Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals
Autoxidation of dopamine to polydopamine by dissolved oxygen is a slow process that requires highly alkaline conditions. Polydopamine can be formed rapidly also in mildly acidic and neutral solutions by using redox-active transition-metal ions. We present a comparative study of polydopamine nanopart...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2019-03, Vol.123 (11), p.2513-2524 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2524 |
---|---|
container_issue | 11 |
container_start_page | 2513 |
container_title | The journal of physical chemistry. B |
container_volume | 123 |
creator | Salomäki, Mikko Ouvinen, Tuomo Marttila, Lauri Kivelä, Henri Leiro, Jarkko Mäkilä, Ermei Lukkari, Jukka |
description | Autoxidation of dopamine to polydopamine by dissolved oxygen is a slow process that requires highly alkaline conditions. Polydopamine can be formed rapidly also in mildly acidic and neutral solutions by using redox-active transition-metal ions. We present a comparative study of polydopamine nanoparticles formed by autoxidation and aerobic or anaerobic oxidation in the presence of Ce(IV), Fe(III), Cu(II), and Mn(VII). The UV–vis spectra of the purified nanoparticles are similar, and dopaminechrome is an early intermediate species. At low pH, Cu(II) requires the presence of oxygen and chloride ions to produce polydopamine at a reasonable rate. The changes in dispersibility and surface charge take place at around pH 4, which indicates the presence of ionizable groups, especially carboxylic acids, on their surface. X-ray photoelectron spectroscopy shows the presence of three different classes of carbons, and the carbonyl/carboxylate carbons amount to 5–15 atom %. The N 1s spectra show the presence of protonated free amino groups, suggesting that these groups may interact with the π-electrons of the intact aromatic dihydroxyindole moieties, especially in the metal-induced samples. The autoxidized and Mn(VII)-induced samples do not contain metals, but the metal content is 1–2 atom % in samples prepared with Ce(IV) or Cu(II), and ca. 20 atom % in polydopamine prepared in the presence of Fe(III). These differences in the metal content can be explained by the oxidation and complexation properties of the metals using the general model developed. In addition, the nitrogen content is lower in the metal-induced samples. All of the metal oxidants studied can be used to rapidly prepare polydopamine at room temperature, but the possible influence of the metal content and nitrogen loss should be taken into account. |
doi_str_mv | 10.1021/acs.jpcb.8b11994 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6727379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187023789</sourcerecordid><originalsourceid>FETCH-LOGICAL-a573t-fd13e1ad52e10afcf0a6d1796ef0491bb2a107ef60e5a0268031fb631d73cc03</originalsourceid><addsrcrecordid>eNqFkUFP3DAQha0KVCjl3hPKsYdmmbGJnVwqIVQK0gKrajlbjjOhRll7a2cR_Pt6uwuCQ8XBmrH83ifPPMa-IEwQOB4bmyb3S9tO6haxaU4-sH2sOJT5qJ1tLxHkHvuU0j0Ar3gtP7I9ATUKJXCfXczC8NSFpVk4T8W18bmNo7MDpWIWKV-oK26T83fFL-rCY3lqR_dAxTwan9zogi-uaDRD-sx2-1zocFsP2Pz8x_zsopze_Lw8O52WplJiLPsOBaHpKk4Iprc9GNmhaiT1cNJg23KDoKiXQJUBLmsQ2LdSYKeEtSAO2PcNdrlqF9RZ8mM0g15GtzDxSQfj9NsX737ru_CgpeJKqCYDvm4BMfxZURr1wiVLw2A8hVXSnHMEqKWC96VYK-BC1WsqbKQ2hpQi9S8_QtDrqHSOSq-j0tuosuXo9SQvhudssuDbRvDPGlbR573-n_cXCduhMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187023789</pqid></control><display><type>article</type><title>Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals</title><source>ACS Publications</source><creator>Salomäki, Mikko ; Ouvinen, Tuomo ; Marttila, Lauri ; Kivelä, Henri ; Leiro, Jarkko ; Mäkilä, Ermei ; Lukkari, Jukka</creator><creatorcontrib>Salomäki, Mikko ; Ouvinen, Tuomo ; Marttila, Lauri ; Kivelä, Henri ; Leiro, Jarkko ; Mäkilä, Ermei ; Lukkari, Jukka</creatorcontrib><description>Autoxidation of dopamine to polydopamine by dissolved oxygen is a slow process that requires highly alkaline conditions. Polydopamine can be formed rapidly also in mildly acidic and neutral solutions by using redox-active transition-metal ions. We present a comparative study of polydopamine nanoparticles formed by autoxidation and aerobic or anaerobic oxidation in the presence of Ce(IV), Fe(III), Cu(II), and Mn(VII). The UV–vis spectra of the purified nanoparticles are similar, and dopaminechrome is an early intermediate species. At low pH, Cu(II) requires the presence of oxygen and chloride ions to produce polydopamine at a reasonable rate. The changes in dispersibility and surface charge take place at around pH 4, which indicates the presence of ionizable groups, especially carboxylic acids, on their surface. X-ray photoelectron spectroscopy shows the presence of three different classes of carbons, and the carbonyl/carboxylate carbons amount to 5–15 atom %. The N 1s spectra show the presence of protonated free amino groups, suggesting that these groups may interact with the π-electrons of the intact aromatic dihydroxyindole moieties, especially in the metal-induced samples. The autoxidized and Mn(VII)-induced samples do not contain metals, but the metal content is 1–2 atom % in samples prepared with Ce(IV) or Cu(II), and ca. 20 atom % in polydopamine prepared in the presence of Fe(III). These differences in the metal content can be explained by the oxidation and complexation properties of the metals using the general model developed. In addition, the nitrogen content is lower in the metal-induced samples. All of the metal oxidants studied can be used to rapidly prepare polydopamine at room temperature, but the possible influence of the metal content and nitrogen loss should be taken into account.</description><identifier>ISSN: 1520-6106</identifier><identifier>ISSN: 1520-5207</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.8b11994</identifier><identifier>PMID: 30813731</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ambient temperature ; autoxidation ; carboxylic acids ; copper ; dispersibility ; dissolved oxygen ; dopamine ; ions ; iron ; manganese ; moieties ; nanoparticles ; nitrogen ; nitrogen content ; oxidants ; oxygen ; X-ray photoelectron spectroscopy</subject><ispartof>The journal of physical chemistry. B, 2019-03, Vol.123 (11), p.2513-2524</ispartof><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a573t-fd13e1ad52e10afcf0a6d1796ef0491bb2a107ef60e5a0268031fb631d73cc03</citedby><cites>FETCH-LOGICAL-a573t-fd13e1ad52e10afcf0a6d1796ef0491bb2a107ef60e5a0268031fb631d73cc03</cites><orcidid>0000-0003-1414-8893 ; 0000-0001-6190-2073 ; 0000-0002-8221-0954 ; 0000-0002-9409-7995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.8b11994$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.8b11994$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30813731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salomäki, Mikko</creatorcontrib><creatorcontrib>Ouvinen, Tuomo</creatorcontrib><creatorcontrib>Marttila, Lauri</creatorcontrib><creatorcontrib>Kivelä, Henri</creatorcontrib><creatorcontrib>Leiro, Jarkko</creatorcontrib><creatorcontrib>Mäkilä, Ermei</creatorcontrib><creatorcontrib>Lukkari, Jukka</creatorcontrib><title>Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Autoxidation of dopamine to polydopamine by dissolved oxygen is a slow process that requires highly alkaline conditions. Polydopamine can be formed rapidly also in mildly acidic and neutral solutions by using redox-active transition-metal ions. We present a comparative study of polydopamine nanoparticles formed by autoxidation and aerobic or anaerobic oxidation in the presence of Ce(IV), Fe(III), Cu(II), and Mn(VII). The UV–vis spectra of the purified nanoparticles are similar, and