Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals

Autoxidation of dopamine to polydopamine by dissolved oxygen is a slow process that requires highly alkaline conditions. Polydopamine can be formed rapidly also in mildly acidic and neutral solutions by using redox-active transition-metal ions. We present a comparative study of polydopamine nanopart...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2019-03, Vol.123 (11), p.2513-2524
Hauptverfasser: Salomäki, Mikko, Ouvinen, Tuomo, Marttila, Lauri, Kivelä, Henri, Leiro, Jarkko, Mäkilä, Ermei, Lukkari, Jukka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2524
container_issue 11
container_start_page 2513
container_title The journal of physical chemistry. B
container_volume 123
creator Salomäki, Mikko
Ouvinen, Tuomo
Marttila, Lauri
Kivelä, Henri
Leiro, Jarkko
Mäkilä, Ermei
Lukkari, Jukka
description Autoxidation of dopamine to polydopamine by dissolved oxygen is a slow process that requires highly alkaline conditions. Polydopamine can be formed rapidly also in mildly acidic and neutral solutions by using redox-active transition-metal ions. We present a comparative study of polydopamine nanoparticles formed by autoxidation and aerobic or anaerobic oxidation in the presence of Ce­(IV), Fe­(III), Cu­(II), and Mn­(VII). The UV–vis spectra of the purified nanoparticles are similar, and dopaminechrome is an early intermediate species. At low pH, Cu­(II) requires the presence of oxygen and chloride ions to produce polydopamine at a reasonable rate. The changes in dispersibility and surface charge take place at around pH 4, which indicates the presence of ionizable groups, especially carboxylic acids, on their surface. X-ray photoelectron spectroscopy shows the presence of three different classes of carbons, and the carbonyl/carboxylate carbons amount to 5–15 atom %. The N 1s spectra show the presence of protonated free amino groups, suggesting that these groups may interact with the π-electrons of the intact aromatic dihydroxyindole moieties, especially in the metal-induced samples. The autoxidized and Mn­(VII)-induced samples do not contain metals, but the metal content is 1–2 atom % in samples prepared with Ce­(IV) or Cu­(II), and ca. 20 atom % in polydopamine prepared in the presence of Fe­(III). These differences in the metal content can be explained by the oxidation and complexation properties of the metals using the general model developed. In addition, the nitrogen content is lower in the metal-induced samples. All of the metal oxidants studied can be used to rapidly prepare polydopamine at room temperature, but the possible influence of the metal content and nitrogen loss should be taken into account.
doi_str_mv 10.1021/acs.jpcb.8b11994
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6727379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187023789</sourcerecordid><originalsourceid>FETCH-LOGICAL-a573t-fd13e1ad52e10afcf0a6d1796ef0491bb2a107ef60e5a0268031fb631d73cc03</originalsourceid><addsrcrecordid>eNqFkUFP3DAQha0KVCjl3hPKsYdmmbGJnVwqIVQK0gKrajlbjjOhRll7a2cR_Pt6uwuCQ8XBmrH83ifPPMa-IEwQOB4bmyb3S9tO6haxaU4-sH2sOJT5qJ1tLxHkHvuU0j0Ar3gtP7I9ATUKJXCfXczC8NSFpVk4T8W18bmNo7MDpWIWKV-oK26T83fFL-rCY3lqR_dAxTwan9zogi-uaDRD-sx2-1zocFsP2Pz8x_zsopze_Lw8O52WplJiLPsOBaHpKk4Iprc9GNmhaiT1cNJg23KDoKiXQJUBLmsQ2LdSYKeEtSAO2PcNdrlqF9RZ8mM0g15GtzDxSQfj9NsX737ru_CgpeJKqCYDvm4BMfxZURr1wiVLw2A8hVXSnHMEqKWC96VYK-BC1WsqbKQ2hpQi9S8_QtDrqHSOSq-j0tuosuXo9SQvhudssuDbRvDPGlbR573-n_cXCduhMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187023789</pqid></control><display><type>article</type><title>Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals</title><source>ACS Publications</source><creator>Salomäki, Mikko ; Ouvinen, Tuomo ; Marttila, Lauri ; Kivelä, Henri ; Leiro, Jarkko ; Mäkilä, Ermei ; Lukkari, Jukka</creator><creatorcontrib>Salomäki, Mikko ; Ouvinen, Tuomo ; Marttila, Lauri ; Kivelä, Henri ; Leiro, Jarkko ; Mäkilä, Ermei ; Lukkari, Jukka</creatorcontrib><description>Autoxidation of dopamine to polydopamine by dissolved oxygen is a slow process that requires highly alkaline conditions. Polydopamine can be formed rapidly also in mildly acidic and neutral solutions by using redox-active transition-metal ions. We present a comparative study of polydopamine nanoparticles formed by autoxidation and aerobic or anaerobic oxidation in the presence of Ce­(IV), Fe­(III), Cu­(II), and Mn­(VII). The UV–vis spectra of the purified nanoparticles are similar, and dopaminechrome is an early intermediate species. At low pH, Cu­(II) requires the presence of oxygen and chloride ions to produce polydopamine at a reasonable rate. The changes in dispersibility and surface charge take place at around pH 4, which indicates the presence of ionizable groups, especially carboxylic acids, on their surface. X-ray photoelectron spectroscopy shows the presence of three different classes of carbons, and the carbonyl/carboxylate carbons amount to 5–15 atom %. The N 1s spectra show the presence of protonated free amino groups, suggesting that these groups may interact with the π-electrons of the intact aromatic dihydroxyindole moieties, especially in the metal-induced samples. The autoxidized and Mn­(VII)-induced samples do not contain metals, but the metal content is 1–2 atom % in samples prepared with Ce­(IV) or Cu­(II), and ca. 20 atom % in polydopamine prepared in the presence of Fe­(III). These differences in the metal content can be explained by the oxidation and complexation properties of the metals using the general model developed. In addition, the nitrogen content is lower in the metal-induced samples. All of the metal oxidants studied can be used to rapidly prepare polydopamine at room temperature, but the possible influence of the metal content and nitrogen loss should be taken into account.</description><identifier>ISSN: 1520-6106</identifier><identifier>ISSN: 1520-5207</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.8b11994</identifier><identifier>PMID: 30813731</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ambient temperature ; autoxidation ; carboxylic acids ; copper ; dispersibility ; dissolved oxygen ; dopamine ; ions ; iron ; manganese ; moieties ; nanoparticles ; nitrogen ; nitrogen content ; oxidants ; oxygen ; X-ray photoelectron spectroscopy</subject><ispartof>The journal of physical chemistry. B, 2019-03, Vol.123 (11), p.2513-2524</ispartof><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a573t-fd13e1ad52e10afcf0a6d1796ef0491bb2a107ef60e5a0268031fb631d73cc03</citedby><cites>FETCH-LOGICAL-a573t-fd13e1ad52e10afcf0a6d1796ef0491bb2a107ef60e5a0268031fb631d73cc03</cites><orcidid>0000-0003-1414-8893 ; 0000-0001-6190-2073 ; 0000-0002-8221-0954 ; 0000-0002-9409-7995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.8b11994$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.8b11994$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30813731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salomäki, Mikko</creatorcontrib><creatorcontrib>Ouvinen, Tuomo</creatorcontrib><creatorcontrib>Marttila, Lauri</creatorcontrib><creatorcontrib>Kivelä, Henri</creatorcontrib><creatorcontrib>Leiro, Jarkko</creatorcontrib><creatorcontrib>Mäkilä, Ermei</creatorcontrib><creatorcontrib>Lukkari, Jukka</creatorcontrib><title>Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Autoxidation of dopamine to polydopamine by dissolved oxygen is a slow process that requires highly alkaline conditions. Polydopamine can be formed rapidly also in mildly acidic and neutral solutions by using redox-active transition-metal ions. We present a comparative study of polydopamine nanoparticles formed by autoxidation and aerobic or anaerobic oxidation in the presence of Ce­(IV), Fe­(III), Cu­(II), and Mn­(VII). The