A - physiology ; Synapses - physiology ; Synaptic Transmission - physiology ; Time Factors</subject><ispartof>The Journal of neuroscience, 2004-10, Vol.24 (43), p.9681-9692</ispartof><rights>Copyright © 2004 Society for Neuroscience 0270-6474/04/249681-12.00/0 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-eaeb680fa4ccf796e00657a82bbe196a4284f2e0d5716978411fe98f33d6a2f23</citedby><cites>FETCH-LOGICAL-c442t-eaeb680fa4ccf796e00657a82bbe196a4284f2e0d5716978411fe98f33d6a2f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730161/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730161/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15509756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aradi, Ildiko</creatorcontrib><creatorcontrib>Maccaferri, Gianmaria</creatorcontrib><title>Cell Type-Specific Synaptic Dynamics of Synchronized Bursting in the Juvenile CA3 Rat Hippocampus</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA(A) receptors. Here, we show that the first manifestation of a burst event is a cell type-specific flurry of GABA(A) receptor-mediated inhibitory input to pyramidal cells, but not to stratum oriens horizontal interneurons. Moreover, GABA(A) receptor-mediated synaptic input is proportionally smaller in these interneurons compared with pyramidal cells. Computational models and dynamic-clamp studies using experimentally derived conductance waveforms indicate that both these factors modulate spike timing during synchronized activity. In particular, the different kinetics and the larger strength of GABAergic input to pyramidal cells defer action potential initiation and contribute to the observed delay of firing, so that the interneuronal activity leads the burst cycle. In contrast, excitatory inputs to both neuronal populations during a burst are kinetically similar, as required to maintain synchronicity. We also show that the natural pattern of activation of inhibitory and excitatory conductances during a synchronized burst cycle is different within the same neuronal population. In particular, GABA(A) receptor-mediated currents activate earlier and outlast the excitatory components driving the bursts. Thus, cell type-specific balance and timing of GABA(A) receptor-mediated input are critical to set the appropriate spike timing in pyramidal cells and interneurons and coordinate additional neurotransmitter release modulating burst strength and network frequency.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Behavioral/Systems/Cognitive</subject><subject>Chlorides - pharmacology</subject><subject>GABA-A Receptor Antagonists</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>In Vitro Techniques</subject><subject>Interneurons - physiology</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Pyramidal Cells - physiology</subject><subject>Pyridazines - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reaction Time</subject><subject>Receptors, GABA-A - physiology</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission - physiology</subject><subject>Time Factors</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1v1DAQhi0EotvCX6h8glOWsePYyQWppIW2qqjUbc-W1zveGOWLOOlq-fV1tKsCJ488z7y25iHknMGSZTz9cvvz6unhflXeLHkOkIBYcgDxhixit0i4APaWLIArSKRQ4oSchvALABQw9Z6csCyDQmVyQUyJdU0f9z0mqx6td97S1b41_RiLy1g03gbaufnSVkPX-j-4od-mIYy-3VLf0rFCejs9Y-trpOVFSh_MSK9933fWNP0UPpB3ztQBPx7PM_L0_eqxvE7u7n_clBd3iRWCjwkaXMscnBHWOlVIBJCZMjlfr5EV0gieC8cRNplislC5YMxhkbs03UjDHU_PyNdDbj-tG9xYbMfB1LoffGOGve6M1_93Wl_pbfespUqBSRYDPh0Dhu73hGHUjQ82rse02E0hcnF5ks-gPIB26EIY0L0-wkDPdvSrHT3b0SD0bCcOnv_7xb9jRx0R-HwAKr-tdn5AHRpT1xFnerfbcaFFqguZs_QFdwCbMw</recordid><startdate>20041027</startdate><enddate>20041027</enddate><creator>Aradi, Ildiko</creator><creator>Maccaferri, Gianmaria</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20041027</creationdate><title>Cell Type-Specific Synaptic Dynamics of Synchronized Bursting in the Juvenile CA3 Rat Hippocampus</title><author>Aradi, Ildiko ; Maccaferri, Gianmaria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-eaeb680fa4ccf796e00657a82bbe196a4284f2e0d5716978411fe98f33d6a2f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Behavioral/Systems/Cognitive</topic><topic>Chlorides - pharmacology</topic><topic>GABA-A Receptor Antagonists</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>In Vitro Techniques</topic><topic>Interneurons - physiology</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Pyramidal Cells - physiology</topic><topic>Pyridazines - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reaction Time</topic><topic>Receptors, GABA-A - physiology</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission - physiology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aradi, Ildiko</creatorcontrib><creatorcontrib>Maccaferri, Gianmaria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aradi, Ildiko</au><au>Maccaferri, Gianmaria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell Type-Specific Synaptic Dynamics of Synchronized Bursting in the Juvenile CA3 Rat Hippocampus</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2004-10-27</date><risdate>2004</risdate><volume>24</volume><issue>43</issue><spage>9681</spage><epage>9692</epage><pages>9681-9692</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA(A) receptors. Here, we show that the first manifestation of a burst event is a cell type-specific flurry of GABA(A) receptor-mediated inhibitory input to pyramidal cells, but not to stratum oriens horizontal interneurons. Moreover, GABA(A) receptor-mediated synaptic input is proportionally smaller in these interneurons compared with pyramidal cells. Computational models and dynamic-clamp studies using experimentally derived conductance waveforms indicate that both these factors modulate spike timing during synchronized activity. In particular, the different kinetics and the larger strength of GABAergic input to pyramidal cells defer action potential initiation and contribute to the observed delay of firing, so that the interneuronal activity leads the burst cycle. In contrast, excitatory inputs to both neuronal populations during a burst are kinetically similar, as required to maintain synchronicity. We also show that the natural pattern of activation of inhibitory and excitatory conductances during a synchronized burst cycle is different within the same neuronal population. In particular, GABA(A) receptor-mediated currents activate earlier and outlast the excitatory components driving the bursts. Thus, cell type-specific balance and timing of GABA(A) receptor-mediated input are critical to set the appropriate spike timing in pyramidal cells and interneurons and coordinate additional neurotransmitter release modulating burst strength and network frequency.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>15509756</pmid><doi>10.1523/JNEUROSCI.2800-04.2004</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2004-10, Vol.24 (43), p.9681-9692
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6730161
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Action Potentials - physiology
Animals
Behavioral/Systems/Cognitive
Chlorides - pharmacology
GABA-A Receptor Antagonists
gamma-Aminobutyric Acid - physiology
Hippocampus - cytology
Hippocampus - physiology
In Vitro Techniques
Interneurons - physiology
Models, Neurological
Nerve Net - physiology
Neural Inhibition - physiology
Pyramidal Cells - physiology
Pyridazines - pharmacology
Rats
Rats, Sprague-Dawley
Reaction Time
Receptors, GABA-A - physiology
Synapses - physiology
Synaptic Transmission - physiology
Time Factors
title Cell Type-Specific Synaptic Dynamics of Synchronized Bursting in the Juvenile CA3 Rat Hippocampus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20Type-Specific%20Synaptic%20Dynamics%20of%20Synchronized%20Bursting%20in%20the%20Juvenile%20CA3%20Rat%20Hippocampus&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Aradi,%20Ildiko&rft.date=2004-10-27&rft.volume=24&rft.issue=43&rft.spage=9681&rft.epage=9692&rft.pages=9681-9692&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2800-04.2004&rft_dat=%3Cproquest_pubme%3E67017621%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67017621&rft_id=info:pmid/15509756&rfr_iscdi=true