Mechanical feedback enables catch bonds to selectively stabilize scanning microvilli at T-cell surfaces

T-cells use microvilli to search the surfaces of antigen-presenting cells for antigenic ligands. The active motion of scanning microvilli provides a force-generating mechanism that is intriguing in light of single-molecule experiments showing that applied forces increase the lifetimes of stimulatory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 2019-07, Vol.30 (16), p.2087-2095
Hauptverfasser: Pullen, 3rd, Robert H, Abel, Steven M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:T-cells use microvilli to search the surfaces of antigen-presenting cells for antigenic ligands. The active motion of scanning microvilli provides a force-generating mechanism that is intriguing in light of single-molecule experiments showing that applied forces increase the lifetimes of stimulatory receptor-ligand bonds (catch-bond behavior). In this work, we introduce a theoretical framework to explore the motion of a microvillar tip above an antigen-presenting surface when receptors on the tip stochastically bind to ligands on the surface and dissociate from them in a force-dependent manner. Forces on receptor-ligand bonds impact the motion of the microvillus, leading to feedback between binding and microvillar motion. We use computer simulations to show that the average microvillar velocity varies in a ligand-dependent manner; that catch bonds generate responses in which some microvilli almost completely stop, while others move with a broad distribution of velocities; and that the frequency of stopping depends on the concentration of stimulatory ligands. Typically, a small number of catch bonds initially immobilize the microvillus, after which additional bonds accumulate and increase the cumulative receptor-engagement time. Our results demonstrate that catch bonds can selectively slow and stabilize scanning microvilli, suggesting a physical mechanism that may contribute to antigen discrimination by T-cells.
ISSN:1059-1524
1939-4586
DOI:10.1091/mbc.E19-01-0048