Cell Type-Specific Synaptic Dynamics of Synchronized Bursting in the Juvenile CA3 Rat Hippocampus
Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2004-10, Vol.24 (43), p.9681-9692 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9692 |
---|---|
container_issue | 43 |
container_start_page | 9681 |
container_title | The Journal of neuroscience |
container_volume | 24 |
creator | Aradi, Ildiko Maccaferri, Gianmaria |
description | Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA(A) receptors. Here, we show that the first manifestation of a burst event is a cell type-specific flurry of GABA(A) receptor-mediated inhibitory input to pyramidal cells, but not to stratum oriens horizontal interneurons. Moreover, GABA(A) receptor-mediated synaptic input is proportionally smaller in these interneurons compared with pyramidal cells. Computational models and dynamic-clamp studies using experimentally derived conductance waveforms indicate that both these factors modulate spike timing during synchronized activity. In particular, the different kinetics and the larger strength of GABAergic input to pyramidal cells defer action potential initiation and contribute to the observed delay of firing, so that the interneuronal activity leads the burst cycle. In contrast, excitatory inputs to both neuronal populations during a burst are kinetically similar, as required to maintain synchronicity. We also show that the natural pattern of activation of inhibitory and excitatory conductances during a synchronized burst cycle is different within the same neuronal population. In particular, GABA(A) receptor-mediated currents activate earlier and outlast the excitatory components driving the bursts. Thus, cell type-specific balance and timing of GABA(A) receptor-mediated input are critical to set the appropriate spike timing in pyramidal cells and interneurons and coordinate additional neurotransmitter release modulating burst strength and network frequency. |
doi_str_mv | 10.1523/JNEUROSCI.2800-04.2004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6730161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67017621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-eaeb680fa4ccf796e00657a82bbe196a4284f2e0d5716978411fe98f33d6a2f23</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhi0EotvCX6h8glOWsePYyQWppIW2qqjUbc-W1zveGOWLOOlq-fV1tKsCJ488z7y25iHknMGSZTz9cvvz6unhflXeLHkOkIBYcgDxhixit0i4APaWLIArSKRQ4oSchvALABQw9Z6csCyDQmVyQUyJdU0f9z0mqx6td97S1b41_RiLy1g03gbaufnSVkPX-j-4od-mIYy-3VLf0rFCejs9Y-trpOVFSh_MSK9933fWNP0UPpB3ztQBPx7PM_L0_eqxvE7u7n_clBd3iRWCjwkaXMscnBHWOlVIBJCZMjlfr5EV0gieC8cRNplislC5YMxhkbs03UjDHU_PyNdDbj-tG9xYbMfB1LoffGOGve6M1_93Wl_pbfespUqBSRYDPh0Dhu73hGHUjQ82rse02E0hcnF5ks-gPIB26EIY0L0-wkDPdvSrHT3b0SD0bCcOnv_7xb9jRx0R-HwAKr-tdn5AHRpT1xFnerfbcaFFqguZs_QFdwCbMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67017621</pqid></control><display><type>article</type><title>Cell Type-Specific Synaptic Dynamics of Synchronized Bursting in the Juvenile CA3 Rat Hippocampus</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Aradi, Ildiko ; Maccaferri, Gianmaria</creator><creatorcontrib>Aradi, Ildiko ; Maccaferri, Gianmaria</creatorcontrib><description>Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA(A) receptors. Here, we show that the first manifestation of a burst event is a cell type-specific flurry of GABA(A) receptor-mediated inhibitory input to pyramidal cells, but not to stratum oriens horizontal interneurons. Moreover, GABA(A) receptor-mediated synaptic input is proportionally smaller in these interneurons compared with pyramidal cells. Computational models and dynamic-clamp studies using experimentally derived conductance waveforms indicate that both these factors modulate spike timing during synchronized activity. In particular, the different kinetics and the larger strength of GABAergic input to pyramidal cells defer action potential initiation and contribute to the observed delay of firing, so that the interneuronal activity leads the burst cycle. In contrast, excitatory inputs to both neuronal populations during a burst are kinetically similar, as required to maintain synchronicity. We also show that the natural pattern of activation of inhibitory and excitatory conductances during a synchronized burst cycle is different within the same neuronal population. In particular, GABA(A) receptor-mediated currents activate earlier and outlast the excitatory components driving the bursts. Thus, cell type-specific balance and timing of GABA(A) receptor-mediated input are critical to set the appropriate spike timing in pyramidal cells and interneurons and coordinate additional neurotransmitter release modulating burst strength and network frequency.