UV–vis spectra of the purified nanoparticles are similar, and dopaminechrome is an early intermediate species. At low pH, Cu­(II) requires the presence of oxygen and chloride ions to produce polydopamine at a reasonable rate. The changes in dispersibility and surface charge take place at around pH 4, which indicates the presence of ionizable groups, especially carboxylic acids, on their surface. X-ray photoelectron spectroscopy shows the presence of three different classes of carbons, and the carbonyl/carboxylate carbons amount to 5–15 atom %. The N 1s spectra show the presence of protonated free amino groups, suggesting that these groups may interact with the π-electrons of the intact aromatic dihydroxyindole moieties, especially in the metal-induced samples. The autoxidized and Mn­(VII)-induced samples do not contain metals, but the metal content is 1–2 atom % in samples prepared with Ce­(IV) or Cu­(II), and ca. 20 atom % in polydopamine prepared in the presence of Fe­(III). These differences in the metal content can be explained by the oxidation and complexation properties of the metals using the general model developed. In addition, the nitrogen content is lower in the metal-induced samples. All of the metal oxidants studied can be used to rapidly prepare polydopamine at room temperature, but the possible influence of the metal content and nitrogen loss should be taken into account.</description><subject>ambient temperature</subject><subject>autoxidation</subject><subject>carboxylic acids</subject><subject>copper</subject><subject>dispersibility</subject><subject>dissolved oxygen</subject><subject>dopamine</subject><subject>ions</subject><subject>iron</subject><subject>manganese</subject><subject>moieties</subject><subject>nanoparticles</subject><subject>nitrogen</subject><subject>nitrogen content</subject><subject>oxidants</subject><subject>oxygen</subject><subject>X-ray photoelectron spectroscopy</subject><issn>1520-6106</issn><issn>1520-5207</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkUFP3DAQha0KVCjl3hPKsYdmmbGJnVwqIVQK0gKrajlbjjOhRll7a2cR_Pt6uwuCQ8XBmrH83ifPPMa-IEwQOB4bmyb3S9tO6haxaU4-sH2sOJT5qJ1tLxHkHvuU0j0Ar3gtP7I9ATUKJXCfXczC8NSFpVk4T8W18bmNo7MDpWIWKV-oK26T83fFL-rCY3lqR_dAxTwan9zogi-uaDRD-sx2-1zocFsP2Pz8x_zsopze_Lw8O52WplJiLPsOBaHpKk4Iprc9GNmhaiT1cNJg23KDoKiXQJUBLmsQ2LdSYKeEtSAO2PcNdrlqF9RZ8mM0g15GtzDxSQfj9NsX737ru_CgpeJKqCYDvm4BMfxZURr1wiVLw2A8hVXSnHMEqKWC96VYK-BC1WsqbKQ2hpQi9S8_QtDrqHSOSq-j0tuosuXo9SQvhudssuDbRvDPGlbR573-n_cXCduhMg</recordid><startdate>20190321</startdate><enddate>20190321</enddate><creator>Salomäki, Mikko</creator><creator>Ouvinen, Tuomo</creator><creator>Marttila, Lauri</creator><creator>Kivelä, Henri</creator><creator>Leiro, Jarkko</creator><creator>Mäkilä, Ermei</creator><creator>Lukkari, Jukka</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1414-8893</orcidid><orcidid>https://orcid.org/0000-0001-6190-2073</orcidid><orcidid>https://orcid.org/0000-0002-8221-0954</orcidid><orcidid>https://orcid.org/0000-0002-9409-7995</orcidid></search><sort><creationdate>20190321</creationdate><title>Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals</title><author>Salomäki, Mikko ; Ouvinen, Tuomo ; Marttila, Lauri ; Kivelä, Henri ; Leiro, Jarkko ; Mäkilä, Ermei ; Lukkari, Jukka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a573t-fd13e1ad52e10afcf0a6d1796ef0491bb2a107ef60e5a0268031fb631d73cc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ambient temperature</topic><topic>autoxidation</topic><topic>carboxylic acids</topic><topic>copper</topic><topic>dispersibility</topic><topic>dissolved oxygen</topic><topic>dopamine</topic><topic>ions</topic><topic>iron</topic><topic>manganese</topic><topic>moieties</topic><topic>nanoparticles</topic><topic>nitrogen</topic><topic>nitrogen