dopaminechrome is an early intermediate species. At low pH, Cu(II) requires the presence of oxygen and chloride ions to produce polydopamine at a reasonable rate. The changes in dispersibility and surface charge take place at around pH 4, which indicates the presence of ionizable groups, especially carboxylic acids, on their surface. X-ray photoelectron spectroscopy shows the presence of three different classes of carbons, and the carbonyl/carboxylate carbons amount to 5–15 atom %. The N 1s spectra show the presence of protonated free amino groups, suggesting that these groups may interact with the π-electrons of the intact aromatic dihydroxyindole moieties, especially in the metal-induced samples. The autoxidized and Mn(VII)-induced samples do not contain metals, but the metal content is 1–2 atom % in samples prepared with Ce(IV) or Cu(II), and ca. 20 atom % in polydopamine prepared in the presence of Fe(III). These differences in the metal content can be explained by the oxidation and complexation properties of the metals using the general model developed. In addition, the nitrogen content is lower in the metal-induced samples. All of the metal oxidants studied can be used to rapidly prepare polydopamine at room temperature, but the possible influence of the metal content and nitrogen loss should be taken into account.</description><subject>ambient temperature</subject><subject>autoxidation</subject><subject>carboxylic acids</subject><subject>copper</subject><subject>dispersibility</subject><subject>dissolved oxygen</subject><subject>dopamine</subject><subject>ions</subject><subject>iron</subject><subject>manganese</subject><subject>moieties</subject><subject>nanoparticles</subject><subject>nitrogen</subject><subject>nitrogen content</subject><subject>oxidants</subject><subject>oxygen</subject><subject>X-ray photoelectron spectroscopy</subject><issn>1520-6106</issn><issn>1520-5207</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkUFP3DAQha0KVCjl3hPKsYdmmbGJnVwqIVQK0gKrajlbjjOhRll7a2cR_Pt6uwuCQ8XBmrH83ifPPMa-IEwQOB4bmyb3S9tO6haxaU4-sH2sOJT5qJ1tLxHkHvuU0j0Ar3gtP7I9ATUKJXCfXczC8NSFpVk4T8W18bmNo7MDpWIWKV-oK26T83fFL-rCY3lqR_dAxTwan9zogi-uaDRD-sx2-1zocFsP2Pz8x_zsopze_Lw8O52WplJiLPsOBaHpKk4Iprc9GNmhaiT1cNJg23KDoKiXQJUBLmsQ2LdSYKeEtSAO2PcNdrlqF9RZ8mM0g15GtzDxSQfj9NsX737ru_CgpeJKqCYDvm4BMfxZURr1wiVLw2A8hVXSnHMEqKWC96VYK-BC1WsqbKQ2hpQi9S8_QtDrqHSOSq-j0tuosuXo9SQvhudssuDbRvDPGlbR573-n_cXCduhMg</recordid><startdate>20190321</startdate><enddate>20190321</enddate><creator>Salomäki, Mikko</creator><creator>Ouvinen, Tuomo</creator><creator>Marttila, Lauri</creator><creator>Kivelä, Henri</creator><creator>Leiro, Jarkko</creator><creator>Mäkilä, Ermei</creator><creator>Lukkari, Jukka</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1414-8893</orcidid><orcidid>https://orcid.org/0000-0001-6190-2073</orcidid><orcidid>https://orcid.org/0000-0002-8221-0954</orcidid><orcidid>https://orcid.org/0000-0002-9409-7995</orcidid></search><sort><creationdate>20190321</creationdate><title>Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals</title><author>Salomäki, Mikko ; Ouvinen, Tuomo ; Marttila, Lauri ; Kivelä, Henri ; Leiro, Jarkko ; Mäkilä, Ermei ; Lukkari, Jukka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a573t-fd13e1ad52e10afcf0a6d1796ef0491bb2a107ef60e5a0268031fb631d73cc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ambient temperature</topic><topic>autoxidation</topic><topic>carboxylic acids</topic><topic>copper</topic><topic>dispersibility</topic><topic>dissolved oxygen</topic><topic>dopamine</topic><topic>ions</topic><topic>iron</topic><topic>manganese</topic><topic>moieties</topic><topic>nanoparticles</topic><topic>nitrogen</topic><topic>nitrogen