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2800-04.2004</identifier><identifier>PMID: 15509756</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Action Potentials - physiology ; Animals ; Behavioral/Systems/Cognitive ; Chlorides - pharmacology ; GABA-A Receptor Antagonists ; gamma-Aminobutyric Acid - physiology ; Hippocampus - cytology ; Hippocampus - physiology ; In Vitro Techniques ; Interneurons - physiology ; Models, Neurological ; Nerve Net - physiology ; Neural Inhibition - physiology ; Pyramidal Cells - physiology ; Pyridazines - pharmacology ; Rats ; Rats, Sprague-Dawley ; Reaction Time ; Receptors, GABA-A - physiology ; Synapses - physiology ; Synaptic Transmission - physiology ; Time Factors</subject><ispartof>The Journal of neuroscience, 2004-10, Vol.24 (43), p.9681-9692</ispartof><rights>Copyright © 2004 Society for Neuroscience 0270-6474/04/249681-12.00/0 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-eaeb680fa4ccf796e00657a82bbe196a4284f2e0d5716978411fe98f33d6a2f23</citedby><cites>FETCH-LOGICAL-c442t-eaeb680fa4ccf796e00657a82bbe196a4284f2e0d5716978411fe98f33d6a2f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730161/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730161/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15509756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aradi, Ildiko</creatorcontrib><creatorcontrib>Maccaferri, Gianmaria</creatorcontrib><title>Cell Type-Specific Synaptic Dynamics of Synchronized Bursting in the Juvenile CA3 Rat Hippocampus</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA(A) receptors. Here, we show that the first manifestation of a burst event is a cell type-specific flurry of GABA(A) receptor-mediated inhibitory input to pyramidal cells, but not to stratum oriens horizontal interneurons. Moreover, GABA(A) receptor-mediated synaptic input is proportionally smaller in these interneurons compared with pyramidal cells. Computational models and dynamic-clamp studies using experimentally derived conductance waveforms indicate that both these factors modulate spike timing during synchronized activity. In particular, the different kinetics and the larger strength of GABAergic input to pyramidal cells defer action potential initiation and contribute to the observed delay of firing, so that the interneuronal activity leads the burst cycle. In contrast, excitatory inputs to both neuronal populations during a burst are kinetically similar, as required to maintain synchronicity. We also show that the natural pattern of activation of inhibitory and excitatory conductances during a synchronized burst cycle is different within the same neuronal population. In particular, GABA(A) receptor-mediated currents activate earlier and outlast the excitatory components driving the bursts. Thus, cell type-specific balance and timing of GABA(A) receptor-mediated input are critical to set the appropriate spike timing in pyramidal cells and interneurons and coordinate additional neurotransmitter release modulating burst strength and network frequency.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Behavioral/Systems/Cognitive</subject><subject>Chlorides - pharmacology</subject><subject>GABA-A Receptor Antagonists</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>In Vitro Techniques</subject><subject>Interneurons - physiology</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Pyramidal Cells - physiology</subject><subject>Pyridazines - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reaction Time</subject><subject>Receptors, GABA-A - physiology</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission - physiology</subject><subject>Time Factors</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1v1DAQhi0EotvCX6h8glOWsePYyQWppIW2qqjUbc-W1zveGOWLOOlq-fV1tKsCJ488z7y25iHknMGSZTz9cvvz6unhflXeLHkOkIBYcgDxhixit0i4APaWLIArSKRQ4oSchvALABQw9Z6csCyDQmVyQUyJdU0f9z0mqx6td97S1b41_RiLy1g03gbaufnSVkPX-j-4od-mIYy-3VLf0rFCejs9Y-trpOVFSh_MSK9933fWNP0UPpB3ztQBPx7PM_L0_eqxvE7u7n_clBd3iRWCjwkaXMscnBHWOlVIBJCZMjlfr5EV0gieC8cRNplislC5YMxhkbs03UjDHU_PyNdDbj-tG9xYbMfB1LoffGOGve6M1_93Wl_pbfespUqBSRYDPh0Dhu73hGHUjQ82rse02E0hcnF5ks-gPIB26EIY0L0-wkDPdvSrHT3b0SD0bCcOnv_7xb9jRx0R-HwAKr-tdn5AHRpT1xFnerfbcaFFqguZs_QFdwCbMw</recordid><startdate>20041027</startdate><enddate>20041027</enddate><creator>Aradi, Ildiko</creator><creator>Maccaferri, Gianmaria</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20041027</creationdate><title>Cell