content</topic><topic>oxidants</topic><topic>oxygen</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salomäki, Mikko</creatorcontrib><creatorcontrib>Ouvinen, Tuomo</creatorcontrib><creatorcontrib>Marttila, Lauri</creatorcontrib><creatorcontrib>Kivelä, Henri</creatorcontrib><creatorcontrib>Leiro, Jarkko</creatorcontrib><creatorcontrib>Mäkilä, Ermei</creatorcontrib><creatorcontrib>Lukkari, Jukka</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salomäki, Mikko</au><au>Ouvinen, Tuomo</au><au>Marttila, Lauri</au><au>Kivelä, Henri</au><au>Leiro, Jarkko</au><au>Mäkilä, Ermei</au><au>Lukkari, Jukka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2019-03-21</date><risdate>2019</risdate><volume>123</volume><issue>11</issue><spage>2513</spage><epage>2524</epage><pages>2513-2524</pages><issn>1520-6106</issn><issn>1520-5207</issn><eissn>1520-5207</eissn><abstract>Autoxidation of dopamine to polydopamine by dissolved oxygen is a slow process that requires highly alkaline conditions. Polydopamine can be formed rapidly also in mildly acidic and neutral solutions by using redox-active transition-metal ions. We present a comparative study of polydopamine nanoparticles formed by autoxidation and aerobic or anaerobic oxidation in the presence of Ce­(IV), Fe­(III), Cu­(II), and Mn­(VII). The UV–vis spectra of the purified nanoparticles are similar, and dopaminechrome is an early intermediate species. At low pH, Cu­(II) requires the presence of oxygen and chloride ions to produce polydopamine at a reasonable rate. The changes in dispersibility and surface charge take place at around pH 4, which indicates the presence of ionizable groups, especially carboxylic acids, on their surface. X-ray photoelectron spectroscopy shows the presence of three different classes of carbons, and the carbonyl/carboxylate carbons amount to 5–15 atom %. The N 1s spectra show the presence of protonated free amino groups, suggesting that these groups may interact with the π-electrons of the intact aromatic dihydroxyindole moieties, especially in the metal-induced samples. The autoxidized and Mn­(VII)-induced samples do not contain metals, but the metal content is 1–2 atom % in samples prepared with Ce­(IV) or Cu­(II), and ca. 20 atom % in polydopamine prepared in the presence of Fe­(III). These differences in the metal content can be explained by the oxidation and complexation properties of the metals using the general model developed. In addition, the nitrogen content is lower in the metal-induced samples. All of the metal oxidants studied can be used to rapidly prepare polydopamine at room temperature, but the possible influence of the metal content and nitrogen loss should be taken into account.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30813731</pmid><doi>10.1021/acs.jpcb.8b11994</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1414-8893</orcidid><orcidid>https://orcid.org/0000-0001-6190-2073</orcidid><orcidid>https://orcid.org/0000-0002-8221-0954</orcidid><orcidid>https://orcid.org/0000-0002-9409-7995</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2019-03, Vol.123 (11), p.2513-2524
issn 1520-6106
1520-5207
1520-5207
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6727379
source ACS Publications
subjects ambient temperature
autoxidation
carboxylic acids
copper
dispersibility
dissolved oxygen
dopamine
ions
iron
manganese
moieties
nanoparticles
nitrogen
nitrogen content
oxidants
oxygen
X-ray photoelectron spectroscopy
title Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polydopamine%20Nanoparticles%20Prepared%20Using%20Redox-Active%20Transition%20Metals&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Saloma%CC%88ki,%20Mikko&rft.date=2019-03-21&rft.volume=123&rft.issue=11&rft.spage=2513&rft.epage=2524&rft.pages=2513-2524&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.8b11994&rft_dat=%3Cproquest_pubme%3E2187023789%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187023789&rft_id=info:pmid/30813731&rfr_iscdi=true