content</topic><topic>oxidants</topic><topic>oxygen</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salomäki, Mikko</creatorcontrib><creatorcontrib>Ouvinen, Tuomo</creatorcontrib><creatorcontrib>Marttila, Lauri</creatorcontrib><creatorcontrib>Kivelä, Henri</creatorcontrib><creatorcontrib>Leiro, Jarkko</creatorcontrib><creatorcontrib>Mäkilä, Ermei</creatorcontrib><creatorcontrib>Lukkari, Jukka</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salomäki, Mikko</au><au>Ouvinen, Tuomo</au><au>Marttila, Lauri</au><au>Kivelä, Henri</au><au>Leiro, Jarkko</au><au>Mäkilä, Ermei</au><au>Lukkari, Jukka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2019-03-21</date><risdate>2019</risdate><volume>123</volume><issue>11</issue><spage>2513</spage><epage>2524</epage><pages>2513-2524</pages><issn>1520-6106</issn><issn>1520-5207</issn><eissn>1520-5207</eissn><abstract>Autoxidation of dopamine to polydopamine by dissolved oxygen is a slow process that requires highly alkaline conditions. Polydopamine can be formed rapidly also in mildly acidic and neutral solutions by using redox-active transition-metal ions. We present a comparative study of polydopamine nanoparticles formed by autoxidation and aerobic or anaerobic oxidation in the presence of Ce(IV), Fe(III), Cu(II), and Mn(VII). The UV–vis spectra of the purified nanoparticles are similar, and dopaminechrome is an early intermediate species. At low pH, Cu(II) requires the presence of oxygen and chloride ions to produce polydopamine at a reasonable rate. The changes in dispersibility and surface charge take place at around pH 4, which indicates the presence of ionizable groups, especially carboxylic acids, on their surface. X-ray photoelectron spectroscopy shows the presence of three different classes of carbons, and the carbonyl/carboxylate carbons amount to 5–15 atom %. The N 1s spectra show the presence of protonated free amino groups, suggesting that these groups may interact with the π-electrons of the intact aromatic dihydroxyindole moieties, especially in the metal-induced samples. The autoxidized and Mn(VII)-induced samples do not contain metals, but the metal content is 1–2 atom % in samples prepared with Ce(IV) or Cu(II), and ca. 20 atom % in polydopamine prepared in the presence of Fe(III). These differences in the metal content can be explained by the oxidation and complexation properties of the metals using the general model developed. In addition, the nitrogen content is lower in the metal-induced samples. All of the metal oxidants studied can be used to rapidly prepare polydopamine at room temperature, but the possible influence of the metal content and nitrogen loss should be taken into account.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30813731</pmid><doi>10.1021/acs.jpcb.8b11994</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1414-8893</orcidid><orcidid>https://orcid.org/0000-0001-6190-2073</orcidid><orcidid>https://orcid.org/0000-0002-8221-0954</orcidid><orcidid>https://orcid.org/0000-0002-9409-7995</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2019-03, Vol.123 (11), p.2513-2524 |
issn | 1520-6106 1520-5207 1520-5207 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6727379 |
source | ACS Publications |
subjects | ambient temperature autoxidation carboxylic acids copper dispersibility dissolved oxygen dopamine ions iron manganese moieties nanoparticles nitrogen nitrogen content oxidants oxygen X-ray photoelectron spectroscopy |
title | Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polydopamine%20Nanoparticles%20Prepared%20Using%20Redox-Active%20Transition%20Metals&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Saloma%CC%88ki,%20Mikko&rft.date=2019-03-21&rft.volume=123&rft.issue=11&rft.spage=2513&rft.epage=2524&rft.pages=2513-2524&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.8b11994&rft_dat=%3Cproquest_pubme%3E2187023789%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187023789&rft_id=info:pmid/30813731&rfr_iscdi=true |