Type-Specific Synaptic Dynamics of Synchronized Bursting in the Juvenile CA3 Rat Hippocampus</title><author>Aradi, Ildiko ; Maccaferri, Gianmaria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-eaeb680fa4ccf796e00657a82bbe196a4284f2e0d5716978411fe98f33d6a2f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Behavioral/Systems/Cognitive</topic><topic>Chlorides - pharmacology</topic><topic>GABA-A Receptor Antagonists</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>In Vitro Techniques</topic><topic>Interneurons - physiology</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Pyramidal Cells - physiology</topic><topic>Pyridazines - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reaction Time</topic><topic>Receptors, GABA-A - physiology</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission - physiology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aradi, Ildiko</creatorcontrib><creatorcontrib>Maccaferri, Gianmaria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aradi, Ildiko</au><au>Maccaferri, Gianmaria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell Type-Specific Synaptic Dynamics of Synchronized Bursting in the Juvenile CA3 Rat Hippocampus</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2004-10-27</date><risdate>2004</risdate><volume>24</volume><issue>43</issue><spage>9681</spage><epage>9692</epage><pages>9681-9692</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA(A) receptors. Here, we show that the first manifestation of a burst event is a cell type-specific flurry of GABA(A) receptor-mediated inhibitory input to pyramidal cells, but not to stratum oriens horizontal interneurons. Moreover, GABA(A) receptor-mediated synaptic input is proportionally smaller in these interneurons compared with pyramidal cells. Computational models and dynamic-clamp studies using experimentally derived conductance waveforms indicate that both these factors modulate spike timing during synchronized activity. In particular, the different kinetics and the larger strength of GABAergic input to pyramidal cells defer action potential initiation and contribute to the observed delay of firing, so that the interneuronal activity leads the burst cycle. In contrast, excitatory inputs to both neuronal populations during a burst are kinetically similar, as required to maintain synchronicity. We also show that the natural pattern of activation of inhibitory and excitatory conductances during a synchronized burst cycle is different within the same neuronal population. In particular, GABA(A) receptor-mediated currents activate earlier and outlast the excitatory components driving the bursts. Thus, cell type-specific balance and timing of GABA(A) receptor-mediated input are critical to set the appropriate spike timing in pyramidal cells and interneurons and coordinate additional neurotransmitter release modulating burst strength and network frequency.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>15509756</pmid><doi>10.1523/JNEUROSCI.2800-04.2004</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2004-10, Vol.24 (43), p.9681-9692 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6730161 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Action Potentials - physiology Animals Behavioral/Systems/Cognitive Chlorides - pharmacology GABA-A Receptor Antagonists gamma-Aminobutyric Acid - physiology Hippocampus - cytology Hippocampus - physiology In Vitro Techniques Interneurons - physiology Models, Neurological Nerve Net - physiology Neural Inhibition - physiology Pyramidal Cells - physiology Pyridazines - pharmacology Rats Rats, Sprague-Dawley Reaction Time Receptors, GABA-A - physiology Synapses - physiology Synaptic Transmission - physiology Time Factors |
title | Cell Type-Specific Synaptic Dynamics of Synchronized Bursting in the Juvenile CA3 Rat Hippocampus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20Type-Specific%20Synaptic%20Dynamics%20of%20Synchronized%20Bursting%20in%20the%20Juvenile%20CA3%20Rat%20Hippocampus&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Aradi,%20Ildiko&rft.date=2004-10-27&rft.volume=24&rft.issue=43&rft.spage=9681&rft.epage=9692&rft.pages=9681-9692&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2800-04.2004&rft_dat=%3Cproquest_pubme%3E67017621%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67017621&rft_id=info:pmid/15509756&rfr_iscdi=true |